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Abstract: We consider amodel of heat conduction introduced in [6], which consists of a
finite nonlinear chain coupled to two heat reservoirs at different temperatures. We study
the low temperature asymptotic behavior of the invariant measure. We show that, in this
limit, the invariant measure is characterized by a variational principle. The main technical
ingredients are some control theoretic arguments to extend the Freidlin-Wentzell theory
of large deviations to a class of degenerate diffusions.

1. Introduction

We consider a model of heat conduction introduced in [6]. In this model a finite non-
linear chain ofn d-dimensional oscillators is coupled to two Hamiltonian heat reser-
voirs initially at different temperature®; Tz, and each of which is described by a
d-dimensional wave equation. A natural goal is to obtain a usable expression for the
invariant (marginal) state of the chain analogous to the Boltzmann—Gibbs prescription
n = Z Ytexp(—H/T) which one has in equilibrium statistical mechanics. We show
here that the invariant state describing steady state energy flow through the chain is
asymptotic to the expression expW ™/ T) to leading order in the mean temperature

T, T — 0, where the actiov ™, defined on phase space, is obtained from an explicit
variational principle. The actiof’"” depends on the temperatures only through the
parameten = (T, — Tr)(Ty + Tr). As one might anticipate, in the limit — 0, W
reduces to the chain Hamiltonian plus a residual term from the bath interaction, i.e.,
exp(—W® /T) becomes the Boltzmann—Gibbs expression.
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Turning to the physical model at hand, we assume that the Hamiltéh{gng) of
the isolated chain is assumed to be of the form

n 2 n n—1 n 2

Hp) =Y 2+ U@ +Y U@ -a0=Y % +V@, O

i=1 i=1 i=1 i=1
whereg; and p; are the coordinate and momentum of tHeparticle, and wher&/
andU @ areC® confining potentials, i.e. lif—oo V(g) = +00.

The coupling between the reservoirs and the chain is assumed to be of dipole ap-
proximation type and it occurs at the boundary only: the first particle of the chain is
coupled to one reservoir and thé particle to the other heat reservoir. At time= 0
each reservoir is assumed to be in thermal equilibrium, i.e., the initial conditions of
the reservoirs are distributed according to (Gaussian) Gibbs measure with temperature
T1 = T; andT,, = Ty respectively. Projecting the dynamics onto the phase space of the
chain results in a set of integro-differential equations which differ from the Hamiltonian
equations of motion by additional force terms in the equationgfaand p,,. Each of
these terms consists of a deterministic integral part independent of temperature and a
Gaussian random part with covariance proportional to the temperature. Due to the inte-
gral (memory) terms, the study of the long-time limit is a difficult mathematical problem
(see [13] for the study of such systems in the case of a single reservoir). But by a further
appropriate choice of couplings, the integral parts can be treated as auxiliary variables
r1 andr,, the random parts become Markovian. Thus we obtain (see [6] for details) the
followinz%system of Markovian stochastic differential equations on the extended phase

spaceR?*+21: Forx = (p, ¢, r), we have
4i = pi» ji=1...,n,
pi = —tiV(q) +61ir1+6nitn, i=1...,n,
dri = —y(ri — X2qp)dt + yA*THY2dw;, i=1n. )

In Eq. (2),w1(r) andw,(r) are independent-dimensional Wiener processes, arfd
andy are coupling constants.

It will be useful to introduce a generalized Hamiltoni@rp, ¢, r) on the extended
phase space, given by

2
I
Gp.g.r)= ) (jz - mn) + H(p.,q),
i=1n

whereH (p, q) is the Hamiltonian of the isolated systems of oscillators given by (1). We
also introduce the parameters= (71 + 7,,)/2 (the mean temperature of the reservoirs)
andn = (T1 + T,)/(T1 — T,) (the relative temperature difference). Then Eq. (2) takes
the form

§=V,G,
p=-Y,G,
dr = —yA?V,Gdt + Y%(2y22D)Y2dw, (3)

wherep = (p1,---, Pn)rq = (q1, ---,qn), ¥ = (r1,r,) and whereD is the 2/ x 2d
matrix given byD = diag(1 + n, 1 — n).
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The functionG is a Liapunov function, non-increasing in time, for the deterministic
part of the flow (3). If the system is in equilibrium, i.e,if = 7, = ¢ andn = 0, itis
not difficult to check that the generalized Gibbs measure

te = Z Lexp(—=G(p, q,1)/e),

is an invariant measure for the Markov process solving Eq. (3).

If the temperatures of the reservoirs are not identical, no explicit formula for the
invariant measurgr; 7, can be given, in general. It is the goal of this paper to provide
a variational principle for the leading asymptotic form fof, r,, at low temperature,
¢ — 0. To suggest whatr, 7, looks like, we observe that a typical configuration of a
reservoir has infinite energy, therefore the reservoir does not only act as a sink of energy
but true fluctuations can take place. The physical picture is as follows: the system spends
most of the time very close to the critical set@f(in fact close to a stable equilibrium)
and very rarely (typically after an exponential time) an excursion far away from the
equilibria occurs. This picture brings us into the framework of rare events, hence into
the theory of large deviations and more specifically the Freidlin-Wentzell theory [8] of
small random perturbations of dynamical systems.

In the following we employ notation which is essentially that of [8]. C€i0, T']) de-
note the Banach space of continuous functions (paths) with vall€/iti*D equipped

with the uniform topology. We introduce the following functiodéfi} on the set of paths

C([0, T1): If ¢(t) = (p(1), q(r), r(z)) has oneL?-derivative with respect to time and
satisfiesp (0) = x we set

"” ) (@) = / + 4+ yA2V,G)D L + yA2V,G)dt, (4)

4)b2

@) =VpG@(@), p)=—-V,G@({)), (5)

andI;f’} (¢) = +o0 otherwise. Notice thalj?} (¢) = 0if and only if ¢ (¢) is a solution

of Eq. (3) with the temperatureset equal to zero. The function@ﬁ”} is called a rate

function and it describes, in the sense of large deviations, the probability of thes path
Roughly speaking, as — 0, the asymptotic probability of the paghis given by

exp(~1")9)/e).
Forx, y € R20+D we defineV ™ (x, y) as

VD (x,y) = inf inf 1"” 6
(e.y) =t inf 177(®), (6)

and for any set®, C € R¥"+D we set

VB, C)= inf VP(x,y). (7)
3y

xeB;yeC

The functionV ™ (x, y) represents the cost to bring the system freno y (in an
arbitrary amount of time). We introduce an equivalence relation on the phase space
R20+D: we sayx ~ y if VP (x,y) = VW (y,x) = 0. We divide the critical set
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K = {x; VG(x) = 0} (about which the invariant measure concentrates) according to
this equivalence relation: we have = U; K; with x ~ yif x € K;, y € K; andx # y
ifxeK;,yeK;,i#]j.

