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COARSE-GRAINING SCHEMES FOR STOCHASTIC LATTICE

SYSTEMS WITH SHORT AND LONG-RANGE INTERACTIONS

MARKOS A. KATSOULAKIS, PETR PLECHÁČ, LUC REY-BELLET,
AND DIMITRIOS K. TSAGKAROGIANNIS

Abstract. We develop coarse-graining schemes for stochastic many-particle
microscopic models with competing short- and long-range interactions on a
d-dimensional lattice. We focus on the coarse-graining of equilibrium Gibbs
states, and by using cluster expansions we analyze the corresponding renormal-
ization group map. We quantify the approximation properties of the coarse-
grained terms arising from different types of interactions and present a hierar-
chy of correction terms. We derive semi-analytical numerical coarse-graining
schemes that are accompanied by a posteriori error estimates for lattice sys-
tems with short- and long-range interactions.

1. Introduction

Many-particle microscopic systems with combined short and long-range interac-
tions are ubiquitous in a variety of physical and biochemical systems, [37]. They
exhibit rich mesoscopic and macroscopic morphologies due to the competition of
attractive and repulsive interaction potentials. For example, mesoscale pattern
formation via self-assembly arises in heteroepitaxy, [35]; other notable examples
include polymeric systems, [16], and micromagnetic materials, [18]. Simulations
of such systems rely on molecular methods such as kinetic Monte Carlo (kMC)
or Molecular Dynamics (MD). However, the presence of long-range interactions
severely limits the spatio-temporal scales that can be simulated by such direct
computational methods.
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On the other hand, an important class of computational tools used for accelerat-
ing microscopic molecular simulations is the method of coarse-graining. By lumping
together degrees of freedom into coarse-grained variables interacting with new, ef-
fective potentials the complexity of the molecular system is reduced, thus yielding
accelerated simulation methods capable of reaching mesoscopic length scales. Such
methods have been developed for the study and simulation of crystal growth, sur-
face processes and polymers, e.g., [1, 10, 19, 21, 23, 27], while there is an extensive
literature on soft matter and complex fluids, e.g., [13, 14, 30, 41]. Existing ap-
proaches can give unprecedented speed-up to molecular simulations and can work
well in certain parameter regimes, for instance, at high temperatures or low den-
sities of the systems. On the other hand important macroscopic properties may
not be captured properly in many parameter regimes, e.g., the melt structures of
polymers, [27], or the crystallization of complex fluids, [34]. Motivated in part
by such observations we formulated and analyzed, from a numerical analysis and
statistical mechanics perspective, coarse-grained variable selection and error quan-
tification of coarse-grained approximations focusing on stochastic lattice systems
with long-range interactions, [2, 23–25]. We have shown that the ensuing schemes,
known as coarse-grained Monte Carlo (CGMC) methods, perform remarkably well
even though traditional Monte Carlo methods experience a serious slow-down. In
this paper we focus on lattice systems with both short and long-range interactions.
Short-range interactions introduce strong correlations between coarse-grained vari-
ables, and a radically different approach needs to be employed in order to carry out
a systematic and accurate coarse-graining of such systems.

The coarse-graining of microscopic systems is essentially a problem in approxi-
mation theory and numerical analysis. However, the presence of stochastic fluctua-
tions on one hand, and the extensive nature of the models (the presence of extensive
quantities that scale as O(N) with the size of system N) on the other, create a new
set of challenges. Before we proceed with the main results of this paper we discuss
all these issues in a general setting that applies to both on-lattice and off-lattice
systems and present the mathematical and numerical framework of coarse-graining
for equilibrium many-body systems.

We denote by σ microscopic states of a many-particle system and by SN the set of
all microscopic states (i.e., the configuration space). The energy of a configuration
is given by the Hamiltonian HN (σ) where N denotes the size of the microscopic
system. An example studied in this paper is the d-dimensional Ising-type model
defined on a lattice with N = nd lattice points and suitable boundary conditions,
e.g., periodic. For both on-lattice or off-lattice particle systems the finite-volume
equilibrium states of the system are given by the canonical Gibbs measure at the
inverse temperature β, describing the most probable configurations

(1.1) μN,β(dσ) =
1

ZN
e−βHN (σ)PN (dσ) ,

where the normalizing factor ZN =
∫
e−βHNPN , the partition function, ensures that

(1.1) is a probability measure, and PN (dσ) denotes the prior distribution on SN .
The prior distribution is typically a product measure (see for instance (2.3)) which
describes non-interacting particles, or equivalently describes the system at infinite
temperature β = 0. At the β = 0 limit the particle interactions included in HN are
unimportant and thermal fluctuations, i.e., disorder, associated with the product
structure of the prior, dominate the system. By contrast at the zero temperature
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limit, β → ∞, interactions dominate and thermal fluctuations are unimportant; in
this case (1.1) concentrates on the minimizers, also known as the “ground states”,
of the Hamiltonian HN over all configurations σ. Finite temperatures, 0 < β < ∞,
describe intermediate states to these two extreme regimes, including possibly phase
transitions, i.e., regimes when as parameters, such as the temperature, change, the
system exhibits an abrupt transition from a disordered to an ordered state and vice
versa, or between different ordered phases.

The objective of (equilibrium) computational statistical mechanics is the simu-
lation of averages over Gibbs states, (1.1) of observable quantities f(σ):

(1.2) EμNβ
[f ] =

∫
f(σ)μN,β(dσ) .

Due to the exceedingly high dimension of the integration, even for moderate values
of the system size N , e.g., |SN | = 2N for the standard Ising model, such averaged
observables are typically calculated by Markov Chain Monte Carlo (MCMC) meth-
ods, [29]. Nonetheless, mesoscale morphologies, e.g., traveling/standing waves and
patterns, are beyond the reach of conventional Monte Carlo methods. For this rea-
son coarse-graining methods have been developed in order to speed up molecular
simulations.

We briefly discuss the mathematical formulation and numerical analysis chal-
lenges arising in coarse-graining of an equilibrium system described by (1.1). We
denote the configuration space at the coarse level by S̄M and we denote by F the
coarse-graining map F : SN → S̄M , Fσ = η ∈ S̄M . The coarse-grained system size
is denoted by M , while the microscopic system size is N = QM , where we refer to
Q as the level of coarse-graining, and Q = 1 corresponds to no coarse-graining. At
the coarse-grained level one is interested in observables f(η) which depend only on
the coarse variable η, and a coarse-grained statistical description of the equilibrium
properties of the system should be given by a probability measure μ̄M,β(dη) on S̄M

such that the average (the expected value) of such an observable is the same in
the coarse-grained as well as fully resolved systems. This motivates the following
definition.

Definition 1.1. The exact coarse-grained Gibbs measure μ̄M,β is defined by

(1.3) μ̄M,β(A) ≡ μN,β(F
−1(A)) ,

for any (measurable) set A ⊂ S̄M or, equivalently,

(1.4)

∫
f(η) μ̄M,β(dη) =

∫
f(F(σ))μN,β(dσ),

for all (bounded) f : S̄M → R.

Slightly abusing notation we will write μ̄M,β ≡ μN,β ◦ F−1 in the sequel. In
order to write the measure μ̄M,β in a more convenient form we first compute the
exact coarse-graining of the prior distribution PN (dσ) on SN :

P̄M (dη) = PN ◦ F−1 .

The conditional prior probability PN (dσ | η) of having a microscopic configuration
σ given a coarse configuration η will play a crucial role in the sequel. Recall that
for a function g(σ) the conditional expectation is given by

E[g | η] =

∫
g(σ)PN(dσ | η) .(1.5)
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We now write the coarse-grained Gibbs measure μ̄M,β using a coarse-grained Hamil-
tonian H̄M (η).

Definition 1.2. The exact coarse-grained Hamiltonian H̄M (η) is given by

e−βH̄M (η) = E[e−βHN | η] .(1.6)

This procedure is known as a renormalization group map, [17,20]. Note that the
partition functions for HN and H̄M coincide since

ZN =

∫
1e−βHNPN (dσ)=

∫ ∫
e−βHNPN (dσ | η)P̄M (dη)=

∫
e−βH̄M P̄M (dη) ≡ Z̄M .

Hence for any function f(η) we have∫
f(η)μN,β(dσ) =

∫
f(η)

1

ZN
e−βHNPN (dσ)

=

∫
f(η)

1

ZN

∫
e−βHNPN (dσ | η)P̄M (dη)

=

∫
f(η)

1

Z̄M
e−βH̄M (η)P̄M (dη) ,

and thus the exactly coarse-grained measure μ̄M,β(dη) in (1.3) is given by

(1.7) μ̄M,β(dη) =
1

Z̄M
e−βH̄M (η)P̄M (dη) .

Although typically P̄M (dη) is easy to calculate, see e.g., (2.4), the exact compu-
tation of the coarse-grained Hamiltonian H̄M (η) given by (1.7) is, in general, an
impossible task even for moderately small values of N .

In this paper we restrict our attention to lattice systems, and our main result is
the development of a general strategy to construct explicit numerical approxima-
tions of the exact coarse-grained Hamiltonian H̄M (η) in the physically important
case of combined and competing short and long-range interactions. Essentially we
construct an approximate coarse-grained energy landscape for the original complex
microscopic lattice system in Section 2. We show that there is an expansion of
H̄M (η) into a convergent series

(1.8) H̄M (η) = H̄
(0)
M (η) + H̄

(1)
M (η) + H̄

(2)
M (η) + error

by constructing a suitable first approximation H̄
(0)
M (η) and identifying small pa-

rameters to control the higher-order terms in the expansion. Truncations including
the first few terms in (1.8) correspond to coarse-graining schemes of increasing
accuracy. In order to obtain this expansion we rewrite (1.6) as

(1.9) H̄M (η) = H̄
(0)
M (η)− 1

β
logE[e−β(HN−H̄

(0)
M (η)) | η] .

We need to show that the logarithm can be expanded into a convergent series,
uniformly in N , eventually yielding an expression of the type (1.8). However, two
interrelated difficulties emerge immediately: (a) the stochasticity of the system in
the finite temperature case yields the non-linear expression in (1.9) which in turn
will need to be expanded into a series; (b) the extensive nature of the microscopic
system, i.e., typically the Hamiltonian scales as HN = O(N), does not allow the
expansion of the logarithm and exponential functions into the Taylor series.
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For these reasons, one of the principal mathematical tools we employ is the clus-
ter expansion method; see [38] for an overview and references. As we shall see in
the course of this paper cluster expansions will allow us to identify uncorrelated

components in the expected value E[e−β(HN−H̄
(0)
M (η)) | η], which in turn will permit

us to factorize it, and subsequently expand the logarithm in (1.9) in order to obtain
the series (1.8). The coarse-graining of systems with purely long-range interactions
was extensively studied using cluster expansions in [2, 23, 24]. Here we are broadly
following and extending this approach. However, the presence of both short and
long-range interactions presents new difficulties and requires new methods based
on the ideas developed in [4, 33]. Short-range interactions induce sub-grid scale
correlations between coarse variables, and need to be explicitly included in the ini-

tial approximation H̄
(0)
M (η). To account for these effects we introduce a multi-scale

decomposition of the Gibbs state (1.1) into fine and coarse variables, which in turn
allows us to describe, in an explicit manner, the communication between scales
for both short and long-range interactions. Furthermore, the multi-scale decom-
position of (1.1) can also allow us to reverse the procedure of coarse-graining in a
mathematically systematic manner, i.e., reconstruct spatially localized “atomistic”
properties, directly from coarse-grained simulations. We note that this issue arises
extensively in the polymer science literature, [31, 40].

The paper is organized as follows. In Section 2 we present the microscopic
Ising-type models with short and long-range interactions and introduce the coarse-
graining maps and the resulting coarse-grained configuration spaces. In Section 3
we discuss our general strategy for the analysis of systems with short and long-range
interactions and present our main results. In Section 4 we discuss semi-analytical
coarse-graining schemes and their applications to specific examples. Section 5 is
devoted to the construction of the cluster expansion and to the proof of conver-
gence of our schemes. In Section 6 we discuss the computational complexity of the
proposed coarse-graining schemes.

