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Abstract

Within the abstract framework of dynamical system theory we describe a general
approach to the transient (or Evans—Searles) and steady state (or Gallavotti—
Cohen) fluctuation theorems of non-equilibrium statistical mechanics. Our
main objective is to display the minimal, model independent mathematical
structure at work behind fluctuation theorems. In addition to its conceptual
simplicity, another advantage of our approach is its natural extension to quantum
statistical mechanics which will be presented in a companion paper. We shall
discuss several examples including thermostated systems, open Hamiltonian
systems, chaotic homeomorphisms of compact metric spaces and Anosov
diffeomorphisms.

Mathematics Subject Classification: 37A60, 82C05

1. Introduction

This is the first in a series of papers devoted to the so-called fluctuation theorems of non-
equilibrium statistical mechanics. This series is a part of the research programme initiated
in [Pi,JP1,JP2] that concerns the development of a mathematical theory of non-equilibrium
statistical mechanics within the framework of dynamical systems.

The first fluctuation theorem in statistical mechanics goes back to 1905 and the celebrated
work of Einstein on Brownian motion. The subsequent historical developments are reviewed
in [RM] (see also the monographs [GM, KTH]) and we mention here only the classical results
of Onsager [Onl, On2], Green [Grl, Gr2], and Kubo [Kub] which will be re-visited in this
paper. Virtually all classical works on the subject concern the so-called close to equilibrium
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regime in which the mechanical and thermodynamical forces (affinities) are weak. One of the
key features of modern fluctuation theorems, suggested by numerical experiments [ECM] and
established theoretically for the first time by Evans and Searles [ES] and by Gallavotti and
Cohen [GC1, GC2], is that they hold for systems arbitrarily far from equilibrium and reduce
to Green—Kubo formulae and Onsager relations in the linear regime near equilibrium. The
seminal papers [ECM, ES, GC1, GC2] were followed by a vast body of theoretical, numerical
and experimental works which are reviewed in [RM]. The Evans—Searles (ES) and Gallavotti—
Cohen (GC) fluctuation theorems are the main topics of this work.

The basic two paradigms for deterministic (dynamical system) non-equilibrium statistical
mechanics are the so-called thermostated systems and open systems. Thermostated systems
are Hamiltonian systems (with finitely many degrees of freedom) driven out of equilibrium by
an external (non-Hamiltonian) force and constrained by a deterministic thermostating force
to stay on a surface of constant energy. Open systems are Hamiltonian systems consisting of
a ‘small’ Hamiltonian system (with finitely many degrees of freedom) interacting with, say
two, ‘large’ reservoirs which are infinitely extended Hamiltonian systems. The reservoirs are
initially in thermal equilibrium at distinct temperatures and the temperature differential leads
to a steady heat flux from the hotter to the colder reservoir across the small system. Throughout
the main body of the paper we shall illustrate our results on an example of thermostated system
and an example of open system.

The majority of works on fluctuation theorems concern classical physics. In the quantum
case comparatively little is known and there are very few mathematically rigorous works on
the subject (see [TM, DDM, Ro, Ku2]). This paper, which concerns only the classical case,
originates in our attempts to find a proper mathematical framework for the extensions of ES
and GC fluctuation theorems to quantum physics. One of the difficulties in finding such a
framework stems from the fact that it was already lacking at the classical level. Indeed, even
the basic examples of thermostated systems and open systems were studied in the literature in
an unrelated way and it was far from obvious which aspects of the theory are model dependent
and which are universal. For example there was no clear universal rationale in the choice of
the ‘entropy production’ observable (also called ‘phase space contraction rate’ or ‘dissipation
function’) which plays a central role in the theory.

A model independent definition of the entropy production has been proposed by Maes,
in the context of stochastic (Markovian or Gibbsian) dynamical systems, see, e.g., [Ma2].
We take here a different and complementary route and discuss non-equilibrium statistical
mechanics within the context of deterministic dynamical systems. Our work is mostly of a
review nature and we do not prove any new specific results. Rather we organize the existing set
of ideas and results in an axiomatic abstract framework that unifies virtually all deterministic
models discussed in the literature (in particular, open infinite systems and thermostated finite-
dimensional systems will be treated in a unified manner) and clarifies the mathematical structure
of the theory. The framework has a direct extension to non-commutative dynamical systems
and in particular to quantum mechanics and this will be the subject of the remaining papers in
the series. Our principal new results concern the quantum case and we will focus here only on
those aspects of the classical theory that can be extended, within the framework of dynamical
systems, to quantum statistical mechanics.

We have made an attempt to expose the results in a pedagogical way and the only
prerequisite for the principal part of the paper is a basic knowledge of probability and measure
theory.

The paper is organized as follows.

In section 2 we introduce our dynamical system setup and review the properties of relative
entropies that we will need. In section 3 we introduce the basic objects of the theory, the
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entropy cocycle and the entropy production observable, discuss their properties, and prove the
finite time Evans—Searles fluctuation theorem. The results described in this section hold under
minimal regularity assumptions that are satisfied in virtually all models of interest.

In section 4 we start the discussion of thermodynamics by introducing control parameters
(mechanical or thermodynamical forces) to our dynamical system setup. The finite time
Evans—Searles fluctuation theorem is then generalized to this setting. Following the ideas of
Gallavotti [Gal] (see also [LS2]) we use this generalization to derive finite time Green—Kubo
formulae and Onsager reciprocity relations.

The results of sections 3 and 4 concern the system evolved over a finite interval of time
and are very general. In particular, they do not require any ergodicity assumptions. Section 5
concerns the large time limit# — oo. Under suitable ergodicity assumptions we derive Evans—
Searles fluctuation theorem on the basis of its universally valid finite time counterpart and prove
the Green—Kubo formula and Onsager reciprocity relations.

Section 6 is devoted to the Gallavotti-Cohen fluctuation theorem. After introducing the
key concept of non-equilibrium steady states (NESS), the GC fluctuation theorem is stated
as, essentially, an ergodic-type hypothesis concerning the NESS and the entropy production
observable. The Green—Kubo formula and Onsager reciprocity relations also follow from the
GC fluctuation theorem.

One advantage of our abstract axiomatic framework is that it allows for a transparent
comparison between the ES and GC fluctuation theorems. It turns out that from the
mathematical point of view these two theorems are equivalent up to an exchange of limits
(see relation (7.62)). This exchange of limits may fail even in some very simple models and
its validity can be interpreted as an ergodic property of the underlying dynamical system.
We raise this point to the principle of regular entropic fluctuations which is introduced and
discussed in section 7. After this work was completed we have learned that related ideas have
been previously discussed in [RM].

Sections 8—11 are devoted to examples. In section 8 we discuss several toy models which
illustrate the optimality of our assumptions. In section 9 we develop the non-equilibrium
statistical mechanics of Gaussian dynamical systems. Chaotic homeomorphisms of compact
metric spaces are discussed in section 10. Finally, in section 11 we discuss the non-equilibrium
statistical mechanics of Anosov diffeomorphisms of compact manifolds. In each of these
examples we verify the validity of the proposed principle of regular entropic fluctuations.

For the convenience of the reader, a table of frequently used abbreviations and symbols is
provided in page 759.

The ergodic-type hypotheses introduced in this paper typically concern the existence of
certain limits as time + — oo, the regularity (differentiability, etc) properties of limiting
functions w.r.t. control parameters, and the validity of exchange of order of limits and
derivatives. The introduced hypotheses are minimal (i.e. sufficient and necessary) to derive
fluctuation theorems and their implications from the universally valid structural theory
discussed in sections 2—4. The verification of these hypotheses in concrete models leads
to a novel class of (analytically difficult) problems in ergodic theory of dynamical systems.

2. Basic notions

2.1. Phase space, observables, states

Let M be a set and F a o-algebra in M. We shall refer to the measure space (M, F) as the
phase space. If M is a topological space, we shall always take for F the Borel o-algebrain M.

An observable is a measurable function f : M — C and we denote by O(M) the complex
vector space of all observables. B(M) denotes the subspace of all bounded observables.
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Together with the norm || f|| = sup,cy |f(x)|, B(M) is a Banach space. If M is a
topological space, C (M) denotes the Banach space of all bounded continuous observables.
The corresponding spaces of real-valued observables are denoted by Or (M), Br(M), Cr(M).

A state is a probability measure on (M, F) and S denotes the set of all states. The
expectation value of an observable f w.r.t. the state v is denoted by

v(f) = fM fdv.

If f = (fi1,..., fn) is a vector-valued observable we set v(f) = (v(f1),...,v(fn)). We
shall equip S with the weakest topology w.r.t. which the functionals S > v +— v(f) are
continuous for all f € B(M). If : M — M is a measurable map, we denote by v o 9! the
measure F 3 A — v(0~!(A)). Clearly v o 87'(f) = v(f 0 0) forall f € B(M). A map
6 : M — M is called involutive if 6 0 O (x) = x for all x € M.

We shall say that a state v is normal w.r.t. € S iff v is absolutely continuous w.r.t. @
(denoted v < w). The set of all states which are normal w.r.t. w is denoted N,,. Two states
v and w are called equivalent iff v < w and w < v, i.e. iff v and @ have the same sets of
measure zero. The Radon—-Nikodym derivative dv/dw, which will play an important role in
this paper, is defined as an element of L'(M, dw) and is an equivalence class of functions
rather than a single function. For this reason the notion of observable is extended as follows.
Given a state w, let Z,, = {f € O(M) | f(x) = 0 for w-a.e. x} and let O(M), = OM)/Z,,
be the quotient vector space (the elements of O(M),, are equivalence classes w.r.t. the relation
f~g<s f—ge€Z,. Similarly, L*°(M,dw) = B(M)/Z,. As usual in measure theory,
dealing with equivalence classes instead of single functions is natural and causes no difficulties,
the classes are called functions, etc.

