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Nonequilibrium statistical mechanics
of open classical systems

Luc REY-BELLET (U. Massachusetts)

We describe the ergodic and thermodynamical properties of chains of anharmonic
oscillators coupled, at the boundaries, to heat reservoirs at positive and different
temperatures. We discuss existence and uniqueness of stationary states, rate of
convergence to stationarity, heat flows and entropy production, Kubo formula and
Gallavotti-Cohen fluctuation theorem.

1. Introduction

We report on a series results obtained through various collaborations with J.-P. Eckmann,
M. Hairer, C.-A. Pillet and L. E. Thomas [2-5,18-21]. We study the statistical mechanics
of chains of anharmonic oscillators coupled at both ends to heat reservoirs at different tem-
peratures. The reservoirs are modeled by linear wave equations and the model is completely
Hamiltonian. Such oscillators chains (with various models of reservoirs) are widely used
as simple models to test the validity of Fourier Law (see [1,15] for reviews and references)
which is a fundamental open question in nonequilibrium statistical mechanics.

We consider a chain of n (arbitrary but finite) d-dimensional oscillators with coordinates
¢=(q1,---,qn) € R™, and momenta p = (p1,...,p,) € R™ and with Hamiltonian

2
He(p,q) = %JrEU“’(qHZU(” ~ git1)

+Vi(g), 1)

where U and U are C* confining potentials.

Each of the reservoirs is described by a wave equation in R? with Hamiltonian Hg(p, ) =
3 Jge(IVo(2)|? + |7(z)|?) dz. One reservoir, denoted by the subscript L, is coupled to the
first particle in the chain and another reservoir denoted by the subscript R is coupled to
the ntt particle. As an interaction between the chain and reservoirs we choose a dipole
approximation and the total Hamiltonian of the system is

Hp(pr,mL) + @1 /d Voo (z)pL(z) dz + Ho(p, q)
R
-l-qn/dV(pR(:E)pR(:L') da:+HB(<pR,7TR). (2)
R
The Hamiltonian (2) describes the system at finite energy, i.e., at temperature zero. The

inverse temperatures of the reservoirs By and (g are introduced by assuming that the
initial conditions of the reservoirs are distributed according to Gibbs measures pg, and
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tgr. Formally these measures are given by

“Z~ " exp(—BrH(pr,mx)) [ deor(z)dme(z)” . 3)
z€ERE

The equation (3) is merely a formal but suggestive expression. The measures pg, are
constructed as follows: The space of finite energy solutions of a wave equation is the real
Hilbert space H = H; x L? with a scalar product denoted by (-, -). We have then Hp(yp, ) =
(¢, ), (p,m)). The Gibbs measure pg, is, by definition, the Gaussian measure (supported
on the space of tempered distributions S’ x S’) with mean 0 and covariance G L, ).
The existence of this measure follows from Bochner-Minlos Theorem. Almost surely, the
initial conditions of the reservoir have infinite energy. For example in dimension d = 1 one
recognizes this measure as the product of a Wiener measure (for the ¢) with a white noise
measure (for the 7).

In the case of one single reservoir, or several reservoirs at the same temperatures one ex-
pects and and one can show, under quite general conditions [10], that the system returns to
equilibrium: the coupled system converges to the Gibbs state corresponding to the Hamil-
tonian (2). If the temperatures of the reservoirs are different, the stationary state of the
system is not known explicitly any more. Even its mere existence turns out to be a nontriv-
ial mathematical problem which requires a detailed understanding of the dynamics. One
also expects this stationary state to have nontrivial transport properties. Under suitable
assumptions on the potential in the chain and coupling to the reservoirs we show

(a) Existence and uniqueness of stationary states. They generalize the Gibbs states of
equilibrium.

(b) Exponential rate of convergence of suitable initial distributions to the stationary
state. This result is new even in equilibrium.

(c) Existence of a positive heat flow through the system if the temperatures of the
reservoir are different or, in other words, positivity of entropy production.

(d) “Universal” properties of the entropy production. Its large fluctuations (of large
deviations type) satisfy a symmetry known as Gallavotti-Cohen fluctuation theorem.
Its small fluctuations (of central limit theorem type) around equilibrium are governed
by Kubo formula.

Existence and uniqueness of the stationary state and positivity of entropy production
were first obtained in [4,5] for potentials with quadratic growth at infinity and extended to
more general polynomial growth in [2]. The exponential rate of convergence was obtained
first in [20] and later by another method in [3,11]. The fluctuation theorem [6-8,12,14,17]
is proved in [21]. The (exactly solvable) chain with quadratic potentials was considered
earlier in [22,23]. Apart from the aforementioned properties, little is known (rigorously) on
the properties of the nonequilibrium steady states, in particular virtually nothing is know
on the dependence on n of the stationary state (see [1,15] for a review of the numerous
numerical results, and [13] for a perturbative approach).