2. Microscopic lattice models and coarse-graining

We consider an Ising-type model on the d-dimensional square lattice ΛN :=
{x = (x1, . . . , xd) ∈ Zd ; 0 ≤ xi ≤ n− 1} with N = nd lattice points. For simplicity
we assume periodic boundary conditions throughout this paper, although other
boundary conditions can be accommodated. At each lattice site x there is a spin
σ(x) taking values in Σ = {+1,−1}. A spin configuration σ = {σ(x)}x∈ΛN

on the
lattice ΛN is an element of the configuration space SN := ΣΛN . For any subset
X ⊂ ΛN we denote σX = {σ(x)}x∈X ∈ ΣX the restriction of the spin configuration
to X. Similarly, for a function f : SN → R we denote fX the restriction of f to
ΣX . The energy of a configuration σ is given by the Hamiltonian

(2.1) HN (σ) = Hs
N (σ) +H l

N (σ) ,

which consists of a short-range part Hs
N and a long-range part H l

N . For the short-
range part we have

Hs
N (σ) =

∑
X⊂ΛN

UX(σ) ,

where the short-range potential U = {UX , X ⊂ Z
d}, with UX : ΣX → R, is

translation invariant (i.e., UX+y = UX for all X ⊂ Zd and all y ∈ Zd) and has
the finite range S (i.e., UX = 0 whenever diam (X) > S). We define the norm
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‖U‖ ≡
∑

X⊃{0} | diam(X)≤S ‖UX‖∞ where the norm ‖ · ‖∞ is the standard sup-norm

on the space of continuous functions. A typical case is the nearest-neighbor Ising
model

Hs
N (σ) = K

∑
〈x,y〉

σ(x)σ(y) ,

where by 〈x, y〉 we denote summation over the nearest neighbors. For the long-range
part we assume the form

H l
N (σ) = −1

2

∑
x∈ΛN

∑
y 	=x

J(x− y)σ(x)σ(y) ,

where the two-body potential J has the form

(2.2) J(x− y) =
1

Ld
V

(
1

L
|x− y|

)
,

for some V ∈ C1([0,∞)). The factor 1/Ld in (2.2) is a normalization which en-
sures that the strength of the potential J is essentially independent of L, i.e.,∑

x	=0 |J(x)| �
∫
|V (r)|dr. For example, if we choose V such that V (r) = 0 for

r > 1, then a spin at the site x interacts with its neighbors which are at most L
lattice points away from x, and in this case L is the range of the interaction J . It is
convenient to think of L as a parameter in our model, and more precise assumptions
on the interactions will be specified later on.

The finite-volume equilibrium states of the system are given by the canonical
Gibbs measure (1.1) and PN (dσ), the prior distribution on SN , is a product measure

(2.3) PN (dσ) =
∏

x∈ΛN

Px(dσ(x)) .

A typical choice is Px(σ(x) = +1) = 1
2 and Px(σ(x) = −1) = 1

2 , i.e., independent
Bernoulli random variables at each site x ∈ ΛN . For the sake of simplicity we
consider Ising-type spin systems, but the techniques and ideas in this paper apply
also to Potts and Heisenberg models or, more generally, to models where the “spin”
variable takes values in a compact space.

2.1. Coarse-graining. In order to coarse-grain our system we divide the lattice
ΛN into coarse cells and define coarse variables by averaging spin values over the
coarse cells. We partition the lattice ΛN into M = md disjoint cubic coarse cells,
each cell containing Q = qd microscopic lattice points so that N = nd = (mq)d =
MQ. We define a coarse lattice Λ̄M = {k = (k1, . . . , kd) ∈ Zd ; 0 ≤ ki ≤ m−1} and
we set ΛN =

⋃
k∈Λ̄M

Ck where Ck = {x ∈ ΛN ; kiq ≤ xi < (ki + 1)q}. Whenever
convenient we will identify the coarse cell CK in the microscopic lattice ΛN with
the point k of the coarse lattice Λ̄M . For any configuration σk ≡ σCk

on the coarse
cell Ck we assign a new spin value

η(k) =
∑
x∈Ck

σ(x)

which takes values in Σ̄ = {−Q,−Q+2, . . . , Q}. We denote the configuration space

at the coarse level by S̄M ≡ Σ̄Λ̄M and we denote by F the coarse-graining map

F : SN → S̄M , σ = {σ(x)}x∈ΛN

→ η = {η(k)}k∈Λ̄M

which assigns a configuration η on the coarse lattice Λ̄M given a configuration σ on
the microscopic lattice ΛN .
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The exact coarse-grained Gibbs measure is defined in (1.3) for arbitrary Gibbs
states having the form (1.7). Since η(k) depends only on the spins σ(x), with
x ∈ Ck, the coarse-grained measure P̄M is a product measure

(2.4) P̄M (dη) = PN ◦ F−1 =
∏

k∈Λ̄M

P̄k(dη(k)) .

For example if Px is a Bernoulli distribution, then Pk(η(k)) =
( Q
1
2 (η(k)+Q)

) (
1
2

)Q
.

Similarly, we define the conditional probability measure PN (dσ | η) as having a
microscopic configuration σ on ΛN given a coarse configuration η on Λ̄M . This
measure plays a crucial role in the sequel since it factorizes over the coarse cells

(2.5) PN (dσ | η) =
∏

k∈Λ̄M

Pk(dσ
k | η(k)) ,

where Pk(dσ
k | η(k)) is the conditional probability of a microscopic configuration

σk on CK given a coarse configuration η(k).

3. Approximation strategies for H̄M (η)

In this section we present a general strategy for constructing approximations of
the exact coarse-grained Hamiltonian H̄M (η) in (1.7). We show how to expand
H̄M (η) into a convergent series (1.8) by choosing a suitable first approximation

H̄
(0)
M (η) and identifying small parameters to control the higher-order terms in the

expansions. The basic idea is to use the first approximation H̄
(0)
M (η) in order to

rewrite (1.6) as (1.9). We show that the logarithm can be expanded into a con-
vergent series, uniformly in N , using suitable cluster expansion techniques. We
discuss in detail the case d = 1 in order to illustrate general ideas in the case where
calculations and formulas are relatively simple. The general d-dimensional case is
discussed in detail in Section 5.

We recall that the Hamiltonian HN (σ) = H l
N (σ) + Hs

N (σ) consists of a short-
range part Hs

N (σ) with the range S and a long-range part H l
N (σ) whose range is

L. We choose the coarse-graining level q such that

S < q < L .

There are two small parameters associated with the range of the interactions,

εs ∝ O
(
S

q

)
and εl ∝ O

( q
L

)
.

The first approximation is of the form

(3.1) H̄
(0)
M = H̄

l,(0)
M + H̄

s,(0)
M ,

and two distinct separate procedures are used to define the short-range coarse-

grained approximation H̄
s,(0)
M , as well as its long-range counterpart H̄

l,(0)
M . Due

to the non-linear nature of the map induced by (1.9) it is not obvious that (3.1)
will be a valid approximation, except possibly at high temperatures, when β � 1.
This fact will be established for a wide range of parameters in the error analysis of
Theorem 3.3, and in the discussion in Section 4, provided a suitable choice is made

for H̄
s,(0)
M and H̄

l,(0)
M .
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3.1. Coarse-graining of the long-range interactions. We briefly recall the
coarse-graining strategy of [24] for the long-range interactions. Since the range of
the interaction, L, is larger than the range of coarse-graining Q, a natural first
approximation for the long-range part is to average the interaction J(x − y) over
coarse cells. Thus we define

(3.2) H̄
l,(0)
M (η) ≡ E[H l

N | η] ,

and an easy computation gives

(3.3) H̄
l,(0)
M (η) = −1

2

∑
k∈Λ̄M

∑
l 	=k

J̄(k, l)η(k)η(l)− 1

2

∑
k∈Λ̄M

J̄(k, k)(η(k)2 −Q) ,

where

J̄(k, l) =
1

Q2

∑
x∈Ck

∑
y∈Cl

J(x− y) , J̄(k, k) =
1

Q(Q− 1)

∑
x,y∈Ck

∑
y 	=x

J(x− y) .

A simple error estimate (see [2, 24] for details in various cases) gives

H l
N (σ) = H̄

l,(0)
M (F(σ)) + eL with eL = NO(

q

L
‖∇V ‖∞) .

Using this definition of H̄
l,(0)
M we obtain

e−βHl
N (σ)PN (dσ | η) = e−βH̄

l,(0)
M (η)e

−β
[
Hl

N (σ)−H̄
l,(0)
M (η)

]
PN (dσ | η)(3.4)

= e−βH̄
l,(0)
M (η)

∏
j,k∈Λ̄M

(
1 + f l

jk

)
PN (dσ | η) ,(3.5)

where

(3.6) f l
jk ≡ e

β
2

∑
x∈Cj

∑
y∈Ck,y �=x(J(x−y)−J̄(k,l))σ(x)σ(y)(2−δjk) − 1 .

Due to the fact that PN (dσ | η) has a product structure one can rewrite (3.5) as a
cluster expansion, [24] (see also Section 5), as in (1.8). The key element in that
cluster expansion is the “smallness” of the quantity

(3.7) |J(x− y)− J̄(k, l)| ≤ 2
q

Ld+1
sup

x′∈Ck,

y′∈Cl

|∇V (x′ − y′)| ,

which yields asymptotics

(3.8) f l
jk = O(q2d

q

Ld+1
‖∇V ‖∞) .

The estimate (3.7) follows from regularity assumptions on V and the Taylor expan-
sion.

3.2. Multi-scale decomposition of Gibbs states. This approach provides the
common underlying structure of all coarse-graining schemes at equilibrium includ-
ing lattice and off-lattice models. It is essentially a decomposition of the Gibbs state
(1.1) into product measures among different scales selected with suitable properties.
We outline it for the case of short-range interactions where we rewrite the Gibbs
measure (1.1) as

μN,β(dσ) ∼ e−βHN (σ)PN (dσ) = e−βHN (σ)PN (dσ | η)P̄M (dη) .
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We use the notation ∼ meaning up to a normalization constant, i.e., in the equation
above we do not spell out the presence of the constant ZN . We now seek the
following decomposition of the short-range interactions:

(3.9) e−βHs
N (σ)PN (dσ | η) = R(η)A(σ)ν(dσ|η) ,

where
(a) R(η) depends only on the coarse variable η and is related to the first coarse-

grained approximation H̄
(s,0)
M (η) via the formula

(3.10) R(η) = e−βH̄
s,(0)
M (η) , A(σ)ν(dσ|η) = e

−β
(
Hs

N (σ)−H̄
s,(0)
M (η)

)
PN (dσ | η).

(b) A(σ) has a form amenable to a cluster expansion, i.e.,

(3.11) A(σ) =
∏

k∈Λ̄M

(1 + Φk(σ)) .

The function Φk is small and moreover Φk(σ) depends on the configuration σ only
locally, up to a fixed finite distance from Ck. In the example at hand (for d = 1)
we have Φk(σ) = Φk(σ

k−1, σk+1).
(c) The measure ν(dσ|η) has the general form

(3.12) ν(dσ|η) =
∏

k∈Λ̄M

νk(dσ|η) ,

where νk(dσ | η) depends on σ and η only locally up to a fixed finite distance
from Ck. In the example at hand νk(dσ | η) depends only on the configuration
on Ck−1 ∪Ck ∪Ck+1. Even though the measure ν(dσ|η) is not a product measure,
the fact that this measure has finite spatial correlation makes it adequate for a
cluster expansion; see (3.24) and Section 5.

Although here we described the multi-scale decomposition of the Gibbs measure
for the case of short-range interactions, the results on the long-range interactions,
discussed earlier, can be reformulated in a similar way. In particular, (3.4) and
(3.5) can be rewritten as

(3.13) e−βHl
N (σ)PN (dσ | η) = R(η)A(σ)ν(dσ|η) ,

where R(η) = e−βH̄
l,(0)
M (η), ν(dσ|η) = PN (dσ | η), and

(3.14) A(σ) = e−β
(
Hl

N (σ)−H̄
l,(0)
M (η)

)
=

∏
j,k∈Λ̄M

(
1 + f l

jk

)
.

We recall that in analogy to (3.12), the product structure of ν(dσ|η) = PN (dσ | η)
allows us to carry out a cluster expansion for the long-range case, and obtain a
convergent series such as (1.8), thus yielding an expansion of the exact coarse-
grained Hamiltonian H̄ l

M , [24]. We also note that (3.9), used here as a numerical
and multi-scale analysis tool in order to derive suitable approximation schemes for
the coarse-grained Hamiltonian, was first introduced in [4,32,33] for the purpose of
deriving cluster expansions for lattice systems with short-range interactions away
from the well-understood high temperature regime.

The error estimates for the approximating coarse-grained measure μ̄
(k)
β,M , which is

defined by the expansion of the coarse-grained Hamiltonian truncated at the k+1st

term, is quantified in terms of the specific relative entropy 1
NR(μ̄

(0)
M,β |μN,β ◦F−1).

The measure μN,β ◦F−1 denotes the exactly coarse-grained measure μN,β induced
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by the coarse-graining map F. The relative entropy of the measure μ with respect
to the measure ν is

R(μ | ν) ≡
∫

log
(dμ
dν

)
dμ .