In what follows, we adopt the shorthands

dv
Av\w = @7 Zvlw = log Au\a)-

2.2. Relative entropies

The relative entropy of a state v w.r.t. a state w is defined by

—o0 if v &N,

—v(y0) if veN,. 2.1

Ent(v|w) = {

Since —£,}, < Av_‘i) —land V(A;klu) = 1, relative entropy is well defined as a map from S x S

to [—oo0, 0]. Its basic properties are (see, e.g., [OP]):
Theorem 2.1.
(1) For w,v € S, Ent(v|w) = inf rep,anllogw(e’) — v(f)].
(2) Forw € Sand f € Bg(M), logw(e/) = sup,s[Ent(v|w) + v(f)].
(3) Concavity: for wi, wp, v, vy € Sand A € [0, 1],
Ent(Avy + (1 — M) va|Aw; + (1 — M)wy) = AEnt(vi|wy) + (1 — A)Ent(vy|w,).
(4) Ent(v|lw) < 0 forall w,v € S and Ent(v|w) = 0 if and only if v = w.
(5) If0 : M — M is a measurable bijection, then Ent(v o 0 w06~ = Ent(v|w).
(6) The relative entropy is an upper-semicontinuous map from S x S to [—o0, 0], that is

Ent(v|w) > lim sup Ent(v, |wy),

o

for all convergent nets v, — v and w, — w in S.
(7) For any w € S and any finite constant C, the set {v € S | Ent(v|w) > C} is compactin S.
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The Rényi relative entropy of order @ € R, [Re], is defined by

—00 ifv € N,
logw(AY ) if venN,.

viw

Ent, (v|w) = { (2.2)

This generalization of relative entropy has found numerous applications (see [BS, OP] for
references and additional information). We list below several properties of the Rényi relative
entropy that are relevant for our purposes:

Proposition 2.2. Suppose that v € N,

(1) If6 : M — M is a measurable bijection, then Ent, (v 0 6~ !|w 0 6~1) = Ent, (v|w).

(2) R > o > Ent, (v|w) €] — 00, o0] is a convex function. It is real analytic and non-positive
on 10, 1[. It is positive for o & [0, 1].

(3) lim !
atl 1 — o
In the remaining statements we assume that v and w are equivalent.

(4) Entg(v|w) = Ent;(v|w) = 0.

(5) Ent,(v|w) = Enty_q (w|v).

(6) Ent, (v|w) > aEnt(w|v).

Ent, (v|w) = Ent(v|w).

2.3. Dynamics

Let Z be an index set whose elements are interpreted as instances of time. We shall always
assume that 7 = Z (the discrete time case) or Z = R (the continuous time case). A dynamics
¢ = {¢"|t € I} on M is a group of invertible measurable transformations ¢’ : M — M
describing the evolution of the system. More precisely, we shall assume:

(F1) ¢° is the identity map and ¢'** = ¢’ o ¢* for all s, t € Z. In particular, for all t € Z, ¢'
is an automorphism of the measurable space (M, F).
(F2) The map (¢, x) > ¢'(x) is measurable.

Assumption (F2) is relevant only in the case Z = R (in this case, the dynamics ¢ is a flow on
M). In the discrete time case Z = Z, the dynamics is obtained by iterating the time 1 map
¢ = ¢' and its inverse ¢ ~'. We will sometimes write ¢" instead of ¢".

A dynamics ¢ on M induces transformation groups on O(M) and S by f; = f o ¢',
v, = vo ¢ '. They are clearly related by v,(f) = v(f;). A state v is called steady (or
stationary) if v, = v for all . We denote by S; the set of all steady states.

2.4. Reference state

The starting point of our discussion is a classical dynamical system (M, ¢, ®), where ¢ is
a given dynamics on M and w a given reference state satisfying the following regularity
assumption:

(C) w; and w are equivalent for all ¢t € 7.

In non-trivial models that arise in non-equilibrium statistical mechanics AV, N S; = @. In
particular, w ¢ S;. In this important aspect our starting point differs from the usual one in the
ergodic theory of classical dynamical systems where the reference state w is assumed to be
invariant under the dynamics.

Assumption (C) ensures that ¢ preserves Z, and hence naturally induces a group of
transformations of O(M),, and L* (M, dw).

Assumptions (F1), (F2) and (C) are our fundamental working hypothesis and will be
assumed in the following without further notice.
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2.5. Time-reversal invariance

A time reversal of the dynamics ¢ on M is an involutive measurable transformation ¢ : M —
M suchthat ® o’ = ¢~ o forallr € T.

A state w € S is called time-reversal invariant (TRI) if w o # = w. In this case ¥
preserves Z,, and induces an involution on O(M),, and L*°(M, dw). Note that if @ is TRI,
then w; o ¥ = w_;.

The dynamical system (M, ¢, w) is called TRI if M is equipped with a time reversal ¥ of
¢ such that w is TRI.

Time-reversal invariance will play a central role in our discussion. Other symmetries can
have important consequences on statistical properties of the dynamics, e.g. the conformally
symplectic structure of some systems leads to symmetries in their Lyapunov spectrum (see
[WL,MD]). Such symmetries, however, will not play a role in our work.

If the system (M, ¢, ) is not TRI, for the purpose of model building the following
construction is useful. Set

M=MxM,  §F&xN=¢w®¢'0)  d@=do®do.

Then (]l?, 5, @) is TRI with the time reversal ¥ (x, y) = (y, x).

3. Finite time entropy production

3.1. Entropy cocycle

Since w, and w are equivalent measures,
' =Lywod' € OM),
is well defined. It satisfies the following additive cocycle property:

Proposition 3.1. Forallt,s € T one has
CI+S =CS+CZO¢S

In particular c® = 0 and ¢ = —c' o ¢p7".

Proof. We adopt the shorthand A" = A, ,. For f € B(M) and s,t € Z one has
w5 (f) = @(A™ f) and

s (f) = 0s(fi) =0(A" fi) =0 (A 0¢p™ o) =w (A" 0™ f)

=w(A o™ A f).
Hence,

A=A o™ A, (3.3)
where the equality is in O(M),,. Taking the logarithm we derive

Lo = Lorjw © 0" + Ligy -

Our first identity follows immediately. The second one follows from the substitution s = 0
and the third one is obtained by setting s = —¢. |

We shall call ¢’ the entropy cocycle of the dynamical system (M, ¢, w). The entropy
cocycle of a TRI dynamical system enjoys the following additional property.

Proposition 3.2. If the system (M, ¢, w) is TRI with a time reversal ¥, then
o =c" (3.4)
holds for all t € 1.
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Proof. Setting again A’ = A, |, we have, forany f € B(M) andt € Z,
w(A' oV f)=wo (A" fo?) =w(A'fod) =w(f o)
=o(fodod)=w(fop o) =w(fod™) =w(Af).

The resulting identity A~ = A’ o 9 furtherleadsto A~ 0™ = Ao o' = A o’ 0 .
Taking the logarithm gives the result. g

3.2. Entropy balance equation
By definition (2.1) of the relative entropy one has
Ent(w;|0) = =0 (Ly,10) = =0 Ly, 0 ¢') = —w(c").

Since Ent(w|w) = 0 this identity can be rewritten as
1
w(X) = —?(Ent(a),|a)) — Ent(w|w)),

where

ct

= 3.5
t

Thus, we can interpret X' as the observable of mean entropy production rate over the time
interval [0, t]. We shall call the relation

Ent(w;|@) = —t w(Z") (3.6)
the entropy balance equation. Its immediate consequence is the important inequality

w(Z") € [0, ool (3.7)
which holds for all ¢ > 0.

The cocycle property yields
clog!
t
We note for later reference that if (M, ¢, w) is TRI, then proposition 3.2 further leads to

T=— =% "0¢'.

—t

Bog=—=-E"=-Fog¢" (3.8)

3.3. Finite time Evans—Searles symmetry

Let P, be the law of the real-valued random variable ¥, i.e. the Borel probability measure on
R such that for any f € B(R),

P(f) = o(f(E)).
Let v : R — R be the reflection t(s) = —s and define the reflected measure P, = P, o t.
Proposition 3.3. If (M, ¢, ) is TRI then, foranyt € T, the measures P, and P, are equivalent
and

dp,

dp,

(s) =e™". (3.9)
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Proof. For f € B(R), equation (3.8) and the fact that w, o ¥ = w_, yield
P(f)=o(f(=E) =a(f(=Z'0¢™) =0, (f(Z' o)) = o (f(Z))

=" ().
and the statement follows. ]

To our knowledge, relation (3.9) was first obtained by Evans and Searles in [ES] and is
sometimes called the transient fluctuation theorem. We shall call it the finite time ES-identity.
We stress its universal character: in addition to the TRI assumption it only relies on the minimal
hypothesis (F1), (F2) and (C). In aloose sense, it can be understood as a dynamical form of the
second law of thermodynamics: on the finite time interval [0, 7], the probability to observe a
negative mean entropy production rate —s is exponentially small compared with the probability
to observe the positive value s.

The ES-identity can be re-formulated in terms of Rényi entropy. For o € R, we adopt the
shorthand

er(@) = Entg(w;|w) = logw(e®*) = logw(e** ). (3.10)
By theorem 2.1 (2), if £, € L>(M, dw), then
e;(a) = sup [Ent(v|w) + av(€y, )] (3.11)
veN,

This variational characterization will play an important role in the extension of the theory of
entropic fluctuations to non-commutative dynamical systems.

The basic properties of the functional (3.10) follow directly from proposition 2.2. We list
them for later reference:

Proposition 3.4.
(1) Forallt € T the function
R>at+ ¢(x) €] — oo, 0]
is convex, satisfies ¢;(0) = ¢,(1) = 0 and

e; () €] — 00, 0] if ¢ €0, 1],
e; () € [0, o0] otherwise.

(2) It satisfies the lower bound
¢, (@) > min(a Ent(w|w,), (1 — a)Ent(w, |w)). (3.12)

(3) It is real analytic on the interval 10, 1[.

Remark. The relation ¢, (1) = 0 is sometimes called the non-equilibrium partition identity or
Kawasaki identity, see [CWW].

Note that if the system is TRI, equation (3.8) implies w(e>") = w(e ¥>"?) =
(e ") so that
e(a) = logw(e ™).
Proposition 3.5.

(1) Foranyt € 7T and o € R one has e;(a) = e_;(1 — «).
(2) If M, ¢, w) is TRI then e_,(a) = ¢,(a) and hence

e(a) =e (1 —a). (3.13)
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Proof. Parts (1) and (5) of proposition 2.2 imply
e, (o) = Enty (w;|w) = Enty_o (w|w;) = Enty_y(w_;|w) = e_;(1 — o).
Since TRI implies w; o ¥ = w_,, part (1) of proposition 2.2 allows us to conclude
e_;(a) = Enty(w_;|w) = Ent, (w; o ¥|w o ¥) = Ent, (w;|w) = ¢, (). O

We shall call relation (3.13) the finite time ES-symmetry. We finish this section with the
observation that the finite time ES-symmetry is an equivalent formulation of the finite time
ES-identity.