Our first assumption is on the existence of an invariant measure, the structure of the
setK and the dynamics near temperature zero.det 0 be arbitrary and denot®(p)
the p-neighborhood oK and letr, be the first time the Markov processr) which
solves (3) hitsB(p).

K1 The process(t) has aninvariant measure. Thdimit set of the deterministic part
of the flow (3) (which turns out to be the set of critical values of the HamiltoGian
can be decomposed into afinite number of inequivalent compadt sétmally, for
anyeg > 0, the expected hitting timg, (z,) of the diffusion with initial condition
x is bounded uniformly for G< ¢ < gg and uniformly inx on any compact set.

Remark 1. The assumptioK 1 ensures that the dynamics is sufficiently confining in
order to apply large deviations techniques to study the invariant measure.

Remark 2. The assumptions used in [6, 5] to prove the existence of an invariant measure
imply the assumption made on the structure of the criticadsButitis not clear that they

imply the assumptions made on the hitting time. We will merely assume the validity of
conditionK 1 in this paper. Its validity can be established by constructing Liapunov-like
functions for the model. Such methods allow as well to prove a fairly general theorem on
the existence of invariant measures for Hamiltonian systems coupled to heat reservoirs
and will be the subject of a separate publication [19].

Our second condition is identical to conditibt® of [6, 5].
K2 The 2-body potential/ @ (¢) is strictly convex.

Remark 3. The conditionK2 will be important to establish various regularity proper-
ties of V™ (x, y). It will imply several controllability properties of the control system
associated with the stochastic differential equations (3).

Following [8], we consider graphsonthe §&t. .., L}. A graph consisting of arrows
m—>n,me{l,...,L}\{i},me{l,...,L}),Iis called &i}-graph if

1. Every pointj, j # i is the initial point of exactly one arrow.
2. There are no closed cycles in the graph.

We denotaG{i} the set of{i}-graphs. The weight of the s&; is defined by

W (K;) = min V(K. Ky,). 8
(Kp) = min > (K. Kn) (8)

m—neg

Our main result is the following:

Theorem 1. Under the conditions K1 and K2 the invariant measure pr, 1, = e,y Of
the Markov process (3) has the following asymptotic behavior: For any open set D with
compact closure and sufficiently regular boundary

lim ¢1lo D) = — inf W™ (x),
lim & logue (D) = — inf W (x)
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where

W (x) = min (W(”)(Kl-) + VO (K, x)) —minW? (K ). (9)
i J

In particular, if = 0, then

wWOx) = Gx) — min G (x). (10)
The function W™ (x) satisfies the bound, for > 0,
@+ (G —minGw) = WP = @ -7t (G —minGw), (11

and a similar bound for n < 0.

Remark 4. Equations (10) and (11) imply that, ,, reduces to the Boltzmann-Gibbs
expressionu, ~ exp(—G/e) for np — 0 in the low temperature limit. Of course, at
n = 0, they are actually equal at all temperaturelgloreover these equations imply that
the relative probabilitys, ,(x)/ e, (y) is (asymptotically) bounded above and below

by

Gx) GO
e [s(li D edT n)]

so that no especially hot or cold spots developrfes O.

The theorem draws heavily from the large deviations theory of Freidlin—Wentzell [8].
That theory was developed for stochastic differential equations with a non-degenerate
(elliptic) generator; but for Eq. (3) this is not the case since the random force acts
only on 2/ of the 24(n + 1) variables. A large part of this paper is devoted to simply
developing the control theory necessary to extend Freidlin—~Wentzell theory to a class of
Markov processes containing our model. Diffusions with hypoelliptic generators have
been considered in the literature, e.g. [3, 2]. But these works assume in effect everywhere
small-time controllability which is too strong for our purposes. Once the control theory
estimates have been established, our proof follows rather closely the proof of Freidlin—
Wentzell [8] and the presentation of it given in [3] with suitable technical modifications.
We also note that the use of Freidlin—Wentzell theory in non-equilibrium statistical
mechanics has been advocated in particular by Graham (see [10] and references therein).
In these applications to non-equilibrium statistical mechanics, as in [10], the models are
mostly taken as mesoscopic: the variables of the system describe some suitably coarse-
grained quantities, which fluctuate slightly around their average values. In contrast to
these models, ours is entirely microscopic and derived from first principles and the
small-noise limit is seen as a low-temperature limit.

We note that the variational principle fo¥ ™ here certainly can be formulated
analogously for more complicated arrays of oscillators, plates with multiple thermo-
coupled baths, etc.

We conjecture that generically there is an onset of non-smooth behavibf’iras
a function ofx for n # 0 in the case wher& has multiple critical sets, but this sort
of critical behavior, as well as other physical phenomena to be deducediiéhare
guestions which remain to be elucidated.
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Finally we note that the action functionéf} can be related to an entropy production.
As in [7] the entropy production can be defined¥s= —Fy/T1 — F,/T,, whereF;
and F,, are energy flows from the chain to the respective reservoirs. For a giveg path
with ¢(0) = x and¢(T) = y we noteg the time reversed path wig(0) = Jy and
&(T) = Jx, whereJ(p, q,r) = (—p, g, r). A simple computation shows that for any
pathg we havel ").(9) = 1J")(§) + R(y) — R(x) — [y ©(¢(s))ds, wherex = ¢~16
andR(x) = (1+n) T Yr1—ig1)%+A—n) (A 1r,—1g,)2. Upto the boundary term
R the weight of a given path is the weight of the time reversed path times the exponential
of minus the entropy production along the path. In the case of equilibrium this reduces

to the usual detailed balantg} () = Iﬁ{T@) 4+ G(y) — G(x). These identities are an
asymptotic version of identities needed for the proof of the Gallavotti-Cohen fluctuation
theorem [4, 9] for stochastic dynamics [15,16,18].

The paper is organized as follows: In Sect. 2 we recall the large deviation principle for
the paths of Markovian stochastic differential equations and using methods from control
theory we prove the required regularities properties of the fundtigh(x, y) defined
in Eq. (6). Section 3 is devoted to an extension of Freidlin—~Wentzell results to a certain
class of diffusions with hypoelliptic generators (Theorem 3): we give a set of conditions
under which the asymptotic behavior of the invariant measure is proved. The result of
Sect. 2 implies that our model, under Assumpti&isandK 2, satisfies the conditions
of Theorem 3. In Sect. 4 we prove the equality (10) and the bound (11) which depend
on the particular properties of our model.