3.3. Coarse-graining schemes in one spatial dimension. We sketch how to
obtain a decomposition such as (3.9) for d = 1 and construct a suitable R(η). We
first focus on the short-range interactions with radius S. Using that S < q, we
write the corresponding Hamiltonian as

(3.15) Hs
N (σ) =

∑
k∈Λ̄M

Hs
k(σ) +

∑
k∈Λ̄M

Wk,k+1(σ) ,

where

Hs
k(σ) =

∑
X⊂Ck

UX(σ) , Wk,k+1(σ) =
∑

X∩Ck 	=∅ , X∩Ck+1 	=∅
UX(σ) ,

i.e., Hs
k is the energy for the cell Ck which does not interact with other cells, i.e.,

under the free boundary conditions, and Wk,k+1 is the interaction energy between
the cells Ck and Ck+1. Thus, we can split the one-dimensional lattice into non-
communicating components, for instance, even- and odd-indexed cells, and write

e−βHs
NPN (dσ | η) =

∏
k: odd

[
e−β(Wk−1,k+Wk,k+1)e−βHs

kPk(dσ
k | η(k))

]

×
∏

k: even

e−βHs
kPk(dσ

k | η(k)) .(3.16)

In (3.16) we will normalize the factors for k odd by dividing each factor with the
suitably defined corresponding partition functions for the regions Ck and Ck−1 ∪
Ck ∪ Ck+1.

Definition 3.1. We define the partition function with boundary conditions σk−1

and σk+1, i.e.,

(3.17) Zk(η(k);σ
k−1, σk+1) =

∫
e−β(Wk−1,k+Wk,k+1)e−βHs

kPk(dσ
k | η(k)) .

In order to decouple even and odd cells we define the partition function with free
boundary conditions on Ck−1 and boundary condition σk+1 on Ck+1, i.e.,

(3.18) Zk(η(k); 0, σ
k+1) =

∫
e−βWk,k+1e−βHs

kPk(dσ
k | η(k)) ,

and similarly Zk(η(k);σ
k−1, 0), as the partition function with free boundary condi-

tions on Ck+1 and boundary condition σk−1 on Ck−1. We also denote by Zk(η(k);
0, 0) the partition function for Ck with free boundary conditions. We define the
three-cell partition function with free boundary conditions

Zk−1,k,k+1(η(k − 1), η(k), η(k + 1); 0, 0)

=

∫
e−β(Hs

k−1+Wk,k−1+Hs
k+Wk,k+1+Hs

k+1)

×Pk−1(dσ
k−1 | η(k − 1))Pk(dσ

k | η(k))Pk+1(dσ
k+1 | η(k + 1)) .(3.19)

The key to the decomposition and eventually to the cluster expansion is the
introduction of a “small term” analogous to (3.8).
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Definition 3.2.

(3.20) fs
k−1,k+1(η(k);σ

k−1, σk+1) =
Zk(η(k);σ

k−1, σk+1)Zk(η(k); 0, 0)

Zk(η(k); 0, σk+1)Zk(η(k);σk−1, 0)
− 1.

An important element in the cluster expansion in Section 5 is the estimation of
the terms fs

k−1,k+1. However, a straightforward estimate yields

(3.21) fs
k−1,k+1(η(k);σ

k−1, σk+1) � βS‖U‖ ,

while for a sharper estimate relying on the spatial correlation length of the short-
range interactions, we refer to (4.9) and (4.10) below.

We can now rewrite

Zk(η(k);σ
k−1, σk+1) =

(
fk−1,k+1(η(k);σ

k−1, σk+1) + 1
)

×Zk(η(k); 0, σ
k+1)Zk(η(k);σ

k−1, 0)

Zk(η(k); 0, 0)
.(3.22)

In (3.16) we now divide and multiply each factor with k odd by Zk(σ
k−1, σk+1)

and use the formula (3.22). Furthermore, we multiply and divide each factor with
even k by Zk−1,k,k+1(0, 0) and obtain

e−βHs
N PN (dσ | η)

=
∏

k: odd

Zk(0, 0)
−1

∏
k: even

Zk−1,k,k+1(0, 0)

︸ ︷︷ ︸
≡ R(η)

∏
k: odd

(fs
k−1,k+1 + 1)

︸ ︷︷ ︸
≡ A(σ)

(3.23)

×
∏

k: odd

e−β
(
Hs

k+Wk−1,k+Wk,k+1

)

Zk(σk−1, σk+1)
Pk(dσ

k | η(k))
∏

k: even

e−βHs
kZk+1(σ

k, 0)Zk−1(0, σ
k)

Zk−1,k,k+1(0, 0)
Pk(σ

k | η(k))

︸ ︷︷ ︸
≡ ν(dσ|η))

(3.24)

where we have used that∏
k: odd

Zk(0, σ
k+1)Zk(σ

k−1, 0) =
∏

k: even

Zk+1(σ
k, 0)Zk−1(0, σ

k) .

It is easy to verify that ν(dσ | η) defined in (3.24) is a normalized measure and has
the form required in condition (c) of the multi-scale decomposition of the Gibbs
measure. The factor R(η) defined in (3.23) gives the first-order corrections induced
by the correlations between adjacent cells. Putting together the analysis for short
and long-range interactions we obtain the main result formulated as a theorem.

Theorem 3.3. Let

(3.25) H̄
(0)
M (η) = H̄

l,(0)
M (η) + H̄

s,(0)
M (η),

where H̄
l,(0)
M (η) is given in (3.2) and (3.3) and

(3.26) H̄
s,(0)
M (η) = −

∑
k: odd

Ū
s,(0)
k (η(k))+

∑
k: even

Ū
s,(0)
k−1,k,k+1(η(k−1), η(k), η(k+1)) ,

with the one-body interactions

(3.27) Ū
s,(0)
k (η(k)) = − 1

β
logZk(η(k); 0, 0) ,
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and the three-body interactions

Ū
s,(0)
k−1,k,k+1(η(k − 1), η(k), η(k + 1))

= − 1

β
logZk−1,k,k+1(η(k − 1), η(k), η(k + 1); 0, 0) ,(3.28)

where Zk and Zk−1,k,k+1 are given by (3.18) and (3.19) respectively. Then:
1. We have the error bound

|H̄M − H̄
(0)
M | = NO

(
βS‖U‖

q
+

qβ‖∇V ‖∞
L

)
,

for a short-range potential with the range S � q � L. The loss of information
when coarse-graining at the level q is quantified by the specific relative entropy
error

(3.29)
1

N
R(μ̄

(0)
M,β |μN,β ◦ F−1) = O

(
βS‖U‖

q
+

qβ‖∇V ‖∞
L

)
.

2. There exist δ1 > 0 and δ2 > 0 such that if
(3.30)

sup
k

sup
σ

∑
l 	=k

|f l
jk(σ

j , σk)| ≤ δ1, sup
k

sup
σk−1,σk+1,η(k)

|fs
k−1,k+1(η(k);σ

k−1, σk+1)| ≤ δ2,

where fs
k−1,k+1 and f l

jk are given by (3.20) and (3.6) respectively, then H̄M −
H̄

(0)
M is expanded in an absolutely convergent series in the parameters β‖U‖S and

β q2

L ‖∇V ‖∞:
(3.31)

H̄M (η) = H̄
(0)
M (η)+H̄

(1)
M (η)+. . .+H̄

(p)
M (η)+MO((max{β‖U‖S, β q

2

L
‖∇V ‖∞})p+1),

where the exact form of the higher-order terms H̄
(p)
M (η) can be directly computed

by writing explicitly the terms in the power series (5.24).

Remark 3.1. Note that once the absolute convergence of (3.31) is established, one
can further estimate the terms of the expansion, in which case it is expected to
obtain an absolutely convergent series in the parameters β‖U‖S

q and β q
L‖∇V ‖∞.

This has been shown in [24] for the long-range case only, but a similar result is
expected to hold in the present case. In such a case the corresponding error in
(3.31) would read NO((max{β‖U‖S

q , β
q
L‖∇V ‖∞})p+1).

To motivate the reader we next give an outline of the proof containing the basic
ideas, and for the full proof we refer to the general d-dimensional case in Theo-
rem 5.7.

Outline of the proof. We define H̄
l,(0)
M , from (3.2) and H̄

s,(0)
M as in (3.23) and (3.24).

Then with H̄
(0)
M := H̄

l,(0)
M + H̄

s,(0)
M , from (1.6) we obtain

(3.32) H̄M (η) = H̄
(0)
M (η)− 1

β
log

∫
A(σ)ν(dσ|η) ,

where ν is determined in (3.24) and A is given by
(3.33)

A(σ) ≡
∏
i<j

(1 + f l
ij)
∏
i: odd

(1 + fs
i−1,i+1) =

∑
I⊂Λ̄odd

M

∏
i∈I

fs
i−1,i+1

∑
G∈GM

∏
{i,j}∈E(G)

f l
ij
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where GM is the set of all graphs on M vertices, where M is the total number of
coarse cells.

Substituting A(σ) from (3.33) in the second term of the right hand side of
(3.32) we need to integrate with the non-product measure ν(dσ|η). Hence, ev-
ery term fs

i−1,i+1 for i odd has to be integrated with the measures on the coarse

cells
⋃i+2

j=i−2Cj . Such a set we call a link li. Similarly, every f l
ij gives rise to a

similar link, where if i is even then it needs to be integrated over
⋃i+2

j=i−2Cj as

before, while if it is odd the integration is over
⋃i+1

j=i−1 Cj . Given R0 ⊂ Λ̄M we

define the link � ≡
⋃

i∈R0
li. We define a polymer R to be a collection of these

two types of links, namely R := (l1, . . . , lp; �) (from which we can read the short
fs
i−1,i+1 and the long f l

ij range contributions). Two polymers R1 and R2 are called
compatible if supp(R1) ∩ supp(R2) = ∅. With these definitions we have:

(3.34)

∫
A(σ)ν(dσ|η) =

∑
{R1,...,Rn}comp

n∏
i=1

w(Ri)

where

(3.35) w(R) :=

∫ ∏
i∈I

fs
i−1,i+1

∑
G∈CR0

∏
{i,j}∈E(G)

f l
ij ν(dσ|η),

where CR0
is the set all connected graphs on the vertices of R0 ⊂ Λ̄M . The form on

the right hand side of (3.34) is amenable to the cluster expansion theorem which
we will use in order to write the logarithm as an absolutely convergent series; see
Theorem 5.4. Thus, while the error estimate in (3.29) comes directly from the
uniform estimates (3.8) and (3.21), the absolute convergence of the series (3.31)
is the result of Theorem 5.4 with the small parameters to be determined by the
convergence condition, given in Lemma 5.6 and being directly related to the uniform
estimates (3.8) and (3.21). The complete proof in all space dimensions is carried
out in Section 5. �
Remark 3.2. The error estimate (3.29) suggests qualitatively an estimate on the
regimes of validity of the method, and on the “optimal” level, q = qopt, when we
restrict ourselves to the regime S < q < L, where S and L are the respective
interaction ranges for short and long-range potentials. The corresponding error is
then
(3.36)

qopt �
√
SL

‖U‖
‖∇V ‖∞

,
1

N
R(μ̄

(0)
M,β |μN,β ◦F−1) = O

(
β

√
S

L
‖U‖‖∇V ‖∞

)
.

Remark 3.3. The application of Theorem 3.3 requires that we check the validity of
(3.30), which is certainly guaranteed by the conditions (3.8) and (3.21) in suitable
regimes. More interestingly, for specific examples (3.30) can be verified directly,
through a sharper estimate than (3.21), thus improving (3.29). This estimate relies
on the spatial correlation length of the short-range interactions; we refer to (4.9)
and (4.10) below. Furthermore, in (4.9) we even obtain an upper bound that
depends only on the coarse observables. This allows us to check the conditions
(3.30) (dictated by the cluster expansions) computationally in the process of a
Monte Carlo simulation involving only the coarse variables η. We note here that in
[32, 33], the short-range condition in (3.30) is taken as an assumption. Overall, in
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one dimension, this condition holds up to very low temperatures while in dimension
d ≥ 2 this condition can be satisfied in the high-temperature regime; see for example
the analysis in [4] where similar conditions are used for the nearest-neighbor Ising
model in the dimension d = 2 all the way down to the critical temperature.

3.4. A posteriori error estimates. In [24] we introduced the use of cluster ex-
pansions as a tool for constructing a posteriori error estimates for coarse-graining
problems, based on the rather simple observation that higher-order terms in (3.31)
can be viewed as errors that depend only on the coarse variables η. Following the
same approach an a posteriori estimate immediately follows from (3.31).

Corollary 3.1. We have

R(μ̄
(0)
M,β |μN,β ◦F−1) = βE

μ̄
(0)
M,β

[S(η)] + log
(
E
μ̄
(0)
M,β

[e−βS(η)]
)
+O(δ2) ,

where the residuum operator is S(η) = H̄
(1)
M (η).

In [22] we already employed this type of estimate for stochastic lattice sys-
tems with long-range interactions, in order to construct adaptive coarse-graining
schemes. These tools operated as an “on-the-fly” coarsening/refinement method
that recovers accurately phase diagrams. The estimates allowed us to change adap-
tively the coarse-graining level within the coarse-graining hierarchy once sufficiently
large or small errors were detected, thus speeding up the calculations of phase di-
agrams. Earlier work that uses only an upper bound and not the asymptotically
sharp cluster expansion-based estimate can be found in [7, 8].