Proposition 3.6. For eacht € Z, the following statements are equivalent:

(1) The measures P, and P, are equivalent and satisfy the ES-identity (3.9).
(2) Foralla e R, e_;(a) = e_,(1 — a).

Proof. It suffices to note the relation between the functional e_; (o) and the Laplace transform
of the measure P;. One has

e_i(@) =logw(Ee ™) = log/e"‘” dP,(s),
and hence

e_(1—a)= log/ e~ 1= 4P (s) = log/e‘m e " dPi(s). O

3.4. Entropy production observable

For a discrete time dynamical system the cocycle property ¢'*! = ¢! + ¢! o ¢ implies

t—1
¢ = ng, (3.14)
s=0

where
o=c' =L, pop. (3.15)

In particular, we can express the mean entropy production rate observable as

o 1[—1
I—_—_
Y= =7 E oy.
s=0

Consequently, the entropy balance equation (3.6) becomes

t—1
Ent(o;|o) = — Y (o).
s=0

We shall call o the entropy production observable. For obvious reasons the entropy production
observable is also often called phase space contraction rate.
Basic properties of the entropy production observable are:

Proposition 3.7. w(c) > 0, w_1(0) <0, and if (M, ¢, w) is TRl then o o ¥ = —0_.
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Proof. —w(0) = —w1({y,1») = Ent(w|w) < 0 implies w(o) = 0. Jensen’s inequality
ew,l(a) g w—l(ea) - w(Aan \w) - la

implies w_1(c) < 0. The last statement follows from (3.4) and the cocycle property
cl=—clogp O

It is not possible to define the entropy production observable of a continuous time
dynamical system at the current level of generality. We shall make some minimal regularity
assumptions to ensure that the entropy cocycle has a generator o, i.e. that the continuous time
analogue of equation (3.14) holds.

(E1) (1) The function R > t = A, € L'(M, dw) is strongly ch.
(2) The entropy production observable
d
o = _Aw,\w
dr =0

is such that the function R 5 ¢ > o; € L'(M, dw) is strongly continuous.

Remark. If M is a complete, separable and metrizable space, then the Koopman operators
T': f +— Ay 0 f-: form a strongly continuous group of isometries of L'(M, dw). Denote by
L its generator, i.e. 7' = €', Since A, = T'1, part (1) of assumption (E1) is equivalent to
1 € Dom(L), the domain of L, and then o = L1.

Proposition 3.8. Suppose that (E1) holds. Then:

(1) For all x € M the functiont — A, |,(x) is absolutely continuous and

d
EAw,\w(x) = Aw,\w(x)a—t (X),
holds for w-almost all x € M and Lebesgue almost all t € R.

(2) For allt € R the identities

1
Ap o = el o=rds
t

and
t
' :/ o, ds (3.16)
0
hold in O(M),,,.
(3) w(o) =0.

(4) If (M, ¢, ®) is TRI, then o o ¥ = —0.

Proof. We again set A" = A, |,

(1) The cocycle property (3.3) and part (1) of assumption (E1) yield
(A — A —sA'o,) =w(A'|A 0™ —1 —s04]) =w(|A* =1 —50]) = o(s),
as s — 0, from which we conclude that

d
_At = Ata_t
dr
holds strongly in L' (M, dw). By part (1) of assumption (E1) we can assume that for any

x € M the function ¢ > A’(x) is absolutely continuous and that for w-almost all x € M

%A’(x) = A'(x)o_,(x)

holds for Lebesgue almost all ¢ € R (see, e.g., theorem 3.4.2 in [HP]).
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(2) By part (2) of assumption (E1), the Riemann integral

N
> :/ o_sds
0

defines a strongly C ! function t +— ¢, € L'(M,dw). As before, we can assume that
t > £,(x) is absolutely continuous for all x € M and that for w-almost all x € M

d £, (x) (x)

—L(x) = o0_;(x

dt t t
holds for Lebesgue almost all 1+ € R. Consequently, for all x € M the function

t = F(x) = Al(x)e%™ is absolutely continuous and for w-almost all x € M

d
g Frn =0

holds for Lebesgue almost all # € R. We conclude that for all ¢ € R, F;(x) = Fo(x) =1,
ie. Al(x) = e“™ for w-almost all x € M. Equation (3.16) follows immediately.

(3) Differentiating the identity e,(1) = O w.r.t. f at ¢t = 0 we derive w(c) = 0.

(4) Follows from the identity (3.4). O

Remark. Under the strong continuity condition of assumption (E1), the identity (3.16) holds
in O(M),, with a Lebesgue integral. It also holdsin L' (M, dw) with a strong Riemann integral.

Relation (3.16) yields

1 t
2,:—/ o, ds,
tJo

and so the entropy balance equation and the ES-functional can be written as
t
Ent(w,|w) = —/ w (o) ds,
0

e(a) = logw(e” Jyos dsy,
For TRI systems one has o0_; o ¥ = —o, and in this case
e, (@) = logw(e oo dsy,

Unless otherwise stated, in the following we will only consider continuous time
dynamical systems. The discrete time case is very similar, time-integrals being replaced
by appropriate sums.

3.5. LP-Liouvilleans
In this section, in order to avoid unessential technicalities, we shall assume in addition to (E1),
(E2) 0 € L®(M, dw).

Let p €] —00,00], p # 0and f € L°*°(M, dw). We shall consider the following special class
of Ruelle transfer operators

Uy f = AL o fr =erho=®p (3.17)
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One easily shows:

Proposition 3.9. Under assumptions (E1)—(E2), equation (3.17) defines a family of bounded
linear operators on L (M, dw) which satisfies:

(1) Up(O) =T and U, (t +5) = U,(t)Up(s).
(2) If p~' +q7" =1, then o([U, (1) f1 U, (Dg]) = &(fg).
(3) o(U,@®) f1?) = w(If|P). For p € [1,00], U,(t) extends to a group of isometries of
L?(M, dw).
(4) Up(t) extends to a group of bounded operators on L*(M, dw) such that U;(t) =
Uy(—1t) and
m |2 - P|
1U, @) < el m, = llolloo-
Pl
(5) Suppose that U,(t) is strongly continuous on L*(M, dw) and let L, be its generator,
Up(t) = e'*r. Then LY, = =L, sp(L,) C {z|[Rez| < m,}, Dom(L,) = Dom(Lc),
and for f € Dom (L)

Lyf=Loof+>f.
P

We shall call the operator L, the L?-Liouvillean. In part (5), Dom(A) denotes the domain
of the operator A and sp(A) its spectrum.
If o = 1/p, then

er(@) =log(l,e™r1) = log/ e 1do. (3.18)
M
Similarly to (3.11), this operator characterization of e, (o) will play an important role in the
extension of the theory of entropic fluctuations to the non-commutative setting.

If o is unbounded, the operator U, () could be unbounded and proposition 3.9 may not
hold as formulated. The technical aspects of its extension are then best carried out in the
context of concrete models.

In the discrete time case the concept of L”-Liouvillean is not very natural and instead one
deals directly with the transfer operator

Upf =er’ fi. (3.19)

If o € L*®(M, dw), then parts (1)—(4) of proposition 3.9 obviously hold, U,(n) = U ; and
en(a) =log(l, Uyl).

3.6. Examples: differentiable dynamics and thermostated systems

Let U C R" be an open connected set and let ¢ : U — U be a C'-diffeomorphism. Denote
by D¢ its derivative. Let M C U be compact and suppose that ¢ (M) C M. Finally denote by
o the normalized Lebesgue measure on M. The entropy production observable of the discrete
time dynamical system (M, ¢, w) is given by

o = —log|det Do| |y.
To describe the continuous time case let X be a C'-vector field on U. Assume that the

flow ¢ generated by the differential equation

d
5)@ = X(x;)
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satisfies ¢’ (M) C M. Then ¢ is C' on R x M. The entropy cocycle of (M, ¢, w) is
¢ = —log| det D¢'||) and the entropy production observable is given by

d . )
o= ” log | det D¢’ | o = —divX|,.
Assumptions (E1)-(E2) are clearly satisfied.

A special class of differentiable dynamics is provided by the so-called Gaussian
thermostated systems. Consider a Hamiltonian system with n degrees of freedom. The phase
space of the system is R” @ RR” (or more generally the cotangent bundle of a smooth manifold).
For simplicity, we shall assume that its Hamiltonian H is C? and that the finite energy subsets
{(p,q)| H(gq, p) < E} are compact. These assumptions ensure that the equations of motion

pr = _VqH(Pz, q1), qr = va(pta qr)

define a global C' Hamiltonian flow ¢! (p,q) = (p:,q:) which preserves the energy,
H o ¢}, = H, and Lebesgue measure on R” @ R" (Liouville’s theorem).

To drive this system out of equilibrium, an external non-Hamiltonian force F'(q) is applied.
To prevent it from heating up, the energy supplied by this force is removed by a thermostat
(the so-called Gaussian thermostat). This leads to the modified equations of motion

P =—VyH(p:, q;) + F(q) — O(q;, p1), qr = VyH(p:, q1),
where the thermostating force is given by

_F(q)-V,H(p.q)
IV,H(p, q)|?

One easily checks that the flow ¢ generated by this system satisfies H o ¢’ = H and therefore
preserves the total energy. This flow, however, does not preserve Lebesgue measure and the
entropy production observable

o=V, -0(,p)

measures the local rate of phase space contraction.
Fixing E € Ran H we see that Gaussian thermostated systems are special cases of
differentiable dynamics with

M={({p,q)cR"@R"|H(p,q) = E}.

—-0O(p,q) =

VoH(p, q).

Two other well-known thermostating mechanisms are the isokinetic and Nosé-Hoover
thermostats. Models using these thermostats have been constructed to describe various
phenomena such as shear flows [ECM, CL], heat conduction [HHP, PH] and turbulent fluids
[Ga3, GRS]. They all have in common that the dynamics is described by a deterministic finite-
dimensional dynamical system on a compact manifold and are very convenient for numerical
studies [Ho, EM, Do].

A well-known model in this class is a Sinai billiard with an external electric field
[CELS1, CELS2, Chl, Ch2, Yo,RY]. General mathematical results concerning thermostated
Hamiltonian models can be found in [GC1, GC2, Gal, Ga2, Ru2, Ru3, Ru4, Ru5].