2. Large Deviations and Control Theory

In this section we first recall a certain number of concepts and theorems which will be
central in our analysis: The large deviation principle for the sample path of diffusions
introduced by Schilder for the Brownian motion [20] and generalized to arbitrary dif-
fusions by [8,1,23] (see also [3]), and the relationship between diffusion processes and
control theory, exemplified by the Support Theorem of Stroock and Varadhan [22]. With
these tools we then prove several properties of the dynamics for our model. We prove
that “at zero temperature” the (deterministic) dynamics given is dissipatives-timeit

set is the set of the critical points 6f(p, ¢, r). We also prove several properties of the
control system associated with Eq. (3): alocal control property around the critical points
of G(p, q, r) and roughly speaking a global “smoothness” property of the weight of the
paths betweer andy, whenx andy vary. The central hypothesis in this analysis is con-
dition K 2: this condition implies the hypoellipticity, [12], of the generator of the Markov
semi-group associated with Eq. (3), but it implies in fact a kind of global hypoellipticity
which will be used here to prove the aforementioned properties of the dynamics.

2.1. Sample paths large deviation and control theory. Let us consider the stochastic
differential equation

dx(1) = Y (x)dt + eY%0 (x)dw(t), (12)

wherex € X = R", Y(x) is aC® vector field,w(¢) is an m-dimensional Wiener
process and (x) is aC* map fromR™ to R". LetC([0, T']) denote the Banach space
of continuous functions with values iR” equipped with the uniform topology. Let
L2([0, T]) denote the set of square integrable functions with valuB&iandH1 ([0, T'])
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denote the space of absolutely continuous functions with valuég"irwith square
integrable derivatives. Lat (¢) denote the solution of (12) with initial conditian(0) =
x.We assume that(x) ando (x) are such that, for arbitrar®, the paths of the diffusion
process: (¢) belong taC ([0, T1). We letP¢ denote the probability measure 60, 7'1)
induced byx. (1), 0 <t < T and denote¢ the corresponding expectation.

We introduce the rate functiohy 7 (f) onC([0, T]) given by

1 T
Lor(f) = inf . fo gOPdi, (13)

{seHy: f()=x+[g Y(fs)ds+[y o(f(5)g(s)ds) 2

where, by definition, the infimum over an empty set is takes-as. The rate function
has a particularly convenient form for us since it accommodates degenerate situations
where rank < n.

In [3], Corollary 5.6.15 (see also [1]) the following large deviation principle for the
sample paths of the solution of (12) is proven. It gives a version of the large deviation
principle which is uniform in the initial condition of the diffusion.

Theorem 2. Let x¢(¢) denote the solution of Eq. (12) with initial condition x. Then, for
any x € R" and for any T < oo, therate function I, 7(f) is a lower semicontinuous
function on C([0, T']) with compact level sets(i.e. {f; I, 7 (f) < «} iscompact for any
o € R). Furthermore the family of measures P} satisfy the large deviation principle on
C([0, T]) with rate function I 7 (f):

1. For any compact K C X andany closed F C C([0, TY),

lim suplog supP,(x. € F) < — inf inf I, r(¢).
e—0 xek xeK ¢peF

2. For any compact K ¢ X and any open G C C([O, T']),

liminf log inf Py(x; € G) > — supinf I ().
e—0 xeK xekK %€

Recall that for our model given by Eq. (3), the rate function takes the form given in
Egs. (4) and (5). We introduce further the cost functigr(x, y) given by

Vr(x,y) = inf 1 . 14
(X, ) <O 4= x,7(¢) (14)
Heuristically Vi (x, y) describes the cost of forcing the system to be at time T
starting fromx at time 0. The functiorV (x, y) defined in the introduction, Eq. (6) is
equal to

V(x’ }’)Z}njOVT(X, )’)’ (15)

and describes the minimal cost of forcing the system fxaimy in an arbitrary amount
of time.

The form of the rate function suggests a connection between large deviations and
control theory. In Eq. (13), the infimum is taken over functigns H1 ([0, T']) which are
more regular than a path of the Wiener process. If we do the corresponding substitution
in Eg. (12), we obtain an ordinary differential equation

x(t) =Y (x@) +ox@)u), (16)
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where we have set(r) = ¢1/25(t) € L?([0, T1). The magpu is called a control and Eq.

(16) a control system. We fix an arbitrary tirfie> 0. We denote by : [0, T] — R”

the solution of the differential equations (16) with contéand initial conditionx. The
correspondence between the stochastic system Eq. (12) and the deterministic system
Eq. (16) is exemplified by the Support Theorem of Stroock and Varadhan [22]. The
support of the diffusion procesgr) with initial conditionx on [0, T, is, by definition,

the smallest closed subs&t of C([0, T']) such that

Pelx(t) e S5x1=1.

The Support Theorem asserts that the support of the diffusion is equal to the set of
solutions of Eq. (16) as the contmelis varied:

Sy ={o 1u e L%([0, T},

for all x € R¥. The control system (16) is said to &eongly completely controllable, if
foranyT > 0, and any pair of points, y, there exist a contrad such that¥ (0) = x and
@¥(T) = y. In[7] itis shown that, under conditiok 2, the control system associated
with Eg. (3) is strongly completely controllable. This is an ergodic property and this
implies, [7], uniqueness of the invariant measure (provided it exists). In terms of the
cost functionVy (x, y) defined in (14), strong complete controllability simply means
thatVr(x, y) < oo, foranyT > 0and any, y. The large deviation principle, Theorem

2, gives more quantitative information on the actual weight of paths betwaeady in

time T, in particular that the weight is exp(—%VT (x,)).As we will see below, these
weights will determine completely the leading (exponential) behavior of the invariant
measure for, (¢), ¢ | O.

2.2. Dissipative properties of the dynamics. We first investigate the-limit set of the
dynamics “at temperature zero”, i.e, when both temperatiited;, are set equal to

zero in the equations of motion. In this case the dynamics is deterministic and, as the
following result shows, dissipative.

Lemma 1. Assume condition K 2. Consider the system of differential equations given by

gi = Vp,G i=1--,n,
pi = —=V4G i=1---,n, an
i‘i = _J/)"Zvr,G I = 1,7’1.

Then the w-limit set of the flow given by Eq. (17) is the set of critical points of the
generalized Hamiltonian G(p, q,r) = Y;_1,(A"2r3/2 — rjq;) + H(p, ), i.€, the

st A = {x e R . vG(x) = 0}.