3.5. Microscopic reconstruction. The reverse procedure of coarse-graining, i.e.,
reproducing “atomistic” properties, directly from coarse-grained simulation meth-
ods is an issue that arises extensively in the polymer science literature, [31,40]. The
principal idea is that computationally inexpensive coarse-graining algorithms will
reproduce large scale structures and subsequently microscopic information will be
added through microscopic reconstruction, for example the calculation of diffusion
of penetrants through polymer melts, reconstructed from coarse-grained simulation,
[31].

In this direction, the CGMC methodology discussed in this section can provide
a framework to mathematically formulate microscopic reconstruction and study re-
lated numerical and computational issues. Indeed, the conditional measure
A(σ)ν(dσ|η) in the multi-scale decompositions (3.9) and (3.13) can also be viewed
as a microscopic reconstruction of the Gibbs state (1.1) once the coarse variables η
are specified. The product structure in (3.11) and (3.12) allows for easy generation
of the fine scale details by first reconstructing over a family of domains given only
the coarse-grained data and gradually moving to the next family of domains given
now both the coarse-grained data and the previously reconstructed microscopic
values.

In view of this abstract procedure based on multi-scale decompositions such as
(3.9), we readily see that the particular product structure of the explicit formulas
(3.23) and (3.24) for the case of the dimension d = 1 yields a hierarchy of recon-
struction schemes. A first-order approximation can be based on the approximation
A(σ) ≈ 1 (cf. (3.21), (3.23)):

(a) first, R(η) defined in (3.23) provides the coarse-graining scheme, which will
produce coarse variable data η(k) for all k;
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(b) next, we reconstruct the microscopic configuration σeven consisting of the
σk’s in all boxes (coarse cells) with k even using the measure νk(dσ|η) :=
e−βHs

kZk+1(σ
k,0)Zk−1(0,σ

k)
Zk−1,k,k+1(0,0)

Pk(σ
k | η(k)), conditioned on the coarse configura-

tion η(k) from (a) above;
(c) finally, we reconstruct the microscopic configuration in the remaining boxes

with k odd using νk(dσ|η) := e
−β

(
Hs

k+Wk−1,k+Wk,k+1

)
Zk(σk−1,σk+1)

Pk(dσ
k | η(k)), given

the coarse variable η(k) from step (a), and the microscopic configurations
σeven from step (b).

We note that this procedure is local in the sense that the reconstruction can be
carried out in only the “subdomain of interest” of the entire microscopic lattice
ΛN ; this is clearly computationally advantageous because microscopic kMC solvers
are used only in the specific part of the computational domain, while inexpensive
CGMC solvers are used in the entire coarse lattice Λ̄M . Further discussion on the
numerical analysis issues related to microscopic reconstruction for lattice systems
with long-range interactions can be found in [23, 25, 26, 39].

4. Semi-analytical coarse-graining schemes and examples

Next we discuss the numerical implementation of the effective coarse-grained
Hamiltonians derived in Theorem 3.3. We begin with a general implementation
scheme and we subsequently investigate further reductions of the computational
complexity for particular examples in one and two space dimensions.

4.1. Semi-analytical splitting schemes and inverse Monte Carlo methods.
One of the main points of our method is encapsulated in (3.25): the computationally
expensive long-range part for conventional Monte Carlo methods can be computed
by calculating the explicit formula given in (3.3) in the spirit of our previous work
[24]. Then we can turn our attention to the short-range interactions where Monte
Carlo methods, at least for reasonably sized domains, are inexpensive. More specif-
ically for the evaluation of the short-range contribution in (3.25) we introduce the
normalized measure

(4.1) P̂k(dσ
k | η(k)) = 1

Zk(η(k); 0, 0)
e−βHs

kPk(dσ
k | η(k)) ,

where the sum is computed with free boundary conditions on Ck and Zk(η(k); 0, 0)
is accordingly defined as in (3.18). Thus (3.26) can be rewritten as

(4.2) H̄
s,(0)
M =

∑
k∈Λ̄

Ū
s,(0)
k (η(k)) +

∑
k: even

V̄
s,(0)
k−1,k,k+1(η(k − 1), η(k), η(k + 1)) ,

where, based on (3.26) and (4.1), we defined the three-body coarse interaction
potential

V̄
s,(0)
k−1,k,k+1 (η(k − 1), η(k), η(k + 1)) = − 1

β
log

∫
e−β(Wk−1,k(σ)+Wk,k+1(σ))

×P̂k−1(dσ
k−1 | η(k − 1))P̂k(dσ

k | η(k))P̂k+1(dσ
k+1 | η(k + 1)) .(4.3)

The main difficulty in the calculation of (4.3) is that for the three-body integral
one needs to perform the integration for all possible combinations of the multi-
canonical constraint. On the other hand all simulations involve only short-range
interactions and need to be carried out only on three coarse cells, rather than
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the entire lattice. Practically, the calculation of (4.3) can be implemented using

the so-called inverse Monte Carlo method, [27]. We sample the measure P̂k using
Metropolis spin flips and subsequently we create a histogram for all possible values
of η(k) =

∑
x∈Ck

σ(x). Then we compute the above integral by using the samples

which correspond to the prescribed values η(k − 1), η(k) and η(k + 1).
A complementary approach in order to further increase the computational effi-

ciency of the schemes presented in Theorem 3.3 is to rearrange the splitting based on
the size of the error in (3.29). Indeed, these estimates suggest a natural way to de-
compose the overall interaction potential into: (a) a short-range piece Js including
possible singularities originally in J , e.g., the non-smooth part in the Lennard-Jones
potential, and (b) a locally integrable (or smooth) long-range decaying component,
Jl. Thus, if K(x, y) is the short-range potential in (2.1) we can rewrite the overall
potential as

(4.4) K(x, y) + J(x, y) = Js(x, y) + Jl(x, y) .

In this way the accuracy can be enhanced by implementing the analytical coarse-
graining (3.3) for the smooth long-range piece Jl(x, y), and the semi-analytical
scheme (3.26) for the “effective” short-range piece Js(x, y).

4.2. Multi-body interactions. Existing coarse-graining methods, e.g., [16], em-
ploy an inverse Monte Carlo computation involving both short and long-range inter-
actions, and due to computational limitations have to disregard multi-body terms
such as the ones derived in this paper, e.g. Theorem 3.3. The splitting approach
developed here allows us to calculate analytically the approximate effective Hamil-
tonian for the costly long-range interactions, (3.3) in (3.25) or (4.4), and in parallel
carry out the inverse Monte Carlo step for (4.2). The necessity to include multi-
body terms in the effective Hamiltonian was first discussed in [2] together with
their role in the proper coarse-graining of singular short-range interactions. For
nearest-neighbor lattice models, coarse-graining schemes involving only the single-
body interactions such as (3.27) were proposed in [9], while two-body interactions
were considered in [11]. As we will see next, such two-body coarse-grained cor-
relations are contained in the three-body terms in (3.28). Furthermore, we can
precisely quantify the regimes where multi-body terms (3.28) are necessary in the
context of a specific example.

4.3. A typical example: improved schemes and a posteriori estimation.
We examine the derived coarse-graining schemes in the context of a specific, but
rather typical example. We consider the Hamiltonian

(4.5) HN (σ) = Hs
N (σ) +H l

N (σ) := K
∑
〈x,y〉

σ(x)σ(y)− 1

2

∑
(x,y)

J(x− y)σ(x)σ(y),

where by 〈x, y〉 we denote summation over the nearest neighbors, i.e., |x− y| = 1,
and by (x, y) the long-range summation as in (2.2). Although we follow the splitting
strategy discussed in the previous paragraph we present a simplified numerical
algorithm by carrying out further analytical calculations. Not surprisingly, such
calculations allow not only for easier sampling in the semi-analytical calculations
of the inverse Monte Carlo, but give additional insight on the nature of multi-body,
coarse-grained interactions.
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For the short-range contributions, given a coarse cell Ck with q lattice points,
we denote by x1, . . . , xq the lattice sites in Ck. With this notation, following (4.3)
the short-range three-body interaction is given by

V̄
s,(0)
k−1,k,k+1(η(k − 1), η(k), η(k + 1)) = − 1

β
log

∫
e−βK(σk−1(xq)σ

k(x1)+σk(xq)σ
k+1(x1))

× P̂k−1(dσ
k−1 | η(k − 1))P̂k(dσ

k | η(k))P̂k+1(dσ
k+1 | η(k + 1)) .(4.6)

The main difficulty in computing the second term is the conditioning on the
coarse-grained values η(k− 1), η(k), η(k+1) over three coarse cells. At first glance
this requires that we run multi-constrained Monte Carlo dynamics for every given
value of the η’s, i.e., for q3 variables. However, as we show in the sequel, when
dealing with a particular example, e.g., the nearest neighbor interactions, the com-
putationally expensive three-body term reduces to a product of one-body terms.
We first rewrite

e−βKσk−1(xq)σ
k(x1) = a− bσk−1(xq)σ

k(x1) ,

where we set

a = cosh(βK) , b = sinh(βK) , λ = tanh(βK) .

Moreover, we introduce the one- and two-point correlation functions

Φx
k(ηk) :=

∫
σ(x)P̂k(dσ

k | η(k)) and Φx,y
k (ηk) :=

∫
σ(x)σ(y)P̂k(dσ

k | η(k)) .

By symmetry we have that Φx1

k = Φ
xq

k and similarly, consider Φ
x1,xq

k for x = x1

and y = xq. Furthermore, these functions depend on k only via the coarse variable
ηk, hence we now define
(4.7)

Φ1(ηk) :=

∫
σ(x1)P̂k(dσ

k | η(k)) and Φ2(ηk) :=

∫
σ(x1)σ(xq)P̂k(dσ

k | η(k)) .

It is a straightforward computation to show that

V̄
s,(0)
k−1,k,k+1(η(k − 1), η(k), η(k + 1)) = − 2

β
log a

− 1

β
log
(

1− λΦ1(η(k − 1))Φ1(η(k))− λΦ1(η(k))Φ1(η(k + 1))

+λ2Φ1(η(k − 1))Φ2(η(k))Φ1(η(k + 1))
)
.(4.8)

Although these are three-body interactions, the additional analytical calculations
reduce their computation to the nearest-neighbor Monte Carlo sub-grid sampling
of (4.7). Moreover, from (3.20) we have

fs
k−1,k+1(η(k);σ

k−1, σk+1) =
λ2σk−1(xq)σ

k+1(x1)[Φ
2(η(k))− (Φ1(η(k)))2]

(1− λσk−1(xq)Φ1(η(k)))(1− λσk+1(x1)Φ1(η(k)))
,

thus the following estimate holds for some C > 0:

(4.9) sup
σk−1,σk+1

|fs
k−1,k+1| ≤ Cλ2|Φ2(η(k))− [Φ1(η(k))]2| ≡ Θ(ηk;λ) ,

where the right hand side Θ is an a posteriori functional in the sense that it can be
computed from the coarse-grained data.
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4.3.1. Analytical formulas for CG interactions and complexity reduction. We can
further reduce the complexity of the Monte Carlo sub-grid sampling of the quanti-
ties Φ1(ηk) and Φ2(ηk) in (4.8) and the a posteriori error indicator (4.9), through
their calculation or approximation by analytical formulas, when they are available.
This approach will be especially relevant in higher dimensions as we also discuss
in Section 6. We can derive such analytical approximations in two different ways.
First, exact analytical formulas for the correlation function Θ(ηk;λ), as well as
Φ1(ηk) and Φ2(ηk), can be easily obtained with direct calculation replicating the
unconstrained case, e.g. [17] Chapter 3.5; or alternatively via the analytically avail-
able correlation function of the nearest neighbor Ising model in the presence of an
external field, and the equivalence of ensembles manifested in the coverage/external
field phase diagram, [3, 17, 38]. Both approaches yield
(4.10)

Θ(ηk;λ) = |Φ2(η(k))− [Φ1(η(k))]2| � exp
(
− |x1 − xq|

ξn.n.

)
= exp

(
− q

ξn.n.

)
,

where ξn.n. is the correlation length on the nearest-neighbor Ising model for an
external field corresponding to coverage η(k) through the corresponding phase dia-
gram. In general, relations such as (4.10) hold away from phase transition regimes,
and can also be used in coarse-graining schemes for higher-dimensional lattice sys-
tems; see in addition Section 6.

On the other hand, a high temperature expansion of the quantities Φ1(ηk) and
Φ2(ηk) yields much simpler approximations, which however are more restricted in
their applicability:

Φ1(η) = E[σ(x) | η] +O(λ) =
η

q
+O(λ),(4.11)

Φ2(η) = E[σ(x)σ(y) | η] +O(λ) =
η2 − q

q(q − 1)
+O(λ) .(4.12)

Then,

(4.13) Θ(η;λ) � λ2|Φ2 − (Φ1)2| = λ2 q2 − η2

q2(q − 1)
+O(λ3) .