3.6.1. A microcanonical ideal gas out of equilibrium. 1In this section we consider an exactly
solvable thermostated system—a gas of N > 1 identical, non-interacting particles moving on
acircle. The phase space is RY x TV equipped with Lebesgue measure and the Hamiltonian is

H(L,0) = %|L|”.
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The flow ¢ is generated by the system

Lj=F—A(L)LJ’} G=1.....N). (320

Gj = Lj,
Here, F € R denotes the constant strength of the external forcing and —A(L)L; is the
thermostating force,
¢ 1« | <
_pt _ 1 _ L 2
ML) =F—, 0= ZLk, U= N;Lk. (3.21)

N k=1

The mean kinetic energy per particle u is constant under the flow ¢ and we consider the
dynamical system (M, ¢, w) where

M={(L,0)|u=¢€}~S"1xTV,

for some € > 0 and w is the normalized micro-canonical measure

1 N
w(f) = fjl;wxw fL.0)Swu—e)[]dL;db;.

j=1
The Cauchy—Schwarz inequality ensures that £ < u on M and the observable
e 1 | Ju— ¢
= ——10 _—
2 8 Ju+t

is well defined. One derives £ = y where u = Fe~'/?isaconstant. It follows that £ = (/e th &
which, once inserted in (3.21), allows to integrate the equations of motion (3.20) to obtain

0ir =60 + \/TE(L joch & — /& sh &) (arctg(sh &) — arctg(sh &)) + % log Zl; i‘: (3.22)
L, = Lioch ézh;:/g shéo | Jems, (3.23)
where & = &) + ut. The entropy production observable is
o =(N—1)-—the. (3.24)
Je

Assumptions (E1)—(E2) are satisfied in this model. Moreover, the map (L, 60) = (—L, 0) is
a time reversal for the flow ¢ and the measure w is TRI.
One easily computes

t h (N—=Da
exp(—a/ asds>=<c SO) .
0 ch&
Since the distribution of £ induced by the measure w is

T'(N/2)
JAT((N = 1)/2)

w(f(§)) =

/ F(E)(ch&)~ VD gg,

we conclude that
'(N/2)
VAT((N —1)/2)

e/(a) = log ( / N (ch&)~"W=DU= (ch(g + pur)) =N dé) . (325)
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The validity of the finite time ES-symmetry, ensured by proposition 3.5, can be explicitly
checked by noticing that

/m(chg)—(N_l)(l—a)(ch(é + )" NDe qe — /m(ch(g — )" V=DU=e) (o gy =N =D gg
= /w(ch(—g _ Ml))—(N—l)(l—ot)(Ch(_g))—(N—l)a dg

= /‘X’(Ch(é + 'ut))_(N_l)(l_a)(Chg)_(N_l)a d;;:

This example continues in sections 5.5.1 and 6.4.1.

4. Thermodynamics

4.1. Basic notions

Suppose that our dynamical system (M, ¢x, wx) depends on some control parameters X =
(X1, -+, Xn) € RY. One can think of the X ;’s as mechanical or thermodynamical forces
(affinities in the language of non-equilibrium thermodynamics) acting on the system. When
dealing with such families of systems, we shall always assume that (F1)—(F2), (C) and (E1)
hold for each system (M, ¢x, wx). The entropy production observable of (M, ¢x, wx) is
denoted ox. We shall also assume:
(T1) wy is ¢}, invariant.

We will write ¢’ = ¢, = wo, wy, = w,, etc, and refer to the value X = 0 as equilibrium.
Under assumption (T1) the entropy cocycle satisfies ¢! = ¢{; = Oforall# € R and consequently
o =o0y=0.

Definition 4.1. We call a family of vector-valued real observables ®x = @y, -, @;N)),
X e RY, aflux relation if, for all X,

N
ox =X By =) X;0f. (4.26)
j=1
In what follows our discussion of thermodynamics concerns a family of quadruples
(M, ¢x, wx, Px), where ®x is a given flux relation. In concrete models arising in physics,
physical requirements typically select a unique flux relation ®y (see section 4.4 for an
example). We will refer to @3{) as the flux (or current) observable associated with the force
X ;. Since oy = 0, if the map X +— o is smooth we can always pick the fluxes as

1
‘I>x=/ Voyly=ux du.
0

Remark. To simplify the notation, unless otherwise stated we shall always assume that
(M, ¢x, wx, ®x) is defined for all X € RY. In concrete situations (e.g. like in the class of
examples introduced in section 4.4), the systems may only be defined on a restricted range
of the physical parameters X, ..., Xy. This causes no difficulties—one can either trivially
extend the range of parameters to all of R" or indicate in each statement the range of parameters
to which they apply.

Our second general assumption concerns time reversal.
(T2) The dynamical systems (M, ¢y, wx) are time-reversal invariant and
Py oy = —Py.
This assumption implies that wy (®x) = 0 for all X.
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4.2. Finite time Generalized Evans—Searles symmetry

L L L
EXZ; A @X‘Yds= ; A CDXst""’; A (DXS ds .

where ®x, = ®y o ¢y, @g{g = @g{) o ¢%. The entropy cocycle can be written as

Let

y=1X-%.
Let P} be the law of X, i.e. the Borel probability measure on RY such that Py (f) =
wx(f(ZY)) for any f € BRY). Lett : RY — RV be the reflection t(s) = —s and
FIX =Pyor.

Proposition 4.2. If assumptions (T1)—(T2) hold, then for any t € R the measures Py and ?tx

are equivalent and
dP',
dPy

(s) = e X, (4.27)

The proof of this proposition is very similar to the proof of proposition 3.3 and we will omit it.

We shall call the universal relation (4.27) the finite time generalized Evans—Searles (GES)
identity. As for the finite time ES-identity, one can reformulate (4.27) in terms of the Laplace
transform of P)t(. To this end, consider the functional

g(X,Y) =log a)x(e’Y'fO/ ®x:dsy — Jog / e T dPL(s). (4.28)
One easily sees that it inherits many properties of the Rényi entropy e;(«). For fixed X itis a

convex function of ¥ € RY which satisfies g, (X, 0) = g,(X, X) = 0. The lower bounds
—tY - wx(X),

-1 (X -Y) ox(Z%)

hold, and in particular g, (X, ¥Y) > —oo. Most importantly, proposition 4.2 is equivalent to the
finite time GES-symmetry expressed by the following proposition.

&(X,Y) > {

Proposition 4.3. Under assumptions (T1)—(T2) one has
forany X,Y e RN and any t € R.
We again omit the proof which follows the same lines as the proof of proposition 3.6.

For later applications we recall the following elementary result (explicit in [LS2] and
implicit in [Gal]) which we shall call the symmetry lemma. We say that a function a(X, Y) is
C'Zinan openset O C RV x RV if all the partial derivatives dx,a, dy,a, dy,dy;a, dx,dy,a and
dy, 0x,a exist and are continuous in O.

Lemma 4.4. Let the function a(X,Y) be C'*? in a neighbourhood of (0,0) € RY x RN and
such that

aX,Y)=a(X,X -Y).
Then
dx, dy,a(X, ¥)|x=y—o = —10y,dy,a(X, ¥)|x=yo.
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Proof. The identity

Ix.a(X, Y)lx=0 = 0x,a(X, X — Y)|x=0 = (0x,a)(0, =Y) + (3y,a)(0, =Y)
leads to

dy;0x,a(X, Y)|x=y=0 = —0dy,0x,a(X, ¥)|x=y=0 — v, dy,.a(X, ¥)|x=y=0-

The equality of mixed partial derivatives dy,dx,a = dx, dy;a implies the statement. |

4.3. Finite time linear response theory

For any real or vector-valued observable f we set

l t
= / () ds.
t Jo

Finite time linear response theory is concerned with the first order perturbation theory w.r.t. X
of (®x);. Hence, in addition to (T1)—(T2) we assume:

(T3) The function X +— (®Py), is differentiable at X = O for all .

The finite time kinetic transport coefficients are defined by

L, = 3Xk<q)§{)>l|x=0'
Since
(ox) =X - (®x) = Y X;XiLju +0(X[*) >0, (4.30)
Jj.k

the real quadratic form determined by [L jx] is positive semi-definite. This fact does not
depend on the TRI assumption (T2) and does not imply that L j;, = Ly;;. We shall call the
relations

L Jkt = ijt’

the finite time Onsager reciprocity relations (ORR). As general structural relations, they can
hold only for TRI systems.
Another immediate consequence of equation (4.30) is:

Proposition 4.5. Suppose that (T1) holds and let ®y, S x be two flux relations satisfying (T3).
Then the corresponding finite time transport coefficients satisfy
L+ Ly = ijt + ijt-
If the finite time ORR hold, then L ji; = ij,.
In the next proposition we shall show that the finite time ORR follow from the finite time
GES-symmetry establishing along the way the finite time Green—Kubo formula.

Proposition 4.6. Suppose that (T1)~(T2) hold and that the function g,(X,Y) is C"? in a
neighbourhood of (0, 0). Then (T3) holds and.:
(1) The finite time Green—Kubo formula holds
1 [ .
L= 5/ w(d® o) <1 - 'j-') ds. 4.31)

t

(2) The finite time Onsager reciprocity relations hold,
ij] = ijt' (4.32)
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Proof. From the definition (4.28) we derive dy, g/ (X, ¥)|,_, = —t(®’),, and hence

; 1
Ly = axk(¢¥)>z|xzo = —;3xkangr(X, Y)|x=y=o.

The finite time GES-symmetry and the symmetry lemma yield

1 1 t t )
L = 579%, 078 (X, V)lx=r=0 = 5 /0 /0 o(@P ) dsy ds,.

Assertion (2) follows from the equality of mixed derivatives dy,dy, g = 9y, dy,&;. Since w is
invariant, we further get

1 [ . 1 rt ‘
Lju = —/ / 0@ yds ds, = _/ W@Vl (1 - ISTY 4.
2t 0 0 2 1 2 — t

which proves assertion (1). (|
We finish this section with two remarks.

Remark 1. The identity (@©dY)) 0 9 = d© &Y implies that

t
0

Remark 2. The covariance matrix D, = [D j,] of the vector-valued random variable

1 t
— b ds
7l

with respect to w is
! 3 i s
—t

The time reversal plays no role in (4.33). However, if the assumptions of proposition 4.6 hold
and L, = [L j;,], then obviously

D, =2L,.

These are the finite time Einstein relations which link the finite time covariance of fluxes in
equilibrium to the finite time kinetic transport coefficients. Together with proposition 4.6 they
constitute the finite time fluctuation—dissipation theorem. We shall return to this topic at the
end of section 5.2.