Proof. As noted in the introductioii (x) is a Liapunov function for the flow given by
(17). A simple computation shows that

d
TG@) = —yA? 3 670 — qi(0)” = =i Y IV G <0,

i=1ln i=Ln

Therefore it is enough to show that the flow does not get “stuck” at some point of the
hyper-surface$. 2r; — ¢;)2 = 0, i = 1, n which does not belong to the sét
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Let us assume the contrary, i.6.(x(¢)) is constant for € [T1, T2] so thatd G /dt =
0, implying that

A72r1(1) — qu(t) = YV, G(x(1)) = 0. (18)

Taking the time derivative of Eq. (18) yielgs, = V,,G = 0. Sincepy = 0, q1 is
constant, by Eqg. (18} is constant, and

0= —p1(t) = Vg G(x(1)) = Vg, V(q (1)) — r1(0). (19)

Equation (19) implies thaj, is constant, sinc&,, V is a function ofg; andg, only
and is a diffeomorphism ig, (sinceU @ is strictly convex). Thugs = ¢» = VG =
0. Proceeding inductively we find that @(x(¢)) is constant for € [Ty, T2], then
VG (x(t)) = 0. This concludes the proof of Lemma 10

2.3. Continuity properties of VT(”) (x, y). It will be important to establish certain con-
tinuity properties of the cost functioVIT(")(x, y). We prove first a global property: we
show that for any tim&", VT(”)(x, y) as a map fromX x X — R is everywhere finite

and upper semicontinuous. Furthermore we need a local prope'!tiv)qﬁc, y) near the
w-limit set of the zero-temperature dynamics (see Lemma 1). We prove thainidl y

are sufficiently close to this-limit set thenV}”) (x, y) is small. Both results are obtained
using control theory and hypoellipticity.

Proposition 1. Assume condition K 2. Then the functions V., for all 7 > 0 and V™
are upper semicontinuousmaps: X x X — R.

Proof. By definition V;")(y, 7) is given by

T
Vi (y, ) = inf % / (1(0)? + un (1)?)dt, (20)
0

where the infimum in (20) is taken over all= (u1, u,) € L%([0, T]) such that

¢ =V,G,
ﬁ = _Van
P = —yA°V,G + 2y ’D)Y?u, (21)

with boundary conditiongp(0), ¢(0), r(0)) = y and(p(T), ¢(T), r(T)) = z. In other
words, the infimum in (20) is taken over all contralsvhich steery to z.
We first show that, for any andz, there is a control which steessto z, i.e, that

VP (y, 2) < oo. By conditionK 2, v, U (¢) is a diffeomorphism. As a consequence
the identity (we set; = go, andr, = g,11)

G1 = —Vq,G(qi-1,q1, q1+1), l=1...,n,
can be solved for either_1 or ¢;11: there are smooth functiors; and H; such that

q1-1 = Gi(q1. G, qi+1)» qi+1 = Hi(qi-1, q, 41). (22)



10 L. Rey-Bellet, L. E. Thomas

Using this we rewrite now the equations in the following form: We assume for simplicity
n, the number of oscillators, is an even number and weg setn/2. (If n is odd, take

Jj = (n+1)/2 and up to notational modifications the argument goes as inthe even case.) It
follows inductively from Eq. (22) and their derivatives and from the equatiorfer gg

andr, = ¢,+1 (see Eqg. (21)) that we can express u, andqo, ..., gn+1, P1,---» Pn

as functions of;; andg;+1 and their derivatives up to orderj 2+ 1. Noting ¢! =

(q,9YP, ..., ¢@), a straightforward induction argument shows that there are smooth
mapsB andN so that

2j+1 2j+1
(s, un) = B (a7, g FY). (23)

and

2
(90 - -+ qn+1, P15 -, Pn) = N (qﬁ’],q,ﬂ)

Conversely, differentiating repeatedly the equations of motion we can e>q§?é]sand

qEﬂ as afunction ofyg, ..., gy+1, P, - . ., pu: there is a smooth majd such that

2 2j
<q5 ]]7 C]E_ﬁ_) =M(qo, - .- qn+1s Pns---» Pn)-

ThusN is a diffeomorphism with inversg/.
We have proven the following: The system of Egs. (21) with given boundary condi-
tions atr = 0 andr = T is equivalent to Eq. (23) with the boundary data

(10,42 @) =M. (4P'D).q M) =M. (24)

From this the assertion of the theorem follows easily: First we seé’l,‘ﬂ}:(ty, z) isfinite,
forall T > 0 and for ally, z. Indeed choose any sufficiently smooth curgeg) and
gj+1(t) which satisfies the boundary conditions (24) and considerghﬂen by Eq. (23).

Then the functionqo(?), . . ., gu+1(t), p1(t), ..., pa(t)) = N (q, ®), q, (t)) is a
solution of Eq. (21) with a contral(¢) given by (23) which steergto z.
In order to prove the upper semicontinuity‘z&,ﬁ”)(y, ), let us choose some> 0.

By definition of VT(”) there is a controk which steers to z along a pathp = ¢* such
that

Lir@") < Vi (y.2) +€/2,
and

w®) =B (470, ¢ 0).

Let s be chosen sufficiently small so that if

2j+1 2j+1 2j+1 ~[2j+1
sup l4; g — G g - @ <, (25)
te
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for g; g;+1 corresponding to a pathand controlz, then

sup u(t) —u(t)| < \/g (26)
te[0,T]

is true. But sinceV is a diffeomorphism, the séty, 2); ¢(0) = 7, ¢(T) = z} with ¢
satisfying Egs. (25) and (26) is a neighborhoodyfz). Hence

V(5,5 < Lr@" < VP (v, 2) +e.

This shows the upper semicontinuity Mﬁ")(y, z) and the upper semicontinuity of
VD (y, z) follows easily from this. This concludes the proof of Lemma &

An immediate consequence of this lemma is a bound on the cost function around
critical points of the generalized Hamiltonigh

Corollary 1. Foranyx € A = {y : VG(y) = O} andany h > Othereisé > 0 such
that, if |y — x| + |z — x| < §, then one has

vV (y,z) <h.

Proof. If x € A, x is a critical point of Eq. (17) and, as a consequence, the control
u = 0 steersc to x and hence/ ™ (x, x) = 0. The upper semicontinuity f ™ (y, z)
immediately implies the statement of the corollarg

Remark 5. This corollary slightly falls short of what is needed to obtain the asymptotic
of the invariant measure. More detailed information about the geometry of the control
paths around the critical points is needed and will be proved in the next subsection.

2.4. Geometry of the paths around the critical points. Let us consider a control system
of the form

m
F=Y@)+ Y Xi@u, (27)
i=1
wherex € R", Y (x), X;(x) are smooth vector fields. We assume that), X; (x) are
such that Eq. (27) has a unique solution for all time- 0. We want to investigate
properties of the set which can be reached from a given point by allowing only controls
with bounded size. The class of contralsve consider is given by

Uy = {u piecewise smoothwith |u; (1) <M, 1 <i <m} .

We denoteYﬁlr (x) the set of points which can be reached frenn time less tharr
with a controlu e U,,. We say that the control systemsisall-time locally controllable
(STLC) atx if Y (x) contains a neighborhood effor everyz > 0.