Thus the condition (3.30) of Theorem 3.3 and the derived coarse-grained approxi-
mations can be conditionally checked during simulation by

(4.14) sup
σk−1,σk+1

|fs
k−1,k+1| ≤ C

λ2

q − 1

(
1− η2

q2

)
+O(λ3) .

We note that (4.14) suggests a quantitative understanding of the dependence of
the coarse-graining error for the nearest-neighbor Ising model. The error increases,
(a) when the parameter λ2 increases, i.e., at lower temperatures/stronger short-
range interactions, (b) when the level of coarse-graining q decreases, and (c) at
regimes where the local coverage η is not uniformly homogeneous, i.e., away from
the regime η ≈ ±q. Such a situation occurs, for example, around an interface
in the phase transition regime. This is the case even in one dimension if long-
range interactions are present in the system. Similarly, (4.9) and (4.10) along with
(3.8) provide an even more detailed understanding than (3.36) of the parameters
affecting a suitable coarse-graining level q, for systems with both short- and long-
range interactions.
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5. Coarse-graining schemes in higher dimensions and proofs

In this section we prove Theorem 3.3 and its generalization in higher dimensions.
We formulate the proofs in full generality, assuming a d-dimensional lattice. As in
the one-dimensional case considered in Section 3.3, our approach here will also
consist of two main steps: (a) a multi-scale decomposition of the Gibbs states (3.9)
in all dimensions, and (b) a rigorous cluster expansion to obtain a convergent series
such as (3.31).

Here coordinates of lattice points are understood as multi-indices in Z
d. We

start by constructing the a priori coarse-grained measure induced by the short-range
interaction. We perform a block decimation procedure following the strategy in [33]
and partition Λ̄M into 2d-many sublattices of spacing 2. Let eα, α = 2, 3, . . . , 2d be

Figure 1. The sublattices Λ̄α
M covering the coarse lattice Λ̄M .

The vectors eα defining translations of the first sublattice Λ̄1
M are

depicted for d = 2, 3. The cells on the two-dimensional lattice are
numbered with values of α = 1, . . . , 4 according to which sublattice
Λ̄α
M they belong.

vectors (of length q) along the edges of Λ̄M as demonstrated in Figure 1 for d = 3.
We write the coarse lattice as union of sublattices

(5.1) Λ̄M =
2d⋃

α=1

Λ̄α
M ,

where Λ̄1
M = 2Λ̄M , Λ̄2

M = Λ̄1
M + e2 and Λ̄α+1

M = Λ̄α
M + eα+1, for α = 1, . . . , 2d − 1.

Given a coarse cell Ck we define the set of neighboring cells by

∂Ck :=
⋃

{l: ‖l−k‖=1}
Cl ,

where ‖l−k‖ := maxi=1,...,d |li−ki|. We also let Dk := Ck∪∂Ck. Given a sublattice
Λ̄α
M we denote by σα the microscopic configuration in all the cells Ck ∈ Λ̄α

M and

by σ>α the configuration in Λ̄β
M for all β > α. We also define a function p : Λ̄M →

{1, . . . , 2d} such that for k ∈ Λ̄M , we have p(k) = α if Ck ∈ Λ̄α
M .

We split the short-range part of (2.1),

Hs
N (σ) =

∑
α

∑
k∈Λ̄α

M

Hs
k(σ

α) +
∑
α

∑
k∈Λ̄α

M

Wk(σ
α; σ>α) ,
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where, for k ∈ Λ̄α
M , the terms Hk(σ

α) are the self-energy on the boxes Ck given by

Hs
k(σ

α) =
∑

X⊂Ck

UX(σα) .

Moreover, the energy due to the interaction of Ck with the neighboring cells is given
by

Wk(σ
α; σ>α) =

∑
X⊂Dk

UX(σα ∨ σ>α) ,

where σα ∨ σ>α is the concatenation on Λ̄α
M and Λ̄>α

M .

5.1. Multi-scale decomposition in two-dimensions. To better illustrate the
construction of the decomposition (3.9) we first present the two-dimensional case.
Next, we construct the reference conditional measure ν(dσ|η) in (3.9), under the
constraint of a fixed averaged value η = {η(k)}k∈Λ̄M

on the coarse cells.

Step 1. The starting point is a product measure on Ck for k ∈ Λ̄1
M . We let

A1(k) ≡ Ck and after appropriate normalization we obtain

e−βHs
N (σ)

∏
k∈Λ̄M

Pk(dσ) =
∏
α≥2

∏
k∈Λ̄α

M

(
e−βHs

k(σ
α)e−βWk(σ

α;σ>α)Pk(dσ
α)
)

×
∏

k∈Λ̄1
M

Z(A1(k);σ
>1; η(k)) ν1>1(dσ

1),(5.2)

where

(5.3) ν1>1(dσ
1) :=

∏
k∈Λ̄1

M

[
1

Z(A1(k);σ>1; η)
e−βWk(σ

1;σ>1)e−βHk(σ
1)Pk(dσ

1)

]

is the new prior measure on Λ̄1
M with boundary conditions σ>1 and the canonical

constraint η(k), k ∈ Λ̄1
M . The partition function

Z(A1(k);σ
>1; η(k)) =

∫
e−βHs

k(σ
1)e−βWk(σ

1;σ>1)Pk(dσ
1)

depending on the boundary conditions σ>1 on the set ∂A1(k) couples the configu-
rations in Cl with l ∈ ∂A1(k). In particular, it couples the configurations σ2 and
gives rise to a new interaction between them for which it will be shown that it is
small due to Condition 5.1.

Step 2. Moving along the vector e2 we seek the measure ν2>2 on {+1,−1}∪k∈Λ̄2
M

Ck
.

Given the partition function Z(A1(k);σ
>1; η(k)) we denote by S+

k,e2
Z the partition

function on the same domain A1(k) as Z, but with new boundary conditions which
are the same as Z in the +e2 direction, free in the −e2 and unchanged in all
the other directions. Similarly, we denote by S−

k,e2
Z the partition function with

free boundary conditions in the direction +e2 and by S0
k,e2

Z with free boundary
conditions in both ±e2 directions. With these definitions we have the identity

(5.4) Z(A1(k);σ
>1; η(k)) =

(S+
k,e2

Z)(S−
k,e2

Z)

(S0
k,e2

Z)
(1 + Φ1

k) ,
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where we have introduced the function Φ1
k which contains the interaction between

the variables σ>1, and it is given by

Φ1
k :=

Z(A1(k);σ
>1; η(k))(S0

k,e2
Z)

(S+
k,e2

Z)(S−
k,e2

Z)
− 1 .

In this way we split the partition function Z into a part where the interaction
between the cells Ck−e2 and Ck+e2 is decoupled and an error part which is to be
small.

The next step is to index the new partition functions (S+
k,e2

Z) and (S−
k,e2

Z)

(which are functions of σ2 indexed by k ∈ Λ̄1
M ) with respect to k ∈ Λ̄2

M . We have∏
k∈Λ̄1

M

(S+
k,e2

Z)(S−
k,e2

Z) =
∏

k∈Λ̄2
M

(S+
k−e2,e2

Z)(S−
k+e2,e2

Z) .

Then if we neglect for a moment the error term (1+Φ1
k), in order to define ν2>2 we

have to deal with the following terms:∏
k∈Λ̄1

M

(S0
k,e2Z)−1

∏
k∈Λ̄2

M

[
e−βHs

k(σ
2)e−βW (σ2;σ>2)(S+

k−e2,e2
Z)(S−

k+e2,e2
Z)Pk(dσ

2)
]
.

The terms in the second product contain all possible interactions in the set

(5.5) A2(k) = Ck−e2 ∪ Ck ∪ Ck+e2

for k ∈ Λ̄2
M with the corresponding partition function being given by

Z(A2(k);σ
>2; η(k)) =

∫
e−βHs

k(σ
2)e−βWk(σ

2; σ>2)(S+
k−e2,e2

Z)(S−
k+e2,e2

Z)Pk(dσ
2) .

By normalizing with this function we obtain the measure

ν2>2(dσ
2) =

∏
k∈Λ̄2

M

[
1

Z(A2(k);σ>2; η(k))

× e−βHs
k(σ

2)e−βWk(σ
2;σ>2)(S+

k−e2,e2
Z)(S−

k+e2,e2
Z)Pk(dσ

2)

]
.(5.6)

Note that the factor (S0
k,e2

Z)−1 depends on η as well as on σ>2 and hence we
will need to further split it when we define a measure on the variables on which it
depends. Summarizing the first two steps we have obtained that the left hand side
of (5.2) is equal to⎡
⎣ ∏
k∈Λ̄2

M

Z(A2(k);σ
>2; η(k))

∏
k∈Λ̄1

M

(S0
k,e2Z)−1

∏
k∈Λ̄1

M

(1 + Φ1
k)

⎤
⎦ ν2>2(dσ

2)ν1>1(dσ
1) .

If we are interested in the case d = 1, this would be the final expression. However,
for higher dimensions we need to repeat the above steps. We give one more step
in order to obtain more intuition on the relevant terms and then we give the final
expression in agreement with the result in [33]. The proof of the general formula
is done with a recurrence argument on the number of steps, and for the details we
refer to [33].
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Step 3. To proceed in the next step along direction e3 we split Z(A2(k);σ
>2; η(k))

(which couples the configurations in Ck with p(k) = 3) in the same fashion as
before. We have

Z(A2(k);σ
>2; η(k)) =

(S+
k,e3

Z)(S−
k,e3

Z)

(S0
k,e3

Z)
(Φ3

k + 1),

where

Φ3
k :=

Z(A2(k);σ
>2; η(k))(S0

k,e3
Z)

(S+
k,e3

Z)(S−
k,e3

Z)
− 1 .

We further change the indices in such a way that they are expressed with respect to
k ∈ Λ̄3

M and then we glue the partition functions on Ck, A2(k− e3) and A2(k+ e3).
We define

A3(k) := Ck ∪ A2(k − e3) ∪ A2(k + e3)

and

Z(A3(k);σ
>3; η(k)) :=

∫
e−βHs

ke−βWk(σ
3;σ>3;η)(S+

k−e3,e3
Z)(S−

k+e3,e3
Z)Pk(dσ

3) .

The corresponding measure is

ν3>3(dσ
3) =

∏
k∈Λ̄3

M

[
1

Z(A3(k);σ>3; η(k))

× e−βHs
k(σ

3)e−βWk(σ
3;σ>3)(S+

k−e3,e3
Z)(S−

k+e3,e3
Z)Pk(dσ

3)

]
,(5.7)

and the left hand side of (5.2) is now equal to∏
k∈Λ̄4

M

[
e−βHs

k(σ
4)e−βWk(σ

4;σ>4)Pk(dσ
4)
] ∏
k∈Λ̄4

M

Z(A3(k);σ
>3; η(k))

∏
k∈Λ̄2

M

(S0
k,e3

Z)−1

×
∏

k∈Λ̄1
M

(S0
k,e2Z)−1

∏
k∈Λ̄2

M

(1 + Φ3
k)
∏

k∈Λ̄1
M

(1 + Φ1
k)ν

3
>3(dσ

3)ν2>2(dσ
2)ν1>1(dσ

1) .

As in the previous steps we can perform the usual actions on the partition function
Z(A3(k);σ

>3; η(k)) which will give rise to a new element A4(k) with k ∈ Λ̄4
M and

new error terms Φ4
k with k /∈ Λ̄4

M . Furthermore, we have a similar splitting for
the factor (S0

k,e2
Z)−1 which also depends on σ4, since the zero boundary condition

involves only the direction e2. For dimensions higher than two, related calculations
will involve all the terms of similar origin as we move to new sublattices Λ̄α

M , with
α > 4. Finally, the reference conditional measure ν(dσ|η) in (3.9), in the two-
dimensional case is

ν(dσ|η) := ν4>4ν
3
>3ν

2
>2ν

1
>1 .

Concluding, in the case of the two-dimensional nearest neighbor Hamiltonian, we
obtain that the leading term in the approximation of the coarse-grained Hamilton-
ian H̄s

M consists of terms that refer to four different types of multi-cell interactions,

H̄
s,(0)
M =

∑
k∈Λ̄1

M

logZ(A4(k))−
∑

k∈Λ̄2
M

logZ(A4(k))

+
∑

k∈Λ̄3
M

logZ(A4(k))−
∑

k∈Λ̄4
M

logZ(A4(k)) ,(5.8)
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Figure 2. The index sets A4(k) for k ∈ Λ̄α
M , α = 1, 2, 3, 4, d = 2,

depicted as shaded cells. The cells in each lattice are numbered by
α denoting the sublattice Λ̄α

M to which the cell belongs.

where A4(k) is a collection of coarse cells centered in k ∈ Λ̄α
M and it is different

depending on the sublattice to which the reference cell k belongs. For α = 1, 2, 3, 4
we have

A4(k) =

⎧⎪⎪⎨
⎪⎪⎩

⋃
i,j∈{−1,0,+1} Ck+ie2+je3 , k ∈ Λ̄4

M ,⋃
j∈{−1,0,+1} Ck+je3 , k ∈ Λ̄3

M ,

Ck , k ∈ Λ̄2
M ,⋃

i∈{−1,0,+1} Ck+ie2 , k ∈ Λ̄1
M .