4.4. Example: thermally driven open systems

We consider a system S, with phase space Mg = R"™ & R"S and Hamiltonian Hs(ps, gs),
coupled to N heat reservoirs Ry, ..., Ry. The phase space and the Hamiltonian of the jth
reservoir are M; = R" @ R"™ and H;(p;, q;). The phase space and the Hamiltonian of the
composite system are

M=Ms®&M & - & My,
Ho(p,q) = Hs(ps.qs) + Hi(p1,q1) +---+ Hyv(pn, gn),

and we denote by m the Lebesgue measure on M.



Entropic fluctuations in statistical mechanics: I. Classical dynamical systems 717

The coupling between the system § and the jth reservoir is described by the Hamiltonian
Vi(ps, pj,qs, q;). The full Hamiltonian is

N

H(p,q) = Ho(p,q) +V(p,q) = Ho(p,q) + Y _ Vi(ps, pj. ds. q))-
j=1

We assume that H is C? and that the finite energy subsets {(p, ¢) | H(q, p) < E} are compact.
These assumptions ensure that H generates a global Hamiltonian flow ¢’ of class C' on M.
For any C! observable F,

dF, (H. F)

d[ - ’ &)
where { -, -} denotes the Poisson bracket, {F, G} =V,G-V,F - V,G -V, F.

The state of the combined system in which each reservoir is at thermal equilibrium at

inverse temperature 8; and the system S at inverse temperature 3 is the product measure

le_ﬂHS_Zj'V:l BiHi .
VA

Introducing the control parameters X ; = B — B;, we can rewrite it as

I _
wxy = ze
The dynamics does not depend on X and we set ¢, = ¢'. Note that wy is not invariant under
the flow ¢'. In order to satisfy hypothesis (T1) one modifies (4.34) as
1 _ 1 _ N oo
ox = e ~¢ PHAL jor XiHy iy (4.35)
With this definition, wy is the Gibbs canonical ensemble at inverse temperature 8 and is
invariant under ¢'. Moreover, if the reservoirs have a large spatial extension and the
coupling Hamiltonians V; are well localized, the states (4.34) and (4.35) describe the same
thermodynamics.
For the reference state (4.35) the entropy cocycle is given by

N N !
d
Cg( Z—ZXj(Hil—Hj)Z—ZXj/O gHjst,
=1 =1

and we have the flux relation

BH+ZT) X H (4.34)

B(Hs+V)=3 001 BiHj pyy —

N N
ox=—> X;{H.H}=) X;{H;.V}.
=1 =1
The flux observables do not depend on X and are given by @) = {H;, V}. Since
t
Hj —Hj = —/ oY) ds,
0

the flux observable & describes the flow of energy out of the jth reservoir. The time reversal
in physical systems is usually given by the map 9 (p, ¢) = (—p, q) and the system (M, ¢x, wx)
is then TRI provided H o ¢ = H.

We shall investigate a simple example of thermally driven open system in the remaining
part of this section, to be continued in sections 5.5.2 and 6.4.2.
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4.4.1. The harmonic chain. Quadratic Hamiltonians provide instructive examples of open
systems whose non-equilibrium characteristics can be computed in a closed from [LS1]. From
the mathematical point of view they are special cases of the Gaussian dynamical systems
discussed in section 9. Since the entropic fluctuations of such models are studied in detail in
the forthcoming paper [JLTP], for reasons of space we shall be brief.

For a finite subset ' = {n,n+1,....,n+k — 1} C Z we set M' = RT @ R and we
define
2, .2 2
M' 5 ’ — KT ’ _ Py t4; +(4]x_41x71) ’
(P.9) (P 9) XZj > >
where we set p, = g, = 0 for x ¢ I" (Dirichlet boundary conditions).

For some integer m > 0, let I's = {—m, ..., m} and set Hg = H's. This Hamiltonian
describes a finite harmonic chain. We shall couple it to two large heat reservoirs, R; and Rg, at
itstwoends. Forthis purpose,letn > mandsetI'y = {—n, ..., —m—1},T'r = {m+1,...,n}.
The Hamiltonians of the two reservoirs are

H; = H™, Hg = H'®.

The Hamiltonian of the composite (but still decoupled) system is
Hy=H" + H"S + H'* = H, + H + Hy.

Finally, define the Hamiltonian of the coupled system by
H — HTtUlsUrs

The coupling Hamiltonian is given by
V=H-Hy=V.+Vr=—q-m-19-m — qmlm+1,

and is independent of n. Since the equations of motion induced by H, and H are linear, the

associated Hamiltonian flows are linear group which we write as e’“0 and e’~, respectively.
Let us denote by &, hy, hy the real symmetric matrices corresponding to the quadratic

forms 2H, 2H;, 2Hg. The reference state wy is the centred Gaussian measure of covariance

Dy = (Bh — k(X))™",
where
k(X) =X h; & Xghg.

For B > O the set Og = {X € R? | Bh — k(X) > 0} is an open neighbourhood of 0. The
dynamical system thus obtained is well defined for X € Opg, is TRI, and clearly satisfies
assumptions (T1) and (T2).

It is a simple exercise in Gaussian integrals to show that assumption (E1) is satisfied for
X small enough. However, note that the flux observables

" = {HL, V} = —p-m-1q-m:

O = {Hg, V} = —pus1dm
and entropy production ox = X; &%) + X ®® are unbounded. Thus, hypothesis (E2) is not
satisfied.

Propositions 4.2 and 4.3 apply. Moreover, the functional g, (X, Y) reduces to a Gaussian
integral that can be computed explicitly

g(X.Y) = —3logdet(I — Dx(e"“ k(Y)e'* —k(Y))),
with the convention that log x = —oo for x < 0. Since the groups e'* is uniformly bounded,

the function (X, Y) — g,(X, Y) is real analytic on an open neighbourhood of (0, 0) in Og x R?
which is independent of ¢ € R and proposition 4.6 applies too.
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The validity of the finite time GES-symmetry, ensured by proposition 4.3, can be explicitly
checked as follows. Energy conservation, e’ he't = h, yields

Dy' — (e k(Y)e't —k(Y)) = Bh— k(X —Y) —e'“ k(Y)e'*
=X (Bh —k(Y) — e F k(X — Y)e E)e't
=e“ (D' — k(X — Y)eTF — k(X —Y)))e'~.

This relation and Liouville’s theorem, dete’* = dete’”” = 1, imply that g,(X,Y) =
g-+(X,X — Y). Finally, TRI yields g_;(X,X — Y) = g/(X, X — Y) and the finite time
GES-symmetry follows.

5. The large time limit

5.1. Entropy production

For any observable f we set
(Fe = Jim (f)y,

whenever this limit exists.

In this section in addition to (E1)—(E2) we assume:
(E3) The limit (o), exists and is finite.
The entropy balance equation yields the basic result:
Proposition 5.1. (o), > 0.

We shall say that the dynamical system (M, ¢, w) is entropy producing if it satisfies
(EP) (0)+ > 0.

The validities of (E3) and (EP) are dynamical problems that can only be answered in the
context of concrete models. In this section we shall discuss several structural results which
shed some light on these central issues.

Proposition 5.2. Suppose that
(0) = (o) + 007", (5.36)

ast — 0o. Then (o), = 0 implies that there exists v € S; N N, satisfying Ent(v|w) > —o0.

Proof. We shall use the properties of relative entropy listed in theorem 2.1. Suppose that
(0)+ = 0. The entropy balance equation and (5.36) yield

|Ent(aw; |w)| =

/O (@(0y) — (o))ds| = O(1).

Hence, there is C such that Ent(w;|w) > C forallt > 0. Set &;(-) = ¢! fot ws(-)ds. The
concavity and the upper-semicontinuity of the relative entropy yield Ent(®,|w) > C. By
compactness, there exists v € S and a net t, — oo such that &,, — v. It follows easily that
v € §; and the upper-semicontinuity implies Ent(v|w) > —oo. ]

Proposition 5.3. Letv € S; N N,,. Then v(c) = 0.

Before proving proposition 5.3, we need a preliminary result which is of independent
interest. In what follows we shall say that a sequence #,, 1 oo is regularif ), e~ < oo for
alla > 0.
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Lemma 5.4. Let t,, be a regular sequence. Then, for w-a.e. x,

1 In 1 Iy
lim inf - / og(x)ds > 0, lim sup t_/ o_s(x)ds <0. (5.37)
n JO n J0O

n—00 n—00

Proof. We will prove the first relation in (5.37), a similar argument yields the second.

Let X, = t;! ["o,ds and A = {x € M| liminf,_ X,(x) < 0}. We need to show
that w(A) = 0. Since A = U1 Ag with Ay = {x € M| liminf,_, o X,(x) < —1/k},
it suffices to show that w(A;) = O for all integers k > 1. Set A’ = A, |, and note that
(A7) = w_,;(1) = 1, for all t. The Markov inequality gives

o(fx € MIAT(x) >4 <A™,
for A > 0. Since A~ = e~ *X»_we have

w(fx e M|X,(x) < —a}) =o({x e M| AT"(x) > e"}) <e ™.
Hence,

D o(x € M| X, (x) < 1/k}) < oo,

and the Borel-Cantelli lemma yields that w (A;) = 0. O
Proof of proposition 5.3. By the ergodic theorem, there is & € L' (M, dv) such that

n—»oon

1 n
lim —/ oys(x)ds =0 (x),
0

for v-a.e. x. Since v is invariant one has v(o) = v(¢). Since v is normal w.r.t. w, lemma 5.4
implies that v(o) = 0 and the statement follows. O

Corollary 5.5. Suppose that S; N N, # @ and that there exists a sequence t,, 1 0o such that

L [
lim —/ oy(x)ds = (o),
0

n—o00 tn

for w-a.e. x. Then {c), = 0.

Proof. Let v € S; N N,,. Then
1[0
(o)y =V (lim —/ os(x) ds> =v(o)=0. O
n=>00 Iy Jo

The results of this section establish that, under very general conditions, the dynamical
system (M, ¢, w) is entropy producing iff S; N A, = @.