The following result is standard in control theory, see e.g. [21,17] for a proof.

Proposition 2. Consider the control system Eq. (27) with u € U),. Let xo be a critical
point of Y (x), i.e, Y (xg) = 0. If the linear span of the brackets

ad()(X)Hx) i=1....m, k=0,1,2,...,
hasrank n at xg then Eq. (27)is STLC at xg.



12 L. Rey-Bellet, L. E. Thomas

Proof. One provesLemma 2 by linearizing arouXigland using e.qg. the implicit function
theorem, see e.g. [17], Chapter 6, Theorem ti.

As a consequence of Lemma 2 and results obtained in [6] one gets

Lemma 2. Consider the control system given by Egs. (21) with u € Uy,. Let xg be a
critical point of G(x). If condition K2 is satisfied, then the system (21) is STLC at xg.

Proof. An explicit computation, see [6], shows that conditkb implies that the brack-
ets

adM(X)Hx) i=1,....m, k=0,...,n

generates the tangent space at each pairih particular at every critical pointo.
Therefore by Lemma 2, the control system Eq. (21) is STL&Gat O

With these results we can derive the basic fact on the geometry of the control paths
around critical points o0& (x).

Proposition 3. Consider the control system given by (21). Let xg be a critical point of
G (x) and B(p) the ball of radius p centered at xo. Then for any 2 > 0, o’ > O, there
areM,T > 0,and p > Owith p < p’/3suchthat for all x, y € B(p), thereisu € Uy
with

¢"(0) = x,¢"(T) =, ¢" (1) € B(2p'/3) for1 € [0, T],
and
Ix,T(¢u) < h.

Proof. Together with the control system (21), we consider the time-reversed system

j=-V,G,
p=V,G,
F = yA°V,.G + 2yr*D)Y?u. (28)

Lemma 2 implies the STLC of the control system (21). Furthermore from Lemma 2 it is
easy to see the control system (28) is STLC if and only if the control system (21) is. We
noteg" (¢*) the solution of Eq. (21) (Eq. (28)) artd. (x) (Y 2. (x)) the set of reachable
points for the control system (21) ((28)). We now chods@ndT such thatM?T < h

and such that . (x), Y. (x) C B(20'/3). By Lemma 2,y ™ (x) andY ¥, (x) contain

a neighborhood3(p) of xq for |x — xo| sufficiently small, witho < p’/3. Therefore
there are controlss, up € Uy andry, 12 < T such that

¢"1(0) = x0,¢"(r1) =y, ¢"*(0) = x0, $"?(72) = x.

By reversing the time, the trajecto@Q(t) yields a trajectory“2(t) with ¢*2(0) = x
and¢“2(t2) = xo. Concatenating the trajectorig¥?(r) and¢"1(z) yields a pathp from
x to y which does not leave the bahi(2p’/3) and for which we have the estimate

1 T1+72 2 1 2
Loor (@) = 5/0 dil O = M@+ ) <

and this concludes the proof of Corollary 30
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3. Asymptotics of the Invariant Measure

We consider a stochastic differential equation of the form
dxe = Y (x¢) + %0 (xo)dw, (29)

wherex € X = R", Y(x) is aC® vector field,o (x) aC*> map fromR™ to R" and
w(t) a standardn-dimensional Wiener process. We view the stochastic process given
by Eq. (29) as a small perturbation of the dynamical system

=Y. (30)

We denotédl, 7 (-) the large deviation functional associated with Eq. (29) (see Eq. (13))
and denotd/r (x, y) andV (x, y) the cost functions given by (14) and (15). Functions
V(K;, K;), V(K;, z), W(K;) andW (z) are defined analogously as in Egs.(6), (7), (8),
and (9).

We assume that the diffusion satisfies the conditioi 1 in the introduction. In
addition we require

L2 The diffusion process,(r) has an hypoelliptic generator, and for anyn the w-
limit set of the deterministic flow (30) the control system associated with Eq. (29)
is small-time locally controllable.

L3 The diffusion process is strongly completely controllable and, for Eny O,
Vr(x, y) is upper semicontinuous as a map framx X toR.

Remark 6. Itis shown in Sect. 2 that, for the model we consider, the condiidimplies
that thew-limit set of deterministic flow is the set of critical values of the Hamiltonian
G as well as Conditionk 2 andL 3.

We call a domainD C X regular if the boundary oD, 3D, is a piecewise smooth
manifold. Then we have

Theorem 3. Assume Conditions K1, L2, and L3 . Let D be a regular domain with
compact closure such that dist(D, U; K;) > 0. Then the (unique) invariant measure .
of the process x, (¢) satisfies

lim ¢In (D) = — inf W(z). (31)
e—0 zeD

In particular if thereisa single critical set K one has

limelnu. (D) =—inf V(K, 2). (32)
e—0 zeD

We first recall some general results on hypoelliptic diffusions obtained in [14], in
particular a very useful representation of the invariant megsune terms of embedded
Markov chains [11], see Proposition 4 below. Then we prove the large deviation esti-
mates. LeU andV be open subsets &f with compact closure with/ ¢ V. Below, U
andV will be the disjoint union of small neighborhoods of the sEtsWe introduce an
increasing sequence of Markov times op, 71, ... defined as follows. We sep = 0
and

o, = inf{t > 1, : x.(t) € AV}, (33)
T, = inf{t > 0,,_1: x.(¢t) € dU}. (34)
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As a consequence of hypoellipticity and the strong complete controllability of the con-
trol problem associated with the diffusion(¢) (ConditionsL2 andL 3) we have the
following result, [14], Theorem 4.1 : If the diffusian. (¢) is hypoelliptic and strongly
completely controllable then the diffusion admits a (unique) invariant measuie

and only ifx, (¢) is positive recurrent. It follows from this result that, almost surely, the
Markov timest; ando; defined in Egs. (33) and (34) are finite.

An important ingredient in the proof of this result in [14] is the following representa-
tion of the invariant measune, in terms of an invariant measukgdx) for the Markov
chain{x,(z;)} on the (compact) state spag¥, e.g. [11], Chap. IV, Lemma 4.2. for a
proof.

Proposition 4. Let the measure v, be defined as

T1
ve(D) = / L (dx) E? / Lp (re (1)1, (35)
U 0
where D isa Borel set and 1 is the characteristic function of the set D. Then one has
ve (D)
D) = .
e (D) Ve (X)

Up to normalization, the invariant measyrg assigns to a sdd a measure equal to the
time spent by the process in between two consecutive hits 6.