Figure 2 depicts the index sets A4(k) for the reference cell k belonging to Λ̄α
M for

α = 1, . . . , 4.

5.2. Multi-scale decomposition in higher dimensions. We focus on the rele-
vant quantities which are the reference measure να>α(dσ

α), the error term Φα
k , with

k ∈ Λ̄M , and the sets Aα(k) and Bα(k), with the latter being the relevant boundary
of Aα. The index α indicates the sublattice we are considering.

Definition 5.1. The sets Aα(k) and Bα(k) for k ∈ Λ̄α
M are

Aα(k) =
⋃

l:‖l−k‖=1, p(l)≤α

Cl , Bα(k) =
⋃

l:‖l−k‖=1, p(l)>α

Cl .

Definition 5.2. Given α = 1, . . . , 2d we define the normalized Bernoulli measure
on Λ̄α

M ,

(5.9) να>α(dσ
α) =

∏
k∈Λ̄α

M

ναBα(k)(dσ
α) ,

where
(5.10)

ναBα(k)(dσ
α) =

e−βHs
k(σ

α)e−βWk(σ
α;σ>α)

Z(Aα(k);σ>α; η(k))
Z(Aα(k)/{k};σ>α; η(k))

∏
l∈Bα(k)

Pl(dσ
α) .
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As we have seen in Step 3 we have two kinds of error terms Φα
k , in particular,

those with k ∈ Λ̄α
M and others with k /∈ Λ̄α

M . In order to describe the latter we
need to introduce additional notation.

For α = 1, . . . , 2d we denote by Γα the family of parallel hyperplanes of dimension
d − 1 orthogonal to eα+1 passing through all the points k ∈ Λ̄α

M . Note that for
any α, we have that Λ̄M = Γα ∪ (Γα + eα+1). In the next definition we introduce
a new parameter εα(k) ∈ {±1} depending on whether we should perform gluing
or unfolding as discussed before. This is determined as follows: for fixed α ∈ Λ̄M

let d(α, β) be the distance between the sublattices Λ̄α
M and Λ̄β

M in the metric ‖α−
β‖∞ =

∑d
i=1 |αi − βi|. Moreover, we can find orthogonal vectors {vj}j=1,...,d(α,β)

and a family of signs {εj}j=1,...,d(α,β) such that

Λ̄α
M = Λ̄β

M + γ(α, β) with γ(α, β) =

d(α,β)∑
j=1

εj vj .

Note also that |γ(α, β)| = d(α, β). Then the exponents εα(k) with p(k) = β are
given by

εα(k) := (−1)|γ(α,β)| .

Furthermore, we denote by Y (k, γ(α, β)) the affine hyperplane of codimension
|γ(α, β)| orthogonal to the connecting vectors {vj}j=1,...,|γ(α,β)| and passing through
the point k

Y (k, γ(α, β)) =

|γ(α,β)|⋂
j=1

Y (k, vj) ,

where Y (k, v) is the hyperplane of dimension d − 1 passing through k and being
perpendicular to the vector v. From the set of coarse-lattice points belonging to
Y (k, v) we define the corresponding set by

Y(k, γ(α, β)) :=
⋃

l∈Y (k,γ(α,β))

Cl .

Then, letting k ∈ Λ̄α
M , for l such that Cl ⊂ ∂Ck and with l ∈ Λ̄β

M , for some β, we
define

Aα(l) =

{
∅ if p(l) > 2d(α),

Aα(k) ∩ Y(l, γ(α, β)) otherwise,
(5.11)

Bα(l) = Bα(k) ∩ Y(l, γ(α, β)) .(5.12)

With the above definitions we can determine the error terms in the general expan-
sion.

Definition 5.3. For any k ∈ Λ̄α
M and for k ∈ Γα the error terms are given by

Φα
k = −1 +

Z(Aα(k);σ
>α; η(k))Z(Aα+1(k);σ

>α+1; η(k))

(S+
k,eα+1

Z)(S−
k,eα+1

Z)
.

Moreover, if k ∈ Γα + eα+1 and k /∈ Λ̄α+1
M we have

Φα
k = −1 +

[
Z(Aα(k);σ

>α; η(k))Z(Aα+1(k);σ
>α+1; η(k))

(S+
k−eα+1,eα+1

Z)(S−
k+eα+1,eα+1

Z)

]−εα(k)

.

Furthermore, if k∈Λ̄α+1
M we replace Z(Aα+1(k);σ

>α+1) by Z(Aα+1(k)/{k};σ>α+1).
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From Proposition 2.5.1 in [33] we have that the general d-dimensional formulation
of the a priori measure induced by the short-range interactions is

e−βHs
N (σ)

∏
k∈Λ̄M

Pk(dσ) = Rs(η)A(σ)ν(dσ|η) ,

where we have the following factors:

(i): a product of partition functions (depending only on the coarse-grained
variable η) over finite sets of coarse cells with supports A2d(k), with k ∈ Λ̄α

M

and α = 1, . . . , 2d

(5.13) Rs(η) :=

2d∏
α=1

∏
k∈Λ̄α

M

[
Z(A2d(k); η(k))

ε
2d

(k)
]
,

(ii): error terms in the form of a gas of polymers (with the only interaction to
be a hard-core exclusion)

A(σ) :=

2d∏
α=1

∏
j≤2d(α)

∏
k∈Λ̄j

M

(1 + Φα
k ) ,

(iii): a reference measure induced by only the short-range interactions once
we neglect the reference system and the error terms

ν(dσ|η) := ν2
d

. . . ν2>2ν
1
>1 .

With this expansion for the short-range interactions, going back to the general
strategy presented in Section 3, if we also consider the long-range contribution
from (3.2), we obtain

e−βH̄M (η) =

∫
e−βHl

N e−βHs
N

∏
k

Pk(dσ)

= e−βH̄l,(0)(η)Rs(η)

∫
e−β(Hl

N−H̄l,(0))A(σ)ν(dσ|η) ,

which implies that

(5.14) H̄M (η) = H̄ l,(0)(η)− logRs(η)− 1

β
logEν [e

−β(Hl
N−H̄l,(0))A(σ)|η] .

5.3. Cluster expansion and effective interactions. The goal of this section is

to expand the term Eν [e
−β(Hl

N (σ)−H̄l,(0)(η))A(σ)|η] in (5.14) into a convergent series
using a cluster expansion. By the construction given previously the terms in A(σ)
are already in the form of a polymer gas with hard-core interactions only. For the
long-range part we first write the difference H l

N (σ)− H̄ l,(0)(η) as

H l
N (σ)− H̄ l,(0)(η) =

∑
k≤l

ΔklJ(σ) , where

ΔklJ(σ) := −1

2

∑
x∈Ck

y∈Cl,y �=x

(J(x− y)− J̄(k, l))σ(x)σ(y)(2− δkl) .(5.15)
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We also define fkl(σ) := e−βΔklJ(σ) − 1 and we obtain
(5.16)

Eν [e
−β(Hl

N (σ)−H̄l,(0)(η))A(σ)|η] =
∫ ∏

k≤l

(1 + fkl)

2d∏
α=1

∏
j≤2d(α)

∏
k∈Λ̄j

M

(1 + Φα
k )ν(dσ|η) .

We define the polymer model which contains combined interactions originating
from both the short and long-range potential. By expanding the products in (5.16)
we obtain terms of the type

p∏
j=1

Φ
αj

kj

q∏
i=1

fli,mi
where kj , li,mi ∈ Λ̄M and αj ∈ {1, . . . , 2d}

for some p and q. The factors Φ
αj

kj
are functions of the variables which are on the

boundary of the corresponding sets Aαj
(kj). This boundary is described by the set

(5.17) Cα
0 (k) =

{
Bα(k) if k ∈ Γα,

Bα+1(k) if k ∈ Γα + eα+1.

Furthermore, since the measure ν(dσ|η) is not a product measure but instead a
composition of measures each one parametrized by variables which are integrated
by the next measure, we need to create a “safety” corridor around the sets Cα

0

depending on the level of α. This is given in the next definition. For a given integer
β with 1 < β < 2d − α we define

(5.18) Cα
β (k) =

⋃
ε1,...,εβ∈{±1}β

⋃
l:Cl⊂∂(Ck+ε1eα+1+...+εβeα+β

), p(l)>α+β

Cl.

Then for given α ∈ {1, . . . , 2d} we call a “bond” of type Cα the set

(5.19) Cα(k) =
2d−α⋃
β=0

Cα
β (k) .

With this definition, any factor Φ
αj

kj
has a region of dependence which is given by

the bond Cα(k). Similarly, for the factors fli,mi
originating from the long-range

interactions the initial domain of dependence is Cli ∪ Cmi
. However, due to the

non-product structure of the measure we need to introduce a safety corridor in the
same way. Given k ∈ Λ̄M for β an integer with 1 < β < 2d − p(k) we define

(5.20) Cβ(k) =
⋃

ε1,...,εβ∈{±1}β

⋃
l:Cl⊂∂(Ck+ε1eα+1+...+εβeα+β

), p(l)>p(k)+β

Cl .

Then for a given fkl we define

(5.21) C(k, l) =

2d−p(k)⋃
β=1

Cβ(k)

2d−p(l)⋃
β=1

Cβ(l) .

With a slight abuse of notation we define for R0 = {k1, . . . , k|R0|}

(5.22) C(R0) =

|R0|⋃
i=1

2d−p(ki)⋃
β=1

Cβ(ki) .
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A bond l will be either a Cα
k bond for some α, k, called a bond of type 1, or a

C(R0) bond, where R0 is any subset of Λ̄M , and we call it a bond of type 2 and we
denote it by �. We say that two bonds l1 and l2 are connected if l1∩ l2 �= ∅. We call
a polymer R a set of bonds (l1, . . . , lp; �) where l1, . . . , lp are bonds of type 1 and
� is a bond of type 2, i.e., there is a unique R0 such that � ≡ C(R0). A polymer
is called connected if for any two elements there exists a chain of connected bonds
in R joining them. The support supp(R) of R is supp(R) =

⋃p
i=1 li ∪ � and the

cardinality |R| := p + |�|. Let R be the set of all such polymers. Two polymers
R1, R2 are said to be compatible if supp(R1)∩ supp(R2) = ∅ and we write R1 ∼ R2.

Given a polymer R = (l1, . . . , lp; �) we define the activity of R to be the function
w : R → C given by

(5.23) w(R) =

∫
ν(dσ|η)

⎛
⎝ p∏

j=1

Φ
αj

kj

∑
g∈CR0

∏
{k,l}∈E(g)

fkl

⎞
⎠ ,

where CR0
is the collection of connected graphs on the vertices of R0 ⊂ Λ̄M and

E(g) is the set of edges of the graph g. Note also that from each lj we read αj , kj
and from � we read R0.

We define a new graph G on R which has the edge Ri-Rj if the polymers Ri

and Rj are not compatible. We call G ⊂ R completely disconnected if the subgraph
induced by G on G has no edges. Let

DR =

|R|⋃
n=0

{(R1, . . . , Rn) ⊂ R : ∀i �= j, Ri ∼ Rj};

then the partition function Z can be written as

Z =
∑

G∈DR

∏
R∈G

w(R) ,

which is the abstract form of a polymer model. Thus we can apply the general
theorem of the cluster expansion once we check the convergence condition. The
condition is stated as a theorem in [5].

Theorem 5.4 ([5]). Let a : R → R+. Consider the subset of CR,

Pa
R := {w(R), R ∈ R : ∀R ∈ R : |w(R)|ea(R) < 1 and∑

R′
�R

(− log(1− |w(R′)|ea(R′))) ≤ a(R)} .

Then on Pa
R, logZ is well defined and analytic and

(5.24) logZ =
∑

I∈I(R)

cI
∏

R∈supp(I)

w(R)IR ,

where I = (IR)R∈R, I(R) is the collection of all multi-indexes I, i.e., integer valued
functions on R, and

cI =
1

IR1
! . . . IR|R| !

∂
IR1

+...+IR|R| logZ

∂IR1w(R1) . . . ∂
IR|R|w(R|R|)

|{w(Ri)=0}i
.

For the proof we refer to [5]. Thus we need to check the condition of convergence.
The following estimate for the long-range potential was proved in [24].
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Lemma 5.5. Assume that J satisfies (2.2). Then there exists a constant C1 �
qd+1

L ‖∇V ‖∞ such that

(5.25) sup
k∈Λ̄M

∑
l: l 	=k

|ΔklJ(σ)| ≤ C1 ,

for every σ.

