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This paper demonstrates the robustness of Lipschitz-regularized «-divergences as objective functionals
in generative modeling, showing they enable stable learning across a wide range of target distributions
with minimal assumptions. We establish that these divergences remain finite under a mild condition—that
the source distribution has a finite first moment—regardless of the properties of the target distribution,
making them adaptable to the structure of target distributions. Furthermore, we prove the existence and
finiteness of their variational derivatives, which are essential for stable training of generative models such
as generative adversarial networks and gradient flows. For heavy-tailed targets, we derive necessary and
sufficient conditions that connect data dimension, « and tail behaviour to divergence finiteness, that also
provide insights into the selection of suitable o:’s. We also provide the first sample complexity bounds for
empirical estimations of these divergences on unbounded domains. As a byproduct, we obtain the first
sample complexity bounds for empirical estimations of these divergences and the Wasserstein-1 metric
with group symmetry on unbounded domains. Numerical experiments confirm that generative models
leveraging Lipschitz-regularized «-divergences can stably learn distributions in various challenging
scenarios, including those with heavy tails or complex, low-dimensional, or fractal support, all without
any prior knowledge of the structure of target distributions.

Keywords: probability divergences; Lipschitz regularization; generative modeling; heavy tails; manifolds;
attractors.

1. Introduction

In generative modeling, the goal is to create new samples that resemble those from an unknown data
distribution by designing algorithms that minimize a probability divergence or metric between the
generated distribution and the target distribution. However, the diverse characteristics of real-world
data distributions—such as heavy tails, low-dimensional structures, manifold constraints, or fractal-
like supports—introduce significant challenges in the training of generative models. These challenges
are manifested as instabilities, reduced robustness and a need for specialized architectures, as standard
generative frameworks struggle to adapt to complex data structures. Addressing these issues is essential
for developing models that are not only accurate but also robust across a wide range of scenarios for the
target distribution.
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Features such as heavy-tailed distributions arise in various fields, including extreme events in
ocean waves [16], floods [35], social sciences [27, 43], human activities [29, 55], biology [30] and
computer science [46]. Learning to generate heavy-tailed distributions has been explored with generative
adversarial networks (GANs). However, GANs based on integral probability metrics (IPMs), such as
the Wasserstein-1 metric, may struggle to learn these distributions without additional tail estimation
strategies [1, 17, 23]. This limitation arises because the Wasserstein-1 metric between two distributions
becomes infinite when one lacks a finite first moment, and accurately estimating tail behaviour often
requires extensive data from that tail, which may be difficult to obtain. Consequently, capturing
discrepancies between distributions with a metric that remains finite, is stable to compute, and is less
sensitive to the need for extensive tail data is essential for stable and effective learning.

On the other hand, many empirical results suggest that real-world data, such as images, exhibit low-
dimensional structures [44]. While there are theoretical guarantees for GANS to learn distributions with
low-dimensional support [22, 28], recent works on flow-based models, such as continuous normalizing
flows (CNFs), neural ordinary differential equations (ODEs) and score-based diffusion models, often
rely on density assumptions [9, 32]. These models can struggle to learn low-dimensional structures
without additional regularization or specific architectures, such as autoencoders (see Section 7). This
limitation arises because their performance is typically evaluated using the Kullback—Leibler (KL) or f-
divergences, which require absolute continuity between probability measures. Thus, it is crucial to select
a divergence that remains flexible and inherently compatible with the structure of the data distribution.

In this work, we demonstrate that the Lipschitz-regularized «-divergence, as proposed in [4, 15], is a
suitable objective functional for generative modeling with minimal assumptions on the target distribution,
denoted by Q from now on. First, we revisit the definition of the Lipschitz-regularized «-divergence
between two distributions P and Q defined as:

Dg(PIQ) == sup {Eplyl—Eplfz(n1}, (1.1)
y €Lip; (R9)

where Lip; (R?) is the class of L-Lipschitz functions on R?; see more details in Section 3. In particular,
we show that the Lipschitz-regularized «-divergences are suitable for stably learning a broad range of
distributions from three perspectives:

* Finiteness. The objective of generative modeling using (1.1) can be formulated as min, Dé (PyllO),
where P, is the generated distribution parametrized by 6 and Q is the target distribution. Thus, the
divergence needs to be finite. On the contrary, an infinite or large divergence value can be an indicator
of the divergence of an algorithm (see Table G1 in Appendix G). We prove that these divergences
remain finite whenever the generated distribution has a finite first moment, with no assumptions
necessary on the target distribution Q. When both distributions have power-law-decay densities, we
provide sufficient and necessary conditions for the divergences to be finite. Notably, the Lipschitz-
regularized KL divergences require minimal assumptions on both the tails of the generated and the
target distributions.

» Existence of variational derivatives. To find the optimal parameter # in the optimization
min, Dé (Py1lQ), one often uses gradient-based algorithms. Formally, the gradient of Dé(PQHQ)
in terms of 6 can be evaluated as

SDL(P
VD5 (Py11Q) = / %(Pg(x»-vgpe(x) dx, (12)
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L
therefore it is essential that the variational derivative w is well-defined. We prove that these

divergences have well-defined variational derivatives for any target distribution Q, given P has a
finite first moment. This is a crucial property for stable optimizations in generative learning and the
associated gradient flows, and it illustrates that algorithms using this class of divergences can stably
learn distributions without extensive prior knowledge of the tail behaviour or density formulation of
the target. In contrast, those using divergences without Lipschitz regularization generally can fail to
learn (see Section 7).

¢ Convergence of empirical estimations. As distributions are only accessible through their finite
samples, it is important to know how fast the divergence between their empirical measures converges
to the true value of the divergence. We prove the first result of empirical estimations of this class of
divergences on R¥, and as a byproduct of the proof, we offer the first sample complexity bounds
for empirical estimations of the Lipschitz-regularized «-divergences and the Wasserstein-1 metric
with group invariance on R? with sub-Weibull assumptions. The key to these results is the Lipschitz
regularization, without which we cannot prove such bounds.

The rest of the paper is organized as follows. We review and discuss some related work in Section 2.
Section 3 provides background and motivation for the proposed divergences. Finiteness results, including
the variational derivatives and their gradient flow for the Lipschitz-regularized «-divergences are
presented in Section 4. Section 5 provides the first convergence rate for finite-sample estimations of
these divergences in RY. Based on the results and proofs from Section 5, in Section 6, we provide the
first sample complexity bounds for empirical estimations of the Lipschitz-regularized «-divergences
and the Wasserstein-1 metric with group symmetry in R¢. Numerical experiments are detailed in
Section 7 including synthetic heavy-tailed distributions, distributions on a low-dimensional manifold,
real keystroke data and trajectories from the attractor of the Lorentz system, which is known to exhibit
fractal properties. Finally, we conclude this paper in Section 8.

2. Related work

Generative models for heavy-tailed distributions. Although heavy-tailed distributions are common,
there are few results to date in their generative modeling, primarily using GANs. For example, [53]
generates heavy-tailed financial time series data by logarithmically transforming the data and then
exponentiating the output, which produces distributions whose tails follow lognormal asymptotic rather
than distributions with power-law tails considered in our paper. In a different approach, GANs are used
for cosmological analysis [17], sharing a similarity with Pareto GANs [23] in their use of a heavy-tailed
latent variable. However, both papers require accurate estimations of the tail decay rate for each marginal
distribution. Exterme-Value (EV)-GANSs [1] use neural network approximations of the quantile function
to encode the tail decay rate in an asymptotic sense, which is essentially also a tail estimation approach.
We note that the focus of our work is to devise appropriate divergences as objective functionals for
comparing and learning heavy-tailed distributions stably, without prior knowledge of the tail behaviour.