The proof of Theorem 3 is quite long and will be splitinto a sequence of lemmas. The
proof is based on the following ideas: As— 0 the invariant measure is more and more
concentrated on a small neighborhood of the criticalLsét;. To estimate the measure
of a setD one uses the representation of the invariant measure given in Proposition
4, where the set& andV are neighborhoods of the sdt&;}. Let p > 0 and denote
B(i, p) the p-neighborhood oK; andB(p) = U; B(i, p). Let D be a regular open set
such that distJ; K;, D) > 0. We choose’ so small that distB(i, p’), B(j, p’)) > 0O,
fori £ j and distB(i, p'), D) > 0,fori =1, ..., L, and we choosg > 0 such that
0<p<p'.WesetU = B(p) andV = B(p’). We letog andz; be the Markov times
defined in Eqgs. (33) and (34) and kgt be the Markov time defined as follows:

p = inf{t : x.(¢t) € D}.
The first two lemmas will yield an upper bound an( D), the unnormalized measure
given by Eq. (35). The first lemma shows that, fosufficiently small, the probability
that the diffusion wanders around without hittiBgp) or D is negligible.

Lemma 3. For any compact set K one has

lim lim supe log supP; (min{zp, 11} > T) = —ooc.
T—oo 50 xek

Proof. From ConditiorK 1 and the Markov inequality we obtain
& H 1 & H 1 &
Px (mln{TD, Tl} > T) =< ?Ex(mln{rDa Tl}) = ?Ex(rl) < o0,

uniformly in e — 0, and byL2, uniformly in x € K, since the diffusion has an
hypoelliptic generator and thug, (r1) is aC* function ofx. O
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Instead of the quantitie® (K;, K;) andV (K;, z), it is useful to introduce the fol-
lowing quantities:

V(Ki Kj) = It inf {17(). $(0) € Ki. $ (T) € K. (1) & Ui, Ki}

V(Ki,2) = Inf inf {1.,7(9), $(0) € Ki, $(T) = x,$ (1) & Ui K1}

The following lemma will yield an upper bound a(D), wherev, is the (unnor-
malized) measure given by Eq. (35).

Lemma4. Givenh > 0, for 0 < p < p’ sufficiently small one has
() limsupelog sup Pf(rp <71) < — (inf V(K;,2) —h),
e—0 y€dB(i,p’) zeD
(i) limsupelog sup Py(xs(t1) € 3B(j.p) <= — (V(Ki Kj) = h).

e—0 y€dB(,p")

Proof. We first prove item (i). If infcp V (K, z) = +o0 there is no curve connecting
K; to z € D without touching the otheK;, j # i. ThereforePyE(rD < 11) = 0and

there is nothing to prove. Otherwise, for- 0 we setV;, = inf,ep V(K;,z) — h. Since
V (v, z) satisfies the triangle inequality, we have, by Conditidh(see Corollary 1),
that, forp small enough,

inf inf V(y,2) > inf V(Ki,2) = sup V(Ki,y) >V,
yedB(i,p') zeD z€D yedB(i,p')

where

V(y,2) = }flfoinf {Le1(9).¢0) =y, ¢(T) =z,0(1) & Ui Ky} .
By Lemma 3, there i¥ < oo such that

limsupelog sup Pi(zp Ati>T) < —Vi. (36)
e—0 y€dB(i,p’)

Let G denote the subset 6{[0, T']) which consists of functiong (t) such that (¢) €
D for somer € [0, T] and¢ (1) & B(p) if t < inf{s, ¢(s) ¢ D}. The setGy is closed
as is seen by considering its complement.

We have

inf inf I, 7(¢)> inf inf V(y,2) >V,
VedB(i,p") peGr @) vedB(i.p) zeD 2)

and thus by Theorem 2, we have

limsupelog sup Pi(x. € Gr)<— inf inf I,7(¢)<—Vi.  (37)
e—0 yEﬁB(i,p,) yESB(i,p’)(PGGT B

We have the inequality

Pi(tp <) < Pi(tp AT1 > T) + P (xe € Gr),
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and combining the estimates (36) and (37) yields

limsupelog sup P(tp AT < —Vj.
e—0 y€dB(,p")

This completes the proof of item (i) of Lemma 4.

The proof of part (ii) of the lemma is very similar to the first part and follows closely
the corresponding estimates in [8], Chapter 6, Lemma 2.1. The details are left to the
reader. O

The following lemma will yield a lower bound on (D). It makes full use of the
information contained in Lemmas 1 and 3.

Lemmabs. Givenh > 0, for 0 < p’ < p sufficiently small one has

() liminf elog inf )P;(TD <1 > —(ing V(K;,2) + h),
z€e

e—0 x€dB(i,p
(i) liminf elog inf P{(x:(r1) € 3B(j, p)) > —(V(Ki, K;)+h). (38)
e—0 x€dB(i,p)

Proof. We start with the proof of item (i). If infp V (K;, z) = +oo there is nothing
to prove. Otherwise lgt > 0 be given. By Conditiot. 2, (see Corollary 3), there age
andp’ > 0 with p < p’/3 andTy < oo such that, for alk € dB(i, p), there is a path
¥* e C([0, To]) which satisfied, 7, (¥*) < h/3 with ¢*(0) = x andy*(Tp) = xg €
K; andy* () € B(20'/3),0<t < Tp.

By ConditionL 3, thereare € D, T1 < coandgy € C([0, T1]) suchthaf, 7, (¢1) <
inf.ep V(Ki, z) + h/3 andg1(0) = xo € K; and¢1(T1) = z and¢, does not touch
K, with j # i. We may and will assume thatand p’ are chosen such thap?2 <
dist(¢1(1), U;j; K ;). We noteA = dist(z, 9 D). Let x; be the point of last intersection
of ¢1 with dB(i, p) and letr; be such that1(r1) = x1. We noteg, € C([0, T»]), with
T» = Ty — 11, the path obtained fromy by deleting up to time; and translating in time.
Notice that the patk, may hitd B(i, o") several times, but hit8B(i, p) only at time 0.
Denote as

o =inf{t: ¢a2(t) € 3B, p')} (39)

the first timeg(¢) hits 3 B(i, p’). We choose\’ so small that ify € C([0, T2]) belongs
to the A’-neighborhood of,, theny () does not intersectB(i, p) anddB(i, p’) for
0 <t < o and does not interseéB (i, p)} fort > o.

By ConditionL 2, there arel3 < oo and¢s € C([0, T3]) such thatp3(0) = xo,
¢3(T3) = x1, ¢3(t) € B(2p'/3), 0 <t < T3, andly, 15(¢3) < h/3. Concatenating*,
¢3 and¢y, we obtain a patlp® € C([0, T]) with T = Ty + T3 + T2 and I, 7 (¢*) <
inf.cp V(K;, z) + h. By construction the path* avoidsd B(i, p)} after the timelp +
T3 + o, whereo is defined in Eq. (39).