For the short-range interaction we follow the analysis of [33] and we consider the
following condition.

Condition 5.1. Let e be a vector in one of the directions of the lattice Λ̄M and
ZU (Λ;σ−, σ+, τ ; ηV ) be the partition function for the interaction U in the space
domain Λ. We consider boundary conditions σ± in the directions ±e and τ in all
other directions. Moreover, we impose multi-canonical constraints η(k) for k ∈ V ⊂
Λ̄M with Λ =

⋃
k∈V Ck. For a given q > r0, with |Ck| = qd, the following inequality

holds:

sup
σ±,τ

sup
Λ

sup
ηV

∣∣∣ZU (Λ;σ−, σ+, τ ; ηV )ZU (Λ; 0, 0, τ ; ηV )

ZU (Λ; 0, σ+, τ ; ηV )ZU (Λ;σ−, 0, τ ; ηV )
− 1
∣∣∣ ≤ C2 ,

where given the numbers r = 22d[3(2d+1 + 1)]d and δ2 determined in Lemma 5.6
the upper bound C2 satisfies

rC2e < δ2 .

Notice that we work with the same condition as Condition CL defined in [33],
where in our notation L is q, yet similar analysis applies in order to prove conver-
gence of the cluster expansion under the milder condition of Condition C ′

L, again
as in [33]. We skip the analysis of such issues since it goes beyond the goal of the
present work, however we note that in the one-dimensional case, (4.9) and (4.10)
allow us to estimate C2. Furthermore, these conditions are related to the ones
presented in [12] in order to ensure that a given system belongs to the class of
completely analytical interactions. For further details we refer the reader to [32]
and [4] and to the references therein.

We next prove the convergence condition.

Lemma 5.6. There are δ1 and δ2 small enough such that if C1 < δ1 and C2 < δ2,
then the set Pa

R is non-empty.

Proof. We take a(R) = c|R|, where c is a constant to be chosen later. Note that
− log(1− x) ≤ 2x, so it suffices to show that

(5.26)
∑
R′

�R

2|w(R′)|ea(R′) ≤ a(R) .

Suppose that the generic polymer R′ is given by R′ = (l1, . . . , lp; �
′), for some p ≥ 0,

where lj ≡ Cα′
j (k′j) for j = 1, . . . , p and �′ ≡ C(R′

0) with |R′
0| = n for some n ≥ 0.

For |w(R′)| we have

|w(R′)| ≤
∫

ν(dσ|η)
p∏

j=1

|Φαj

kj
| · |

∑
g∈CR′

0

∏
{k,l}∈E(g)

fkl| .

By the graph-tree inequality we have that for all σ, η and with |R′
0| = n

|
∑

g∈CR′
0

∏
{k,l}∈E(g)

fkl| ≤ enC1

∑
τ0∈T 0

n

∏
{k,l}∈τ0

|βΔklJ(σ)| ,
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where from Lemma 5.5 we have that C1 � qd+1

L ‖∇V ‖∞. We also let supσ |ΔklJ(σ)|
≤ Δkl with Δkl ≡ q2d 1

Ld
q
L‖∇V ‖∞1(k,l): |l−k|≤L

q
. Moreover, from Condition 5.1 we

have ∫
ν(dσ|η)

p∏
j=1

|Φαj

kj
| ≤ (C2)

p .

Then for the activity w(R′) we obtain

(5.27) |w(R′)| ≤ enC1

∑
τ0∈T 0

n

∏
{k,l}∈τ0

(βΔkl) · (C2)
p .

Thus to satisfy the sufficient condition for the convergence of the cluster expansion
we first bound the sum

∑
R′

�R by

sup
k0∈supp(R)

|supp(R)|
∑

R′: supp(R′)⊃{k0}
,

where |supp(R)| ≤ C(p + n) with C := maxα,k |Cα(k)|. The fixed coarse cell Ck0

may belong to one of the lj ’s for j = 1, . . . , p or to C(R′
0). We obtain:∑

R′: supp(R′)⊃{k0}
|w(R′)|ea(R′)

≤
∑
p≥1

∑
l1,...,lp⋃p

i=1 li⊃{k0}

|w(R′)|ecp +
∑
n≥2

1

(n− 1)!

∑
k1=k0,
k2,...,kn

|w(R′)|ecn

+
∑
n≥2

1

(n− 1)!

∑
k1=k0,
k2,...,kn

∑
p≥1

∑
p1,...,pn∑p
i=1 pi=p

∑
l11,...,l

1
p1

. . .
∑

ln1 ,...,l
n
pn

|w(R′)|ec(p+n).

Next, we use (5.27) where for every tree τ0 we have that

sup
k∈R′

∑
k1=k

k2,...,kn

∏
i,j∈τ0

(βΔki,kj
) ≤ (βC1)

n−1 .

By Cayley’s formula
∑

τ0∈T 0
n
1 = nn−2 and the fact that the cardinality of the sum∑

l1,...,lp⋃p
i=1 li⊃{k0}

can be bounded by rp, where r = 22d[3(2d+1+1)]d is an upper bound

for the maximum number of Cα(k) bonds that can pass through a point, as showed
in [33], we obtain the geometric series

∑
p≥1

∑
l1,...,lp⋃p

i=1 li⊃{k0}

|w(R′)|ecp ≤
∑
p≥1

(rC2e
c)p =

rC2e

1− rC2e

when there are only links of type 1 (short range),

∑
n≥2

1

(n− 1)!

∑
k1=k0,
k2,...,kn

|w(R′)|ecn ≤ eβC1+c
∑
n≥2

(βC1e
βC1+c)n−1
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for only links of type 2 (long range) and∑
n≥2

1

(n− 1)!

∑
k1=k0,
k2,...,kn

∑
p≥1

∑
p1,...,pn∑p
i=1 pi=p

∑
l11,...,l

1
p1

. . .
∑

ln1 ,...,l
n
pn

|w(R′)|ec(p+n)

≤
∑
n≥2

1

(n− 1)!

∑
k1=k0,
k2,...,kn

|w(R′)|ecn
(

rC2e

1− rC2e

)n

≤ eβC1+c rC2e

1− rC2e

∑
n≥2

(βC1e
βC1+c rC2e

1− rC2e
)n−1

for the mixed case. Choosing c = 1, there are δ1 and δ2 sufficiently small such that
if C1 < δ1 and rC2e < δ2, then
(5.28)

rC2e

1− rC2e
+ eβC1+1 βC1e

βC1+1

1− βC1eβC1+1
+ eβC1+c rC2e

1− rC2e

eβC1+c rC2e
1−rC2e

1− eβC1+c rC2e
1−rC2e

<
1

C
;

hence (5.26) holds. �

Summarizing, one can formulate the d-dimensional version of Theorem 3.3.

Theorem 5.7. Let

(5.29) H̄
(0)
M (η) = H̄

l,(0)
M (η) + H̄

s,(0)
M (η) ,

where H̄
l,(0)
M (η) and H̄

s,(0)
M (η) := − logRs(η) are given in (3.3) and (5.13) respec-

tively (for d = 2 the latter is also given explicitly in (5.8)). Then, we have the error
bound

|H̄M − H̄
(0)
M | = NO

(
C2

qd
+

qβ‖∇V ‖∞
L

)
.

The loss of information when coarse-graining at the level q is quantified by a specific
relative entropy error similar to (3.29). Moreover, there exist δ1(β, d) > 0 and
δ2(β, d) > 0 such that if C1 < δ1 and if Condition 5.1 holds with C2 < δ2, then

H̄M −H̄
(0)
M is expanded in an absolutely convergent series in the parameters C1 and

C2:

(5.30) H̄M (η) = H̄
(0)
M (η) + H̄

(1)
M (η) + . . .+ H̄

(p)
M (η) +MO((max{C1, C2})p+1),

where the terms H̄
(p)
M are determined by evaluating the terms of the series (5.24).

Proof. It is a direct consequence of Theorem 5.4 and Lemma 5.6. �

Remark 5.1. As we also discussed in Remark 3.3 in a one-dimensional setting, esti-
mates such as the ones in Theorem 5.7 relying on the constant C2 of Condition 5.1
are sharper than the estimates in (3.29) which are derived from a counting argument
such as (3.21).

Remark 5.2. For more general boundary conditions than periodic, e.g. zero, we
need to confine the system in a box Λ and fix a configuration outside. With mi-
nor modifications in the proof (essentially splitting into cells well inside the bulk
and cells that can be affected by the boundary conditions), Theorems 3.3 and 5.7
still hold true, but with an extra error coming from the cells interacting with the
boundary of the box which will be even smaller by a factor |∂Λ|/|Λ|.
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6. Computational complexity of coarse-graining schemes

One of the outcomes of the numerical analysis of coarse-graining schemes via the
cluster expansion analysis (3.31) is the reduction of the complexity in the calcula-
tion of each of the terms in the series into a combination of low-dimensional local
potentials, e.g. (3.3) and (3.26). Therefore, a key challenge in the implementation
of these coarse-graining methods is to develop strategies that efficiently address the
computational complexity of pre-computing local multi-body terms, for instance
(3.28) or (5.8). We already showed in Section 4.3 in the case of one dimension that
the computational complexity of local terms such as (3.28) can be greatly reduced
by exact analytical calculations and/or additional approximations, yielding semi-
analytical splitting schemes which are effectively multi-body combinations of easily
computable one-body terms such as (4.7), or in Section 4.3.1 through analytical
expressions such as (4.10), as well as (4.11) and (4.12) in the high-temperature
approximation of each of the local terms.

In two dimensions the same strategy is also applicable as we briefly outline
next. Following the approach in (4.2) we rewrite (5.8) by replacing the partition

functions Z(A4(k)) by Ẑ(A4(k)), which denotes a partition function with respect to
the normalized measure (4.1). As in the case of dimension one in Section 4, our goal

is to simplify as much as possible the terms Ẑ(A4(k)), for k ∈ Λ̄α
M , α = 1, 3, 4, and

give an algorithm to compute them efficiently. Note that in the two-dimensional
case the many-body terms seem intractable due to the multi-canonical constraints,
e.g. for the case α = 4, see Figure 2, we have to compute Ẑ(A4(k)) for all possible
combinations of 9 values of η.

However, for the nearest-neighbor Ising model we can perform an analytical
calculation and/or approximation and simplify the terms with significant reduction
of the computational complexity: similarly to Section 4.3, we denote the lattice
sites within a coarse cell Ck by xi,j , i, j = 1, . . . , q, with x1,1 being the upper-left

one. We present in full detail only the computation of Ẑ(A4(k)), with k ∈ Λ̄1
M . We

also denote by kl and kr the left and right coarse cell to Ck. We have:

Ẑ(A4(k)) =

∫ q∏
i=1

[
(1− λσkl

(xi,q)σ
k(xi,1))(1− λσk(xi,q)σ

kr

(xi,1))
]
P̂klP̂kP̂kr

= 1− λ

q∑
i=1

(
Φi,q

kl Φ
i,1
k +Φi,q

k Φi,1
kr

)
(6.1)

+λ2
∑
i<j

(
Φi,q

kl Φ
(i,1),(j,q)
k Φj,1

kr +Φ
(i,q),(j,q)

kl Φ
(i,1),(j,1)
k +Φ

(i,q),(j,q)
k Φ

(i,1),(j,1)
kr

)
+O(λ3),

where, e.g. Φi,q
kl :=

∫
σkl

(xi,q)P̂kl is a one-point correlation function and Φ
(i,1),(j,q)
k

:=
∫
σk(xi,1)σ

k(xj,q)P̂k the two-point correlation.

The computation of Ẑ(A4(k)) for k ∈ Λ̄3
M is identical with the k ∈ Λ̄1

M case

discussed above, while the computation of Ẑ(A4(k)) for k ∈ Λ̄4
M is somewhat more

involved since one has to take into account all the possible interactions within the
9-cell A4(k), with k ∈ Λ̄4

M .
These calculations allow us to reduce the 9-body term in (5.8) into combinations

of one-body terms; see also (4.8) for the one-dimensional analogue, which in turn can
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be easily calculated: for every value of η we create a library with the values of the
above functions; for each one we need to run a constrained Monte Carlo algorithm
but it should converge quite fast since it is restricted only on one coarse cell. Note
also that due to the symmetries several of the correlation functions appearing above
are the same and need to be computed once. Imposing periodic boundary conditions
on the coarse cells (instead of free) and committing an additional error can further
simplify all such calculations.

Further approximations for the local multi-body terms such as high temperature
expansions, (4.11) and (4.12), as well as analytical formulas for the correlations
(4.10) (in higher dimensions such formulas hold away from phase transitions), can
give rise to further simplifications in the multi-body terms. Finally, we can ap-
proximate log Ẑ(A4(k)) in yet a different way by carrying out an additional cluster
expansion of the interactions within the set A4(k).