5.2. Linear response theory

Consider a family (M, ¢x, wx, ®x) satisfying (T1), (T2) and (T3). In this section we are
interested in the large time limit of the time averaged expectation values of individual fluxes
and validity of the linear response theory. In addition to (T1)—(T3) we assume:

(T4) The limit (®x), exists for X small enough and is differentiable at X = 0.
(T5) w (@R DY) = 0@t~ ast — oo.
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The verification of (T4) and (T5) is a dynamical problem that can be answered only in the
context of concrete models. (T2) and (T5) imply that w(®@® dY) = O(t~') ast - —o0.
The kinetic transport coefficients are defined by

Ly = dx, (2 )+ | x=0. (5.38)

Since (ox)y = Z_,‘ X j(®¥))+ > 0, the real quadratic form determined by [L j;] is positive
semi-definite.
The kinetic transport coefficients satisfy the Onsager reciprocity relations (ORR) if
Ljx = Lyj, (5.39)
and the Green—Kubo formula holds if

1 [ .
Lﬂ=—/ w(@P o) ds, (5.40)
2 )

where, unless otherwise specified, [* = lim,_ o I .- Note that (5.40) = (5.39).
The finite time linear response theory leads to a natural axiomatic program for the
verification of (5.39) and (5.40) based on the following.

Proposition 5.6. Suppose that (T1)—(T5) hold. Then the following statements are equivalent:

(1) The Green—Kubo formulae (5.40) hold.
(2) lim; 00 Ljis = L ji.

Proof. Set
1 [ )
F(@t) = 5/ w(@P o)) ds,

t
and note that

L a®a) Is| L
Liw==] o@Y0o)|1—-—|)ds=-[ F(s)ds.
2J) ‘ t t Jo

By the fundamental property of Cesaro’s mean, (1) = lim,_, o F(#) = Lj; = (2). On the
other hand, hypothesis (T5) and Hardy-Littlewood’s Tauberian theorem (see e.g. [Ko]) yield
Q)= lim_o F(t) = Ljx = (1). O

We would like to add several remarks regarding proposition 5.6.

Remark 1. Finite time linear response theory requires the minimal regularity assumptions
(T1)—(T3), and in particular no ergodicity assumption. It is valid in practically all models of
interest. Assumption (T4) states that the basic objects of linear response theory are well defined
(existence of the L j;’s) and is of course necessary to have a meaningful theory. Condition (2)
of proposition 5.6 can be reformulated as

ox, (Jlim (@),

—00

= lim (axk (@),

X=0 t—00

x=0> : (5.41)

i.e. as an exchange of the two limits # — oo and X — 0. Even though the existence
of the improper integral in (5.40) does not require any decay of the correlation function
t > o(®®dY)), assumption (T5) provides the minimal decay assumption which ensures that
1 [ ‘
lim L, = lim -/ w(@P o) ds.
t—o00 t—o0 2 J_,

Note, however, that assumption (T5) is needed only for the Green—Kubo formula and that
condition (2) automatically implies ORR. Assumptions (T4) and (T5) are ergodic in nature
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and are typically difficult to verify in physically interesting models. A particularly delicate
aspect is differentiability of the function X +— (®y),.

Remark 2. The proposed program for the derivation of linear response theory is in a certain
sense minimal. On physical grounds one would like to have an additional estimate

(®Px) = LX +Er(X, 1), (5.42)
where the error term satisfies

. |Er(X, 1)|
lim sup ———— =
X—=040 |X]

’

with the rate of convergence/range of parameters that allow to draw physical/numerical
conclusion from (5.42). This point is related to van Kampen’s objections against linear response
theory [Ka, KTH], see [CELS2] for a discussion.

Remark 3. In some models the following well-known result (the multivariable Vitali theorem)
can be effectively used to verify (5.41) (see [JPP]). Let I. = {X € R"||X| < €} and
D.={X eCV||X]| <e€}.

Proposition 5.7. Forallt > 0 let F, : D, — C be an analytic function such that

sup |F(X)| < o0,
XeD,,t>0

and assume that
tlim F,(X) = F(X), (5.43)
—00

exists for X € I.. Then the limit (5.43) exists for all X € D, and is an analytic function on
D.. Moreover, as t — 00, all derivatives of F, converge uniformly on compact subsets of D.
to the corresponding derivatives of F.

We shall point out some mathematical intricacies regarding the interchange of the limit
and derivative in (5.41) on a simple example in section 8.3.

Our final topic in this section is the fluctuation—dissipation theorem (recall its finite time
counterpart discussed in remark 2 of section 4.3).

Definition 5.8. Suppose that (T1)—(T4) hold. We shall say that the fluctuation—dissipation
theorem holds for (M, ¢x, wx, ®x)) if:

(1) The Green—Kubo formulae (and hence the Onsager reciprocity relations) hold for the
kinetic transport coefficients L = [L j].

(2) The central limit theorem holds for ® = (®W, ..., @MYy wrt. (M, ¢, w) with covariance
matrix

D =2L, (5.44)

i.e. for any Borel set B C RY,

1 t
lim eM | — P,ds € B = B),
o ({rem | G2 [ oares]) =

where (up is the centred Gaussian measure of covariance D on R".
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Remark. The celebrated Einstein’s relations (5.44) link equilibrium fluctuations to kinetic
transport coefficients.

Just like proposition 5.6, the fluctuation—dissipation theorem is ‘forced’ by its universally
valid finite time counterpart. With regard to the proof of the central limit theorem, we mention
the following result of Bryc [Bry]. D, and I, are as in proposition 5.7.

Proposition 5.9. Assume that (T1) holds. Suppose that for some € > 0 the function
8t 0,Y)= log a)(efY'f(; q)de)

is analytic in D, satisfies

1
sup ;Igz(O, Y)| < o0,

YeD.,t>1
and that
1
lim ;g,(O, Y) (5.45)
11— 00
exists for all Y € I.. Then the central limit theorem holds for ® = (®W1 ... &™) w .

(M, ¢, w) with covariance matrix

t
Djy=lim | w(@®ol) (1 — ﬂ) ds. (5.46)
t—00 _t t

Remark. If ®) € L*®(M, dw), then the function Y > g,(0, Y) is real analytic. The location
of the complex zeros of the entire analytic function Y +— w (e‘y'for ®:dsy determines the region
of complex plane to which g;(0, Y) extends analytically. If in addition (T2), (T3) and (T5)
hold, the existence of the limit (5.46) implies that

: 1 = k) () 1
lim L, = - (@ ®/)ds = =Dji.
M=o : 2

t—00

The fluctuation—dissipation theorem is the pillar of non-equilibrium statistical mechanics
in the regime where the thermodynamic forces are weak. The far from equilibrium case is
discussed in the next section.

5.3. The Evans—Searles fluctuation theorem
We start by recalling some basic facts of the large deviation theory (see, e.g., [DZ, El]).

Definition 5.10. A vector-valued observable f = (fV, ---, f™)) satisfies a large deviation
principle w.rt. to (M, ¢, w) if there exists an upper-semicontinuous function I : RY —
[—o0, 0] with compact level sets such that for all Borel sets G C RN we have

1 1 [
sup I(Z) < liminf—loga)({x eM { —/ f:(x)ds € G})
ZeG oo 1 ! 0

1 1!
< limsup — logw ({x eM ‘ —/ fs(x)ds € G}) < sup I(Z). (5.47)
t—oo I t Jo ZeG

where G denotes the interior of G and G its closure.

The following standard result goes under the name of Gartner—Ellis theorem and will be
used repeatedly, see, e.g., [El, DZ] for a proof.
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Proposition 5.11. Assume that the limit
.1 — [y Y-fsds
h(Y) = lim —logw(e™ Jo " 7=%)
t—00

exists in [—o0, +oo] forall Y € RN and is finite for Y in some open neighbourhood of 0 € RY.

(1) Suppose that h(Y) is differentiable at Y = 0. Then, the limit
1 t
(fle=lim — | w(fs)ds,
t—o00 t 0

exists and (f), = —Vh(0). Moreover, for any regular sequence t, one has

im ~ [ £@)ds = (),

m»&)% 0

for w-a.e. x.
(2) Suppose that h(Y) is a lower semicontinuous function on RY which is differentiable on
the interior of the set D = {Y € RY | h(Y) < oo} and satisfies

lim |VA(Y)| = oo,
DaY—Y,

for all Yy € 0D. Then the large deviation principle holds for f w.rt. (M, ¢, w) with the
rate function

I(Z) = inf (Y -Z+h(Y)),
YeRN
i.e. —1(Z) is the Legendre transform of h(—Y). In particular, I (Z) is concave.

Remark 5.12. The conclusion of part (2) holds in particular if () is differentiable on R".
There are other (local) versions of Gartner—Ellis theorems that are useful in applications.
Suppose, for example, that the function A(Y) is finite, strictly convex and continuously
differentiable in some open neighbourhood B C R¥ of the origin. Then part (1) holds and
a weaker version of part (2) also holds: the large deviation bounds (5.47) hold provided the
set G is contained in a sufficiently small neighbourhood of the mean (f), (see lemma XIII.2
of [HH] and section 4.5 of [DZ]).

Let (M, ¢, ) be a TRI system. Recall that
e, (@) = logw(e oo dsy,
We suppose:
(ES) The Evans—Searles functional (ES-functional for short)

1
R>at+ e(a) = lim —¢,(a) € [—00, 0],
t—oo t
exists.
Propositions 3.4 and 3.5 yield the basic properties of the ES-functional :

Proposition 5.13.

(1) e(a) is a convex function of a.
(2) It satisfies the ES-symmetry

e(@) =e(l — ). (5.48)



Entropic fluctuations in statistical mechanics: I. Classical dynamical systems 725

(3) e(0) =e(1) =0,
e(a) <0 if ¢ € [0, 1],
e(a) >0 otherwise.
(4) It satisfies the lower bound
(o) > ! ! > (5.49)
e(@) 2 | |o 7 > .

with
¥* = limsup w(X").

—>00

In particular, if (E3) holds then ¥* = (o).

We emphasize that the ES-symmetry (5.48) is an immediate consequence of the finite time
ES-symmetry.
Using proposition 5.11 we obtain

Proposition 5.14.

(1) Suppose that e(«) is differentiable at o« = 0. Then (E3) holds and (o), = —e’'(0).

(2) Suppose that e(a) is differentiable for all o« € R. Then the large deviation principle holds
for the entropy production observable o w.r.t. (M, ¢, w) with the concave rate function
1(s) = inf,cr(sax + e(a)). Moreover

1(s) = s+ I(—s). (5.50)

Proof. We only need to prove (5.50). Using (5.48) we have
I1(s) = inf(sa + e(@)) = inf(s(1 — &) + e(l —)) = s +inf(—sa +e(®)) = s+ [(—s). U

Relation (5.50) is called the ES-symmetry for the rate function 1 (s).
Consider now a family (M, ¢x, wx, ®x) indexed by X € RV and satisfying
assumptions (T1), (T2) and (T3). We assume:

(GES) The Generalized Evans—Searles functional (GES-functional)

§(X, Y) = lim ;gt(X, Y),
exists forall X, Y.
g(X,Y) is a convex function of Y and the finite time GES-symmetry implies that
gX,Y)=¢g(X, X -7).