2. Ergodic properties

We describe and comment our technical assumptions.
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H1 Polynomial Growth: There exist constants A; > 0, 1 = 1,2, such that

lim A5 UD(Az) = Agl|z]®, (4)

A—00

and similar conditions for the first and second derivatives of U . Moreover we have

ke > k1> 2. (5)

H2 Non-degeneracy of U®): For z € R% and m = 1,2,..., let A™(z): R¢ - RY"
denote the linear maps given by

d
(A(m) (T 111yl = Z m(m)vl . (6)

We assume that for each z € R? there exists mg such that
Rank(AM(z),...,AM)(z)) =d. (7)

The first part of H1 is a mild condition of polynomial growth on UM (z) and U®(z).
The condition H2 is a local non-degeneracy condition which will ensures that energy is
transmitted through the chain. In the special case d = 1, H2 reduces to the fact that
for any g, there exists m = m(g) > 2 such that dy;gﬂ(,z) (¢) # 0, i.e., there are neither linear
pieces in the potential nor infinitely degenerate points. The second part of H1, equation(5),
ensures that the two-body potential U grows as fast or faster than the one-body poten-
tial UMW (z) at infinity. This assumption has a dynamical significance. Infinite chains of
nonlinear oscillators are known to exhibit breathers, i.e., spatially exponentially localized,
time periodic solutions (see e.g. [16]). The condition (5) ensures that these breathers get
more and more delocalized as their energy increases. On the contrary, if k; > ko, a simple
scaling argument shows that, at high energy, the oscillators in the chain behave essentially
as uncoupled oscillators (the so-called anticontinuum limit). A crucial ingredient of our
dynamical analysis is to show that initial conditions with energy localized far away from
the boundaries spread sufficiently in order to interact with the reservoirs and dissipate their
energies into them. In the case k3 > ko we are unable to have good enough estimates to
show even the existence of a stationary state. We expect, in any case, to have a much slower
rate of convergence to the stationary state.

H3 Rational coupling: The Fourier transforms g (w), k € {L, R}, of the coupling func-

tions py have the form

] pe () = % (8)

where Pj are polynomials.
The assumption H3 is, in effect a Markovian assumption. With a change of variables one

can reduce the dynamics of the chain coupled to the reservoirs at positive temperature to a
set of Markovian stochastic differential equations for the variables p, ¢, and a finite number
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of auxiliary variables. In the simplest case Py(w?) oc w? + 42 the equations have the form

dq1 = p1dt,

dpy = (=V¢, V(q) — Arre) dt,

drp = (—yore + Apr) dt + (287 y.)/?dBy,
dg; =p;dt, 7=2,...,n-1,

dp; = -V, V(g)dt, j=2,...,n—1,

dq, = pn dt,

dpn, = (—V,4,V(g) — Arrr) dt,

drr = (—yrr + Agpn) dt + (2ﬁ;¢1'7R)1/2dBR,

where 71, k € {L,R} are auxiliary variables, \; are coupling constants given by /\% =
[ |pk(z)|? dz, and By, k € {L, R} are Brownian motions. For more general polynomials one
obtains similar equations [20].

One can state all our result in terms of the Markov process which solves equations (9),
but we will choose here to state them in terms of the original variables. Consider the
Hamiltonian equations of motion for the Hamiltonian (2). We concentrate on the variable
of the chain and denote by

pe=p(0,¢0,®), @ =a»q?), (10)

the solution with initial conditions (p,q) for the chain and initial conditions ® = (pr, 7L,
@r,mr) for the reservoirs. Since the initial condition of the reservoirs @ is distributed
according the Gaussian Gibbs measure pg, X jg, on £ = (8')%, we may view the solution
equation(10) as a stochastic process

(t,®) €R x Q> (pr, ;) € R*™ (11)

The measure ug, X ig, induces naturally a probability distribution on path space which
we denote by P,(f . A7) and we denote by Egﬁ,’“’ﬂ ®) the corresponding expectation, where the

subscript (p, q) indicates the initial conditions of the chain.
Theorem 2.1 (Ergodic properties). If conditions H1, H2, and H3 are satisfied we have

(a) Ergodicity: There exists a measure g, , on R?™ with a positive smooth density
such that

t
tim 3 [ fona)ds= [ 0.0 dr0000), (12)

for all initial condition x = (p,q) of the system, for ug, X pp, almost all initial
conditions of the reservoirs, and for all observables f € L' (g, 5).

(b) Exzponential convergence: Let § < min{Gr,Br} and let f(p,q) be an observable
such that | f(p, q)] < Ce®HPD  then there exist positive constants C = Cg and a = g
such that

B [1(pusa0] ~ [ £(0,0) dma, on( q>| < Ceot|| o0 | (13)

where | fllo = sup, , || exp(~0H).
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Part (a) of Theorem 2.1 tells us that, for almost all initial conditions of the reservoirs, the
system will converge to a stationary state, while part (b) shows that this convergence occurs,
in average, at a exponential rate.