We consider the open set

. A A
Ur = U {lﬁ eC(O0, TD : [¥ — ¢l < mln{%, 5 _}}_

2
x€dB(p)
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By construction the evenit, (t) € Ur} is contained in the everfitp < 11}. By Theo-
rem 2 we have

liminf elog inf P? > liminf elog inf PZ(x, e U

e ¢ gxeBB(p) x (0 <7) = o ¢ gxe8B(p) x (e € Ur)

>— sup inf L. r()
xedB(p) VEUT !

> — sup I, 7(¢")
X€dB(p)

—(inf V(K;, z) + h).
zeD

v

This concludes the proof of item (i).

The proof of (ii) follows very closely the corresponding estimate in [8], Chapter 6,
Lemma 2.1, which considers the case where the generator of the diffusion is elliptic: for
anyh > 0one constructs patiig” € C([0, T]) fromx € 9B(i, p)toy € dB(j, p) such
thatl, r(¢*) < V(K;, K ;) + h/2 and such that it, (¢) is in a small neighborhood of
@™, thenx. (1) € dB(j, p).Asin part (i) of the lemma, the key element to construct the
paths¢*” is ConditionL 2 of small-time controllability around the sek§. The details
are left to the reader.o

The following two lemmas give upper and lower bounds on the normalization constant
v (X), wherev, is defined in Eq. (35).

Lemma 6. For any & > 0, we have

lim igf elogv:(X) > —h.
E—>

Proof. We choose an arbitraty > 0. For anyp’ > 0 we have the inequality:
Ve (X) > Ve(B(,O/))
T1
= / lg(dx)Ej[ Lp(p) (xe(2))dt
9B(p) 0

o0
Z/ la(dx)E)f/ 1oy (xe (2))dt
9B(p) 0

= / l¢ (dx) ES(00).
9B (p)

Using the small-time local controllability around the &gt ConditionL 2, asin Lemma5
it is easy to show, as in Lemma 1.8 of [8] that for @ny O,

. h
inf E(00) > exp(—-),
xe€dB(p) &

for ¢ andp’ sufficiently small. This completes the proof of Lemma &

To get an upper bound on the normalization consta(X) we will need an upper
bound on the escape time out of the &{p’) aroundy; K;, starting fromx € 9 B(p).

Lemma7. Givenh > 0, for 0 < p < p’ sufficiently small,

limsupelog sup Ef(op) <h.
¢—0 x€dB(p)
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Proof. Since we have the property of small time local controllability near the Bgts
the proof of this lemma is similar to the proof of Lemma 1.7 of [8] in the elliptic case.
o

With this lemma we have proved all large deviations estimates needed in the proof
of Theorem 3. We will need upper and lower estimated .@8B(i, p)) wherel, is
the invariant measure of the Markov chain(z;). These estimates are proved in [8],
Chapter 6, Sects. 3 and 4 and are purely combinatorial and rely on the representation
of the invariant measure of a Markov chain with a finite state space via graphs on
the state space. By Lemma 4, (ii) and 5, (ii) we have the following estimates on the
probability transitiory (x, y), x, y € dB(p) of the Markov chaim(z;): Givenh > 0,
for 0 < p < p’ sufficiently small,

1 - 1 -
exp—=(V(Ki, Kj) + h) < q(x, 9B(j, p)) < exp—=(V(Ki, Kj) = h),  (40)

for all x € dB(i, p) and sufficiently smalt. It is shown in [8], Chapter 6, Lemmas 3.1
and 3.2 that the bound (40) implies a boundgid B(i, p)). One obtains

exp(—%(VVm) - m/,in W(K;)+ h)) <1:(3B(,p)) <

1. L.
< exp(——(W(Ki) —minW(K;) — h)> (41)
& J ’
for sufficiently smalle, where
W(K;) = min V(K. Kp). 42
(Ki) geG“}(m_Zmeg ( ) (42)

Alsoin [8], Chapter 6, Lemmas 4.1 and 4 K;) is shown to be in fact equal W (K;)
defined in Eq. (8) and that the functid¥(x), defined by Eq. (9), satisfies the identity

W(x) = min(W(K;) + V(K;, x)) —minW(K)
i J
= min(W (K;) + V(K;, x)) — min W (K ). (43)
i J

We can turn to the proof of Theorem 3.
Proof of Theorem 3. In order to prove Eq. (31), it is enough to show that, for &ny 0,
there iseg > 0 such that, foe < g9 we have the inequalities:

pe(D) > exn(—%(zig) W(z) + h)>, (44)

1.
pe(D) < exn(—g(zlr;]f) W(z) — h)>. (45)

We letp’ > 0 be such thap’ < dist(xmin, D). Recall thatrp = inf{r : x.(¢+) € D}
is the first hitting time of the sa&b. We have the following bound on thg(D):

71
ve(D) < Y L(dBG, p)) sup Ej | Lp(xe()dt
; x€dB(,p) *Jo

< Lmaxt,(@BG, p) sup Pi(tp <m) SUpES(r).  (46)
t x€dB(i,p) yeaD
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By K1, there exists a consta@tindependent of such that

sup Ef(r1) < C, (47)
yedD

for ¢ < g9. From Lemma 4, (i), giveh > 0, for sufficiently small 0< p < p’, we have
the bound

1 -
PE(ep < ) < exp(—g< inf V(K50 - h/4>), (48)

for sufficiently smalle. From Eq. (41), giveit > 0, for sufficiently small 0< p < o/,
we have the bound

1:(3B(, p)) < exp(—%(WK,-) - mjin W(K ;) — h/4)>. (49)

From the estimates (46)—(49), and the identity (43) we obtain the bound
1
ve(D) < exp (——(min W) + h/2)>, (50)
& zeD

for sufficiently smalle. From Lemma 6, givehn > 0, for sufficiently small 0< p < p/,
we have the bound

Ve (X) > exp(—zh—s), (51)

for sufficiently smalle. Combining estimates (50) and (51), we obtain that
1.
pe(D) < eXp<——(mf W) - h)>,
& zeD

for sufficiently smalls and this gives the bound (45).
In order to prove (44), we considgr the 98§ = {x € D : dist(x, aD) > §}. For
) sufficiently~small,D,; # . By L3, V(K;, z) is upper semicontinuous inso that
V(K;, 7)) < V(K;i, z) +h/4,for |7 — z| < 6. Therefore
inf V(K;,z) < ingV(Ki,z) + h/4. (52)
ze

z€Ds

We have the bound

ve(D) > maxi,(0B(i, p)) inf
i x€dB(

21
P{(tp; < 11) inf Ei/ 1p(xc(t))dt. (53)
i,p) x€dDs 0

There issg > 0 and a constan® > 0 such that we have the bound

T1 o
inf E,f/ 1p(x.(t))dr > C > 0, (54)
0

xeDg

uniformly ine < eg. From Eq. (41), giveit > 0, for sufficiently small O< p < p’, we
have the bound