We shall refer to this relation as the GES-symmetry.

Proposition 5.15.

(1) Suppose that Y — g(X,Y) is differentiable at 0. Then (T4) holds,
(®x)+ = —Vyg(X, Y)ly=o,

and if t, is a regular sequence, then

e
lim ~ / By (1)ds = (@),
0

n—0o0 f,

for wx-a.e. x.
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(2) Suppose that Y +— g(X,Y) is differentiable for all Y. Then the large deviation
principle holds for the flux observables w.r.t. (M, ¢x, wx) with the concave rate function
Ix(s) =infycrv (Y -5 + g(X, Y)). Moreover

Ix(s) = X - s+ Ix(—s).

(3) Suppose that g(X,Y) is C"2 in a neighbourhood of (0,0). Then the kinetic transport
coefficients are defined and satisfy the Onsager reciprocity relations.

(4) In addition to the assumption of (3) suppose that (TS) holds and that for some € > 0,

sup llg,(O, Y)| < o0. (5.51)
YeD.,t>1
Then the fluctuation—dissipation theorem holds for (M, ¢x, wx, ®x).

Proof.

(1) and (2) are immediate from proposition 5.11 and the symmetry of Ix(s) is proved as in
proposition 5.14.

(3) By assertion (1), ("), = dy,g(X, ¥)lyo, hence the GES-symmetry and the symmetry
lemma yield

1
Lj = 0x,0y,8(X, ¥)|x=y=0 = —an, I, 8(X, ¥Y)|x=vr=0. (5.52)
Since the partial derivatives on the right-hand side are symmetric in j, k, we have

L = Ly;j.
(4) From (5.52) and the fact that

1 ! » |s|
By, 108 810, Vlyzo = / @901 - S as,

t
we see that the Green—Kubo formula holds iff the limit and the derivative in the expression

1
y,0y,8(0, Y)|y=0 = 9y, dy, tllglo ;g,(O, Y)ly=o (5.53)
can be interchanged. This is ensured by the assumption (5.51) and proposition 5.7.
Similarly, proposition 5.9 yields the CLT. O

We shall say that a given TRI model satisfies the Evans—Searles fluctuation theorem if
the respective functionals e(a)/g(X, Y) exist and are differentiable/C!2. It follows from
propositions 5.14 and 5.15 that the Evans—Searles fluctuation theorem can be interpreted as an
extension of the fluctuation—dissipation theorem to the far from equilibrium region.

Remark 1. The sufficient and necessary condition for the validity of the Green—Kubo formula
is that the limit and the derivative in the formula (5.53) can be interchanged. Assumption (5.51)
provides a convenient criterion for validity of this exchange which will be satisfied in several
examples that we will consider. In general, however, there may exist other mechanisms that
will lead to the justification of (5.53), see, for example, the proof of the fluctuation—dissipation
theorem for the Sinai billiard with small external forces in [CELS1, CELS2, Chl, Ch2].

Remark 2. It is instructive to compare (3) and (4) with the finite time based derivation of the
linear response theory presented in section 5.2.

Remark 3. In some models where the entropy production observable is unbounded the ES-
functional e, (c) is finite only on an open interval containing [0, 1]. In this case one can still
formulate a meaningful Evans—Searles fluctuation theorem, see section 9 for an example. The
same remark applies to the GES-functional (see section 5.5.2).
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5.4. The resonance interpretation of e(«)

Under suitable regularity conditions, the identity
(o) =log(1,e'tr1) (5.54)
for p = 1/« leads to identification of e(a) with a resonance of the L”-Liouvillean L . In this
section we state two general results regarding this identification.
Since sp(L,) C {z||Rez| < m,}, the resolvent (z — Lp)_l is a well-defined operator
valued function analytic in the half-plane Re z > m . Note that |e(«)| < m,, and that

oo
(L, =Ly 'D :/ e N1 gy,

0
forRez > m,.

In the next two propositions o € R is fixed and p = 1/c.
Proposition 5.16. Suppose that for some y > 0 and ¢ € R,
e(a) =te(@)+c+ 0™,
ast — oo. Then the function z — (1,(z — L p)_l 1) has a meromorphic continuation from

the half-plane Re z > m,, to the half-plane Re z > e(a) — y and its only singularity there is
a simple pole at 7 = e(«) with residue ‘. Moreover, for any € > 0 and j € {0, 1},

sup / I(1, (x +iy — L) 217 dy < oo,
[yl>€

x>e(a)—y+e€
This result has the following converse:

Proposition 5.17. Suppose that the function z — (1,(z — L 1,)’11) has a meromorphic
continuation from the half-plane Rez > m, to the half-plane Rez > e(a) — y for some
y > 0 and that its only singularity there is a simple pole at z = e(a). Suppose also that for
some € > 0 and any j € {0, 1},

sup / I(1, (x +iy — L)’ 21)[7* dy < 0.
[y|>€

x>e(@)—y
Then

e;(a) =te(@) +c+ 0™,
ast — oo.

The proofs of propositions 5.16 and 5.17 are standard (see [JP3]) and for reasons of space
we will omit them.

After introduction of a suitable transfer operator the resonance interpretation of g(X, Y)
is very similar.

In the discrete time case (recall (3.19)) instead of the resolvent (z — L p)_1 one considers

R(z) = Ze*“(l, unl).
n=0

Propositions 5.16 and 5.17 hold in the discrete case after obvious modifications.

The reader familiar with classical results in spectral theory of Ruelle transfer operators
[Bo2,Rul,Bal,BKL, GL1, GL2, Ba2, Ba3] might be surprised at our insistence on the Hilbert
space framework. Itis, however, precisely in this framework and through the link with Tomita—
Takesaki theory [BR] that Ruelle transfer operators (L”-Liouvilleans) naturally extend to the
non-commutative setting. The Banach space framework, which is dominant in the classical
presentations, emerges through the complex spectral deformation technique which is a natural
tool to study resonances of the L”-Liouvilleans in the non-commutative setting (see [JP3] for
the case p = 00).
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5.5. Examples

5.5.1. The microcanonical ideal gas. In this section we investigate the large time limit in the
example of section 3.6.1. For F # 0 it follows from equation (3.24) that

lim o, = (N — 1)m
=00 ! \/E
holds for w-a.e. (L, 0) € M, hence

(o) = (N — 1)% > 0. (5.55)

The generating function (3.25) can be expressed in terms of the associated Legendre function
P as

2 \WE
@t(O[) = log F(N/Z) (M) P(N_l)la_l/2|_1/2(chut) .

From the asymptotic behaviour for z — +00 (see, e.g., equation (8.766) in [GrRy])
1 F'(n+1/2 r(—n-1/2
( (n+1/2) 22)" + ( /2)

1

YT\ +n—m) T(—n —m)
we obtain the ES-functional
.1 1
e(@) = lim ;ez(oz) =—(0)+ (5 —|o— ED .
This function is not differentiable at « = 1/2. However, it is differentiable near « = 0, we
conclude that the entropy production observable satisfies a (local) large deviation principle
with rate function

P"(z) = (22)_”_1> (1+0(@z7%),

—0 if|s| > (o),
I(s) =1, .
(s =Ao)y)  ifIs| < (o),
near its mean value (o).
With F as control parameter, we have the flux relation o = F (N — 1)e~!/?th&, and hence
the flux observable
N -1
Je
From equation (5.55) we conclude that (®), = (N — 1)e~!/2sign F is not differentiable at
F = 0 and linear response theory fails for this model. We remark that the finite time Green—

Kubo formula reads
1! s t 2
== w(PP) (11— — ) ds = —w(P?)
oo 20 t 2

L, = 0p (%/ w(Dy) ds)
0

(N — 1) ¢t
N 2
and that L, diverges as t — 0o.

® = thé.

5.5.2. The harmonic chain. We continue with the example of section 4.4.1. We again omit
the details of the calculations which the interested reader may find in [JLTP].
Since the reservoirs in section 4.4.1 are all finite, one has

L[ 1 .
(@E/0), = lim — | wy(®)ds = lim 5w (Dx (kg = e'“" hy re'c)) = 0.
—00

t—oo t 0

In particular, (ox); = Xz (®D), + Xz(®®), = 0.
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To get a non-vanishing entropy production, we must perform the thermodynamic limit
of the reservoirs (i.e. take n — oo keeping m fixed) before taking + — oo. We shall not
be concerned here with the existence of a limiting dynamical system. However, it should be
clear from our discussion that the limiting dynamical system exists as a special instance of the
Gaussian dynamical systems of section 9. In the following, we denote the dependence on n of
various objects of interest by the superscript ™.