In view of the preceding discussion regarding pre-computing multi-body terms, it
seems necessary to re-examine whether we should coarse-grain at all! We showed in
this paper that coarse-graining with controlled-errors typically requires multi-body
terms derived via cluster expansions. On the other hand, in order to avoid the com-
putations with the multi-body terms we may consider an approximate microscopic
scheme with similar error control features. More specifically, we may consider an
approximating Hamiltonian where only the long-range potential is compressed by
a local averaging over each coarse cell, i.e., we define the new Hamiltonian,

(6.2) HN (σ) = Hs
N (σ) +H

l,(0)
M (F(σ)) ,

where the coarse-graining map F is defined in (1.3) and the coarse-grained long-

range Hamiltonian H
l,(0)
M in (3.3). It is straightforward to show that the corre-

sponding microscopic measure has the same error estimates as the one in Theorem
3.3, where in addition the error due to the short range interactions is absent since
the corresponding part is computed exactly. This approach would be similar in
spirit to various interaction compression techniques such as the multi-pole method.

We briefly discuss how this microscopic algorithm with compressed long-range
interactions compares, in terms of computational complexity, with the fully coarse-
grained simulation. First, the multi-body CG interactions involve only the short-
range microscopic interactions and can be either pre-computed off-line as in the
current literature in polymeric and bio-molecular systems or one can employ the
semi-analytical controlled-error approximations, discussed in the paper. In either
case they will not affect the computational complexity or the CPU count of a
coarse-grained algorithm. Similarly, in (6.2) the cost of simulating microscopic
short-range interactions is overwhelmed by the long-range ones. Thus we can focus
on a complexity and CPU comparison by ignoring the nearest-neighbor interactions.
Indeed, such CPU comparisons between microscopic models with piecewise constant
potentials, as the one in (6.2), and coarse-grained models were already carried out
in earlier publications; see for example Figure 9 in [21]. In these comparisons we see
a very substantial speed-up in the coarse-grained model, which is at least quadratic
in the coarsening factor q; see also the operation count in Table 1.

In general, when comparing coarse-graining schemes to the direct numerical sim-
ulation of the microscopic variables σ such as (6.2), we readily see that they reduce
the computational complexity of the simulation of lattice systems in two ways.
First, long-range interactions are compressed through the effective interactions in
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Table 1. Computational complexity of evaluating the Hamilton-
ian on the d-dimensional lattice for the interaction range L and
the coarse-graining level q ([24]).

Hamiltonian Count Speed-up

Microscopic q = 1: H l
N (σ) O(NLd) 1

Coarse-graining scheme (3.3): H̄
l,(0)
M O(MLd/qd) O(q2d)

Table 2. Computational complexity on the d-dimensional lattice
for the interaction range L and the coarse-graining level q: number
of classes of lattice sites with equal rates for {−1, 1}-spins.

Microscopic CG with q

O(2L
d

) O(2d log2 q (L/q)d)

(3.3); see Table 1 for the corresponding operation count for the evaluation of a
Hamiltonian. Second, Kinetic Monte Carlo simulations of lattice systems with
such complex interactions at a microscopic level have a high number of rejections
when one considers null-event algorithms, [29], while rejection-free methods such
as the Bortz, Kalos, Lebowitz (BKL) algorithm, [29], have an exponentially large
number of classes of sites with equal rates, rendering this sophisticated algorithm
impractical. On the other hand, due to the compression of the configuration space,
coarse-graining yields a vastly reduced number of such classes; see Table 2 for an
exact comparison with the microscopic case, which in turn can allow for an efficient
implementation of the BKL method.

7. Conclusions

In this paper, we developed coarse-graining schemes for stochastic many-particle
microscopic models with competing short- and long-range interactions on a d-
dimensional lattice. We focused on the coarse-graining of equilibrium Gibbs states,
and using cluster expansions we analyzed the corresponding renormalization group
map. We quantified the approximation properties of the coarse-grained terms aris-
ing from different types of interactions and presented a hierarchy of correction
terms. Finally, we derived semi-analytical numerical coarse-graining schemes along
with a posteriori error estimates for lattice systems with short and long-range in-
teractions.

An important outcome of the cluster expansion analysis for the approximation
of coarse-grained Hamiltonian by the series (1.8) is the reduction of the complexity
in the calculation of each of the terms in the series into a combination of low-
dimensional local potentials, e.g. (3.26). In turn, we show in Section 4 and Section 6
that exact analytical calculations and/or additional approximations can greatly
reduce the computational complexity of such local terms, yielding semi-analytical
splitting schemes for the coarse-graining of lattice systems with short and long-
range interactions. Furthermore, these schemes can be split, within a controllable
approximation error, into a long and a short-range calculation; see (3.25). The
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long-range part, which is computationally expensive for conventional Monte Carlo
methods, can be cheaply simulated using the analytical formula given in (3.2) in
the spirit of our previous work [24]. In this case computational savings are due to
the reduction in the degrees of freedom by Q = N/M and compressing the range of
interactions. For the short-range interactions we use the semi-analytical formulas
(4.2) which involve pre-computing coarse-grained interactions with Monte Carlo
simulation. However, the simulation is done for a single subdomain of adjacent
coarse cells, while for Ising-type models, see Section 4 and Section 6, one can reduce
the pre-computation on a single coarse cell. The error estimates in Theorem 3.3
and Theorem 5.7 also suggest an improved decomposition to short and long-range
interactions. Indeed, they imply splitting and rearranging the overall combined
short and long-range potential into a new short-range component that includes
possible singularities originally in the long-range interaction, e.g., the non-smooth
part in a Lennard-Jones potential, and a locally integrable (or smooth) long-range
decaying component. Presumably similar strategies could be applied for off-lattice
systems such as the coarse-graining of polymers.

In contrast to the splitting approach developed here that allows us to analytically
calculate the long-range effective Hamiltonian (3.3) in (3.25) and in parallel carry
out the semi-analytical step for (4.2), existing methods, e.g., ([16, 27]), employ
semi-analytical computations involving both short, as well as costly long-range
interactions. Thus, multi-body terms, which are believed to be important at lower
temperatures, [16], have to be disregarded. A notable result of our error analysis
is the quantification of the role of multi-body terms in coarse-graining schemes, and
the relative ease to implement them using the aforementioned splitting schemes.
Theorem 3.3 addresses this issue, while in Section 4, we further quantify the regimes
where multi-body terms are necessary in the context of a specific example. In [2] the
necessity to include multi-body terms in the effective coarse-grained Hamiltonian
was first discussed in a numerical analysis context for systems with singular (at the
origin) long-range interactions.

Cluster expansions such as (1.8) can also be used for constructing a posteriori
error estimates for coarse-graining problems, based on the rather elementary ob-
servation that higher-order terms in (3.31) can be viewed as errors that depend
only on the coarse variables η. In [22] we already employed this type of estimate
for stochastic lattice systems with long-range interactions in order to construct
adaptive coarse-graining schemes. These tools operated as an “on-the-fly” coars-
ening/refinement method that accurately recovers phase diagrams. The estimates
allowed us to adaptively change the coarse-graining level within the coarse-graining
hierarchy once suitably large or small errors were detected, and thus to speed up
the calculations of phase diagrams. Adaptive simulations for molecular systems
have also been recently proposed in [36], although they are not based on an a
posteriori error analysis perspective. Finally, the cluster expansions necessary for
the rigorous derivation and error estimates of the schemes developed here rely on
the smallness of a suitable parameter introduced in Theorem 3.3; see (3.30). In
Section 4, we construct an a posteriori bound for this quantity that can allow us
to track the validity of the cluster expansion for a given resolution in the course
of a simulation. This approach is, at an abstract level, similar to conditional a
posteriori estimates proposed earlier in the numerical analysis of geometric partial
differential equations, [15, 28].
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Further challenges for systems with short and long-range interactions not dis-
cussed here include: error estimates for observables/quantities of interest, the de-
velopment of coarse-grained dynamics from microscopics, phase transitions and
estimation of physical parameters, such as critical temperatures. Work related to
these directions for systems with long-range interactions have been carried out in
[25], [6] and [5].
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[5] Anton Bovier and Miloš Zahradńık, A simple inductive approach to the problem of conver-
gence of cluster expansions of polymer models, J. Statist. Phys. 100 (2000), no. 3-4, 765–778,
DOI 10.1023/A:1018631710626. MR1788485 (2002g:82024)

[6] M. Cassandro and E. Presutti, Phase transitions in Ising systems with long but finite range in-
teractions, Markov Process. Related Fields 2 (1996), no. 2, 241–262. MR1414119 (98e:82029)

[7] A. Chatterjee, M. Katsoulakis, and D. Vlachos. Spatially adaptive lattice coarse-
grained Monte Carlo simulations for diffusion of interacting molecules. J. Chem. Phys.,
121(22):11420–11431, 2004.

[8] A. Chatterjee, M. Katsoulakis, and D. Vlachos. Spatially adaptive grand canonical ensemble
Monte Carlo simulations. Phys. Rev. E, 71, 2005.

[9] A Chatterjee and DG Vlachos. Multiscale spatial Monte Carlo simulations: Multigriding,
computational singular perturbation, and hierarchical stochastic closures. J. Chem. Phys.,
124(6), FEB 14 2006.

[10] A. Chatterjee and D.G. Vlachos. An overview of spatial microscopic and accelerated kinetic
monte carlo methods. J. Comput-Aided Mater. Des., 14(2):253–308, 2007.

[11] Jianguo Dai, W. D. Seider, and T. Sinno. Coarse-grained lattice kinetic Monte Carlo simula-
tion of systems of strongly interacting particles. J. Chem. Phys., 128(19):194705, 2008.

[12] R. L. Dobrushin and S. B. Shlosman, Completely analytical interactions: constructive descrip-
tion, J. Statist. Phys. 46 (1987), no. 5-6, 983–1014, DOI 10.1007/BF01011153. MR893129
(88h:82006)

[13] E. Espanol, M. Serrano, and Zuniga. Coarse-graining of a fluid and its relation with dissipasive
particle dynamics and smoothed particle dynamics. Int. J. Modern Phys. C, 8(4):899–908,
1997.

[14] P. Espanol and P. Warren. Statistics-mechanics of dissipative particle dynamics. Europhys.
Lett., 30(4):191–196, 1995.

[15] Francesca Fierro and Andreas Veeser, On the a posteriori error analysis for equations of
prescribed mean curvature, Math. Comp. 72 (2003), no. 244, 1611–1634 (electronic), DOI
10.1090/S0025-5718-03-01507-2. MR1986796 (2005b:65118)

[16] H. Fukunaga, J. Takimoto, and M. Doi. A coarse-graining procedure for flexible polymer
chains with bonded and nonbonded interactions. J. Chem. Phys., 116(18):8183–8190, 2002.

http://www.ams.org/mathscinet-getitem?mr=2466145
http://www.ams.org/mathscinet-getitem?mr=2466145
http://www.ams.org/mathscinet-getitem?mr=998375
http://www.ams.org/mathscinet-getitem?mr=998375
http://www.ams.org/mathscinet-getitem?mr=1734386
http://www.ams.org/mathscinet-getitem?mr=1734386
http://www.ams.org/mathscinet-getitem?mr=1788485
http://www.ams.org/mathscinet-getitem?mr=1788485
http://www.ams.org/mathscinet-getitem?mr=1414119
http://www.ams.org/mathscinet-getitem?mr=1414119
http://www.ams.org/mathscinet-getitem?mr=893129
http://www.ams.org/mathscinet-getitem?mr=893129
http://www.ams.org/mathscinet-getitem?mr=1986796
http://www.ams.org/mathscinet-getitem?mr=1986796


This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

1792 M. A. KATSOULAKIS ET AL.

[17] N. Goldenfeld. Lectures on Phase Transitions and the Renormalization Group, volume 85.
Addison-Wesley, New York, 1992.

[18] G. Hadjipanayis, editor. Magnetic Hysteresis in Novel Magnetic Materials, volume 338 of
NATO ASI Series E, Dordrecht, The Netherlands, 1997. Kluwer Academic Publishers.

[19] V.A. Harmandaris, N.P. Adhikari, N.F.A. van der Vegt, and K. Kremer. Hierarchical modeling
of polystyrene: From atomistic to coarse-grained simulations. Macromolecules, 39:6708–6719,
2006.

[20] L. Kadanoff. Scaling laws for Ising models near tc. Physics, 2:263, 1966.
[21] Markos A. Katsoulakis, Andrew J. Majda, and Dionisios G. Vlachos, Coarse-grained stochas-

tic processes and Monte Carlo simulations in lattice systems, J. Comput. Phys. 186 (2003),
no. 1, 250–278, DOI 10.1016/S0021-9991(03)00051-2. MR1967368 (2004d:65019)

[22] M. A. Katsoulakis, L. Rey-Bellet, P. Plecháč, and D. K.Tsagkarogiannis. Mathematical strate-
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