The proof of Theorem 2.1 can be found in [20] and is based on a detailed analysis of
the Markov process given by equation (9). We prove hypoellipticity of the generator to
obtains smooth transition probabilities. We use control-theoretic tools and the support
theorem of Stroock-Varadhan to show the irreducibility of the Markov process. Finally the
central part of the proof consist in establishing dissipation estimates on the dynamics and
constructing a Liapunov function for the Markov semigroup. Altogether we show that the
Markov semigroup is a compact irreducible semigroup on a suitable function space.

3. Entropy production and its fluctuations

If the reservoirs have unequal temperatures one does expect that in the stationary state,
energy is flowing from the hot reservoir through the chain into the cold reservoir (positiv-
ity of entropy production). Little is known about the general properties of systems in a
nonequilibrium stationary state. The Kubo formula and Onsager reciprocity relations are
such properties which are known to hold near equilibrium (i.e., if the temperatures of the
reservoirs are close) and this is a result about small fluctuations around equilibrium (of
central limit theorem type). In the last few years, a new general relation about nonequi-
librium states has been discovered, the so-called Gallavotti-Cohen fluctuation Theorem. It
asserts that the large fluctuations of the ergodic average of the entropy production have
a certain symmetry. This symmetry can be seen as a generalization of Kubo formula and
Onsager reciprocity relations to situations far from equilibrium. It has been discovered in
numerical experiments in [6], proved as a theorem for Anosov maps [7,8] (modeling systems
with deterministic thermostats), and extended to Markov processes in [12,14,17].

For our model this relation is proved in [21]. The large deviations aspects are nontrivial,
due to the noncompactness of the phase space, the unboundedness of the observable of
entropy production, and the degeneracy of the coupling (at the boundaries only). Note that
the fluctuation theorem is derived entirely within Hamiltonian formalism without a-priori
chaoticity or randomness assumptions on the dynamics (see also [9]).

To define the heat flows and the entropy productions we define the energy of the ;!
oscillators of the chain as

2
p; 1
Hy = 2 +UD(g) + 5 (UD(gj-1 - 45) + UD(g; = gj41)) (14)

i.e., its kinetic energy, its potential energy plus half of its interaction energy with its neigh-
bors. This choice is somewhat arbitrary, but other choices lead to exactly the same results.
Differentiating along a trajectory we find that

dH;

—dt—J(pt,Qt) = Fj_1(pt,qt) — Fj(pe, at) (15)

where

Fyp,q) = BB 9@ g, — g1 (16)
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It is natural to interpret Fj as the heat flow from the j*" to the (j 4+ 1)*® particle in the
chain. We define corresponding entropy productions by

oj = (Br —BL)F;. (17)

Our results on the heat flow and entropy production are summarized in

Theorem 3.1 (Entropy production). If conditions H1, H2, and H3 are satisfied we

have

(a)

(b)

(¢)

Positivity of entropy production: The average of the entropy production o; in
the stationary state mg, g, is independent of j and nonnegative, [ ojdmg, g, > 0
and it is positive away from equilibrium

/crjdwm,ga =0 ifandonlyif B =0r. (18)

Large deviations and fluctuation theorem: The ergodic averages

fll

7= [ o) (19)

satisfy the large deviation principle: There exist a neighborhood O of the interval

[—/ajdﬂ'ﬁmﬁa’ /ojd”ﬁL,ﬁR] (20)

and a rate function e(w) (both independent of j) such that for all intervals [a,b] C O
we have

lim 7 10g PR (3" € fa,b]) = inf, e(w). (21)

Moreover the rate function e(w) satisfy the relation
e(w) — e(—w) = —w, (22)

i.e., the odd part of e is linear with slope —1/2 (Gallavotti-Cohen fluctuation Theo-
rem,).

Central limit theorem and Kubo formula: Let us put § = (B + Br)/2 and
n = Br—Br. The fluctuations of the heat flow at equilibrium satisfy the central limit
theorem

lim PAP {a <

t—-»00

\/%/OtFj(ps,qs)dxb} - \/%/:exp(—f‘;—z) dy.  (23)

2 is finite and positive, independent of j, and given by the integrated auto-

where k

“correlation function

2= [ ([ B0 B2 B w ) dnssio.0)) . (24)

Moreover we have Kubo formula

0
6—7’] (/ FdeﬁL,ﬁn)

= K>, (25)
n=0
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The central limit theorem follows easily from the strong ergodic properties obtained in

Theorem 2.1. The large deviations for o; are more difficult, in particular since o; is an
unbounded observable, not even bounded by the energy. But we use the very intimate
link of the entropy production with the dynamics to show that it satisfies a large deviation

pr

inciple. Note also that all our results on the fluctuations of o; are independent of j, the

fluctuations are the same wherever the flow is measured and this would remain true even if
we would choose different potentials at each lattice site or bond.
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