The phase space of the composite system has a natural embedding in the real Hilbert space
H = Z%(Z) ® ED%(Z). We denote by H = H; @ Hs @ Hg the decomposition of this space
corresponding to the partition

Z={xel|lx<-m}UxeZ| —m<x<mjU{x eZ|x>m},

and by p;, ps, pr the corresponding orthogonal projections. The operators 7, h(L”), h%l) and
k" (X) have strong limits in this Hilbert space as n — 0o. We shall denote these bounded
self-adjoint limits by &, h, hg and k(X). For example

I 0
-1i (n)z =
it =h <o I—A)’

where A is the finite difference Laplacian on ¢>(Z)

(Au)x =Ux—1 — 2”x tUysl.
In the same way, the generators 58”), L™ as well as their adjoints 5(()")*, L™* have bounded
strong limits Loy, £ and L, £*. It follows that

LW L

. @ )
s-limefo = efbo, s-lime e~

n—oo n—oo
and similar relations for the adjoint groups hold uniformly on compact time intervals.
Denote by ¢ /r the finite rank self-adjoint operator associated with the quadratic form
2®L/R) (recall that it does not depend onn). ForY = (Y, Yz) € R?set¢(Y) = Y ¢, +Yro.
It follows from

t
e [ e L 4
e L k™ (7 £ — k™ () = LY b (V)e £ d
0

that

t
lim £ k™ (v)e't” — kW (y) = £ k(Y)e't — k(Y) = — f e p(Y)e'E ds
n—o0 0

holds in the trace norm for any finite t € R. Since (82" —k™ (X))~! is uniformly bounded and
s-lim(BA™ — k"™ (X)) = (Bh — k(X)) 7",
n—oQ

we conclude that
lim (BA™ — k™ (X))~ (e F" k™ (v)e't” — k™ ()
n—o00

=- f (Bh — k(X)) 'e“ ¢ (Y)e'“ ds
0

holds in trace norm. This finally yields

1 ! N
g (X, Y)=lim g™ (X,Y) = -3 log det (1 + / (Bh — k(X)) p(Y)er ds) ., (5.56)
n—00 0
with the convention that logx = —oo for x < 0.
We are now in position to perform the ¢ — oo limit. The wave operators

Wi = s-lim h'/2eFe™ng " (py + pr) = s-lim h~"2e'% e “n /> (p + pr), (5.57)
t—+oo t—+oo
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exist and are partial isometries from H; @ Hg to H. The scattering matrix S = W;W_ is
unitary on H; @ Hx and commutes with the self-adjoint operator Ly = hé/ 2£0h5 12, Denoting

by Hy & Hg = f © h(X) dX the spectral decomposition induced by L, and by S(1) the fibre
of the scattering matrix S acting on f(A), one has

g(X,¥) = lim ;g,(x, Y) = —ﬁ / log dety gy (I — (BI — X)~"(S(L)*YS(A) — ¥)) dax,

where X = X LpL + Xrpr. We note that this formula remains valid for arbitrary finite
harmonic system coupled to a finite number of infinite harmonic reservoirs, as long as the
coupling v = h — hy is trace class (see [JLTP]). The fluxes are given by

, 1 ~
(@D), = =0y, 8(X, Y)ly=o = o / troe (BT — X) "' (pj — S p;S(1))) dA,

which is a classical version of the Biittiker—Landauer formula (see [AJPP]).
Explicit calculation of the scattering matrix yields the result
(B—X1)— Yr =Y ))((B—Xg)+(Yr — YL)))
(B—XL)(B—Xr) 7

g(X,Y) = —K10g<
V5-1
27

For fixed X € R? such that max(X;, Xz) < B, the function Y > g(X, Y) is a real analytic
in the open strip {Y e R?| — (8 — Xg) < Y — Y, < B — X }.
By proposition 5.11

1 1
B—X. B—Xg

where T ,p = (B — X, /R)’1 denotes the temperature of the L/R reservoir. In particular,
entropy production

(@), = —(@P), =« ( ) = k(Ty — Tr), (5.58)

(X1 — Xgr)? iy (T, — Tr)?
(B—X)(B—Xr) T, Ty

is strictly positive provided T; # Tx. By proposition 5.11, the flux observables (&), dR))
satisfy a large deviation principle w.r.t. wy, with rate function

(ox)s = X (@), + X (@R, =

—00 if 57 +5g #0,
Ix(s, sR) = F(6) if s, = —sgp = ishe,
0

2
F(0) = —«k [2sh29 LIV log ((1 - 5—2) chz—)] ,
2 po B3 2

Bo=p — (XL +Xp)/2and § = (XL — Xg)/2.
Writing equation (5.56) as g,(X,Y) = —% log det(/ + A;), one easily shows that the trace
norm of A, is bounded by

Al < CIY el

where

while its operator norm satisfies

1A < ClYl,
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forany ¥ € C? and ¢t € R with a constant C depending only on 8 and X. It follows that the
bound (5.51) is satisfied for sufficiently small ¢ > 0. Finally, as a consequence of the local
decay estimate for the discrete Klein—-Gordon equation

|60, €7V < Coy 1712,
hypothesis (T5) is satisfied. It follows from assertions (3) and (4) of proposition 5.15 that the
fluctuation dissipation theorem holds.

The equality (®P), = —(®®)_ in (5.58) is a consequence of energy conservation.
More generally, for an open system as described in section 4.4, energy conservation implies
> (®W), = 0. For the same reason, the rate function I (s) takes the value —oo outside of the
subspace Yy ;8j = Oand the covariance matrix D in the central limit theorem is singular on this
subspace. One can easily avoid all these singularities by reducing the number of parameters.
In fact, one observes that the large time characteristics of the system do not depend on the
initial inverse temperature 8 of the small subsystem S. Indeed, the GES-functional g(X, Y)
only depends on the inverse temperatures of the reservoirs 8 — X ; (this is a general feature
of open systems). This suggests to fix the parameter 8 at the mean inverse temperature of the
reservoirs by restricting the parameters X to the hyperplane ) jXj=0o0f RN. This reduces
the number of parameters and consequently the number of associated fluxes by one. In our
simple example with two reservoirs, this amounts to set X; = —Xg.

Harmonic systems are very special in that the study of their dynamics can be effectively
reduced to an application of the trace class scattering theory. The more difficult case of a
finite anharmonic chain coupled to infinitely extended harmonic reservoirs has been analysed
in [EPR1, EPR2,EHI, EH2,RT1, RT2].

6. Non-equilibrium steady states

6.1. Basic notions

To discuss non-equilibrium steady states (NESS) we need several additional assumptions on
(M, ¢, w). The first is:

(NESS1) M is a complete separable metric space.

In this case it is natural to equip S with the topology of weak convergence, i.e. the minimal
topology w.r.t. which all the functionals

S3vr v(f), feCM)

are continuous. This topology is metrizable and S is a complete separable metric space. A
sequence v, € S converges to v iff v, (f) — v(f) forall f € C(M).

With regard to theorem 2.1, in (1) Br(M) could be replaced by Cr(M). (6) and (7) are
valid as formulated except that in (6) the convergent nets can be replaced with convergent
sequences.

S is compact iff M is compact. More generally, a set S C S is precompact (its closure is
compact) iff G is tight, i.e. forany € > Othereisacompactset K. C M suchthatv(K,) > 1—¢
forallv € G.

The remaining additional assumptions are:

(NESS2) ¢' is a group of homeomorphisms of M and the map (¢, x) > ¢'(x) is continuous.
(NESS3) 0 € C(M).
(NESS4) The set of states

S(w) = {%/0 wds |t > 1}

is precompact in S.
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We denote by S, (w) the set of limit points of G(w) as t — 00. S, (w) is non-empty and
w; € S, (w) iff there exists a sequence #, — oo such that, for all f € C(M),

Jim - / "oy (f)ds = . (f). (6.59)
0

n—o00 tn
Definition 6.1. We shall call the elements of S,(w) the NESS of (M, ¢, w).
Two basic properties of a NESS w, are:
Proposition 6.2.

(1) wy € S
(2) wi(0) 2 0.

Proof. The statements follow from relations (6.59) and (3.7). 0

Assumptions (NESS1)~(NESS4) naturally apply to a family (M, ¢x, wx, ®x) except that
in this case in (NESS3) one also requires that QD(){) e C(M).

Remark 1. In the study of specific models it is an important and often very difficult problem
to prove that S, (w) is a singleton, namely that there exists w, € S such that forall f € C(M),

t—oo t

lim ! ws(f)ds = o, (f).
0

Remark 2. The regularity assumptions (NESS2) and (NESS3) are made for simplicity of
presentations and can be relaxed, see sections 6.4.2 and 9 for examples.

Remark 3. The NESS property is related to the SRB property in dynamical systems, see [Ru2]
for more details.

6.2. The Gallavotti—-Cohen fluctuation theorem

Let (M, ¢, ) be a TRI system and let w, € S, (w) be given. Let

er(@) = logw,.(e™ Joosdsy

Note that e;, () is a convex function of the parameter « and that e, (@) > —atw,(0).
We suppose:

(GC) The Gallavotti—Cohen functional (GC-functional)
1
ei(a) = lim —e; (@)
t—o00 t
exists for all @ € R.
If the GC-functional satisfies
ei(a) = e (1 —a),
for all o, we shall say that the GC-symmetry holds. e.(«) is a convex function and the
GC-symmetry implies that e, (0) = e;(1) = 0, e;(@) < 0 for @ € [0, 1], and e; () = 0
fora ¢ [0, 1].
In comparison with the ES-symmetry, we remark that in general the relation e, () =
€;+(1 — o) does not hold for finite ¢t and that GC-symmetry may fail even in some very simple

models (see section 8.3). In contrast, whenever e(«) exists, the universally valid finite time
ES-symmetry e, (o) = e;(1 — «) implies that e(«) = e(l — «).



Entropic fluctuations in statistical mechanics: I. Classical dynamical systems 733

Proposition 6.3.
(1) Suppose that e, («) is differentiable at « = 0. Then (E3) holds and

1 1
(0)y = we(0) = tlim A w(oy)ds = —€,(0).
— 00 0

If in addition the GC-symmetry holds, then (o), = 0 iff e, (a) = 0 fora € [0, 1]. For any
regular sequence t,,
1 ty
lim — / og(x)ds = (o),
n—o0 f, 0

for wi-a.e. x € M. If (o), > 0, then w and w, are mutually singular.

(2) Suppose that e, (w) is differentiable for all o. Then the large deviation principle holds
for o w.rt. (M, ¢, wy) with the concave rate function 1. (s) = infycr (as + e (@)). If the
GC-symmetry holds, then

I.(s) = s+ I.(—s).

The last relation is called the GC-symmetry for the rate function I,.

Proof. The only part that requires a proof is the last statement in part (1). Suppose that
(o) > 0and let wy = v + 1y, V] K w, 12 L w, be the Radon—Nikodym decomposition
of w, w.rt. w. Since w, € Sy, assumption (C) and the uniqueness of the Radon—Nikodym
decomposition imply that v;, v, € S;. If v; is non-trivial, then corollary 5.5 implies that
(o) = 0, a contradiction. O

Consider a family (M, ¢x, wx, ®x), X € RV, satisfying (T1)—~(T2) and let wx, € Si(wx)
be given. Let

g&(X,Y) =log a)X+(e*Y'f¢; Pxsdsy
We suppose:
(GGC) The Generalized Gallavotti-Cohen functional (GGC-functional)

g+(X, ¥) = lim %gH(X, Y)
exists forall X, Y.
If the GGC—functional satisfies
g+(X,Y) =g+(X, X = Y),
for all X, Y, we shall say that GGC-symmetry holds.

Proposition 6.4.

(1) Suppose that Y — g.(X,Y) is differentiable at Y = 0. Then
t
(®x)s = lim — | wx(Px,)ds,
t—oo t 0

exists and (Px): = wx+(Px) = —Vyg.(X,Y)|ly—o. Mo