(3B, p)) > exp(—%(fvue) - mjin W(K;) + h/4>), (55)
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for sufficiently smalls. Furthermore, by Lemma 5 and inequality (52), gives 0, for
0 < p < p’ sufficiently small, we have

1 -
i & Ty )
reani xS T Z exp( ¢ Uoh V(Kb 4’)’ (56)

for sufficiently smalls. Combining estimates (53)—(56) and identity (43) we find
1
ve(D) > exp(——(inf W(z) + h/Z)). (57)
& zeD

In order to give an upper bound on the normalization constatk), we use Eq. (35).
Using the Markov property, we obtain

ve(X) = / lo(dx)ES (vy) = / 1 (@) (E5(00) + E5(ES, (00 (7))
dB(p) 9B(p)

< sup Ei(oco)+ sup Ej(z). (58)
x€dB(p) y€IB(p')

By Lemma 7, giverh > 0O, for sufficiently small O< p < p’ we have the estimate
. h
sup E;(oo) <exp| - ).
x€3B(p) 2

for sufficiently smalk. By K 1, the second term on the right-hand side of (58) is bounded
by a constant, uniformly in & & < gg. Therefore for we obtain the estimate

Ve (X) < exp(%), (59)

for sufficiently smalls. Combining estimates (57) and (59) we obtain the bound

1
we(D) > em(—;(zig;‘) W(z) + h)),

and this is the bound (44). This concludes the proof of Theorent3.

4. Properties of the Rate Function and Proof of Theorem 1

To complete the proof of Theorem 1 we need the following lemma which expresses
the property of detailed balance fgr= 0. Recall that for a patkh € C([0, T]) with

¢(0) = x and¢(T') = y we denotep the time reversed path which satisfe®) = Jy
andg(T) = Jx.

Lemma8. Let ¢(1) € C([0, T1) with ¢(0) = x and ¢(T) = y. Either 1{9.(¢) = +oo
or we have '

196) = 12,@) + G - G). (60)
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Proof. We rewrite the rate functloqfo) (¢) given by Egs. (4) and (5) as
1(0) (9) = 42 / (7 + A2V, G) (i + y A2V, G)dt

2/ (r—y)LVG)(r—y)»VG)dt-l-/ (V,G)rdt
4yk
= K1(9) + K2(¢). (61)

The termK1(¢) can be interpreted as the rate function corresponding to the the set of
stochastic differential equations with the associated control system

¢ =V,G,
p=-V,G,
P = +yA2V,G + 2y r2D)Y2u. (62)

Consider now the transformatiaip, ¢, r) — J(p,q,r) andr — —t. This transfor-
mation maps the solutiop of Eq. (62) into a solution of Eq. (21) with(0) = Jy,
#(T) = Jx. This implies the equality

1 T
Ki(¢) = m/ (F — yA%V,G) (i — yA2V,G)
/ F + Y22V, G)F + YAV, G)dt = I ().

4,\2

This means thak'1(¢) is nothing but the weight of the time reversed path.

We now consider the second terfiz(¢), in Eq. (61).

Using the constraintg = V,G andp = —V,G we obtain the identity,Gp +
V,G4q = 0 and therefore we get

T T
Ka(¢) = / V,Gridt = / (V,GF +V,Gp + V,Gq)dt
0 0

T 4
= /0 EGdt =G((y) —G),

and this proves Eg. (60).0
With this result we obtain
Lemma. If n = 0then WO (x) = G(x) — min, G(x).

Proof. The HamiltonianG is constant ork; and we seG(x) = G; for all x € K.
Furthermore if(p, ¢, r) € K, thenp = 0 and therefore the seiS; are invariant under
time reversalJK; = K ;. Using Lemma 8, we see that for any patle C([0, T1) with
¢(0) =x € K, and¢(T) = y € K, we have

I9(@) = I\ (@) + G(y) — G(x) = IOH(@) + G — G
Taking the infimum over all paths and all timeT', we obtain the identity

V(O)(Kma Ky,) = V(O)(Kns Km) +Gpn — Gy
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In the definition ofW (@ (K;), see Eq. (8), the minimum is taken over{a}-graphs (see
the definition in the introduction). Given ga}-graph and & with j # i, there is a
sequence of arrows leading fropto i. Consider now the graph obtained by reversing
all the arrows leading fronj to i; in this way we obtain §;}-graph. Using the identity
(4) the weight of this graph is equal to the weight of the original graph @lus- G;.
Taking the infimum over all graphs we obtain the identity

wOk) =wOK)+G; -G,
and therefore we have
wO(K;) = G; + const
and soW @ (x), defined in Eq. (9), satisfies the identity

WO (x) = min(G; + VO(K;, x)) — minG;. (63)
l J
The second term in Eq. (63) is equal to miti(x), sinceG (x) is bounded below.
We now derive upper and lower bounds on the first term in Eq. (63). A lower bound

follows easily from Proposition 8: For any pahe C([0, T']) with ¢(0) = z € K; and
¢ (T) = x we obtain the inequality

196 =10, + G - G = Gx) - Gy,

since the rate function is nonnegative. Taking the infimum over all patisd timeT
we obtain

WO ) > Gix) — min G (x).

To prove the lower bound we consider the trajecipistarting at/x at time 0 which is
the solution of the deterministic equation (17). By Lemma 1, there is goysich that

lim; 00 (1) € K ;. Furthermore, since is a solution of Eq. (17), the rate function of
this path vanishesi,}g)’T(&) = 0, foranyT > 0. Now consider the time reversed path

¢(t). Itstarts at = —T with T < oo at K; and reaches at time 0. For such a path we
have
lim 1.9.(¢) = im I;7@) +G() — Gi = G&) = Gi,
and therefore
VO(K;, x) < Gx) — G;.
We finally obtain
W) < Gi + VO (Ki, x) = minG(x) < G(x) —MinG(x),

and this concludes the proof of Proposition &

We have the following bound on the rate function in the case0:
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Lemma 10. If » > Othen
L+ HG) ~minG@) < WP () < L HG() —mMinG (),

and a similar bound holdsfor n < 0.

The assertion follows from the fact that the subsét@®, 7'1) on WhIChI(n) () < xis
independent ofi. This is easily seen from the definition of rate functlon (13). Inspection
of Eqg. (4) implies the bound

A+ @) < 1) < A— %),
Taking the infimum completes the proof of the lemma

Combining Theorem 3 with Lemmas 9 and 10 we obtain Theorem 1.
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