Generative models for distributions with low-dimensional structures. In [22, 28] it is rigorously
shown that IPM-GANSs are able to learn distributions with low-dimensional support. There are some
other generative models that learn high-dimensional distributions from the low-dimensional latent space
provided by auto-encoders [33, 51], such as Bidirectional GANSs [14], Variational Auto-Encoders [26]
and Generalized Denoising Auto-Encoders [3]. However, it is not clear if the low-dimensional latent
space matches the low-dimensional structure of the data distribution and no convergence guarantees
have been provided, and these results are largely empirical.
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Empirical estimations of divergences. [37, 45, 48] estimate f-divergences using various assump-
tions and estimators, and [13] considers in particular the «-divergences. However, these studies either
make additional structural assumptions or consider light tails or without establishing a convergence rate
of the estimation. Recently, [31, 34] studied the convergence rate of entropic optimal transport (OT)
and OT with smooth costs. While our proof of the convergence rate of the empirical estimations of
the Lipschitz-regularized «-divergences is inspired by these works, the structure inherited from the o-
divergences in our study requires different, non-trivial treatment due to the nonlinear and asymmetric
variational form, particularly as we consider even heavier tails. When the distributions are invariant to
some group actions, [ 10] shows that empirical estimations of the Lipschitz-regularized a-divergences and
the Wasserstein-1 metric enjoy a faster convergence using symmetry-informed estimators on bounded
domains of RY, and later [49] extends the result to closed Riemannian manifolds with group symmetry
only for Sobolev-IPMs that are symmetric.

Lipschitz-regularized divergences. The class of Lipschitz-regularized f-divergences was first
proposed in [15] in the context of Lipschitz-regularized KL-divergences with its first variation formula,
under the assumptions that both the source and the target distributions have finite first moments. Later,
[4] generalized it to the class of Lipschitz-regularized f-divergences and observed that GANs optimizing
Lipschitz-regularized f-divergences outperform those optimizing either the Wasserstein-1 metric or the
f-divergences in learning heavy-tailed distributions. In [20], under the assumption that Q has a finite
first moment, the gradient flows of the Lipschitz-regularized «-divergences were introduced, using the
variational derivatives to define a corresponding generative particle algorithm (GPA), outperforming
other generative models in scarce and high-dimensional data regimes. In this paper, we provide the first
theoretical explanations, not only for learning heavy-tailed distributions but also for learning distributions
with manifold or fractal support, essentially making the generative modeling agnostic to the target data
assumptions.

3. Background

Let Z(R?) be the space of probability measures on R A map D : PR x P2 (RY) — [0, 00] is called
a divergence on Z(R?) if

D(P,Q)=0 & P=Qec PR, (3.1

hence providing a notion of ‘distance’ between probability measures. In particular, the class of «-
divergences [2, 21], denoted by D,,, which is a sub-class of f-divergences [11], is defined as

D, (P|Q) i=/ Jo (d—P) dQ, ifP<Q, (3.2)
re - \dQ

where f,, (x) = m, witha > Oand ¢ # 1, and P < Q means P is absolutely continuous with respect
to Q. When P is not absolutely continuous with respect to Q, we write D, (P|Q) =

REMARK 1. Note that the «-divergences can be equivalently defined as D, (P||Q) = f f ( ) dQ, where
fa (x) = a(a 1) by noticing that f(f f )( )dQ = 0 for any P < Q. In the limiting case forfa (x)

x*—x
a—1 a(a—1)

fo () =3 (a 1), and simply mean to replace f,, in (3.2) by f(x) = xInx whenever we refer to o = 1.

when o — 1 we have lim, = xlnx recovering the KL divergence. In this paper, we use
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The a-divergence can be equivalently formulated in its dual form [4, 39] as

D,(PIIQ) = sup {Eply]l—Eplfy(»]1}, (3.3)
yeMly(®RY)

where .Z, (R?) is the set of bounded measurable functions and fo is the convex conjugate (Legendre
transform) of £,

a_l(a—l)mym1y>0+a(o)—_l), a > 1,

f;()’)z [ o

. B Pty (3.4)
ool + (@711 =) T DT — ) 1 @e O,

Compared to (3.3), the formulation of the Lipschitz-regularized «-divergences in (1.1) can be viewed as
imposing Lipschitz regularization on the space of test functions in the variational form of @-divergences.
In our work, we focus on the case when o > 1 or « = 1 (corresponding to the KL divergence). It has
been proved in [4] that the Lipschitz-regularized «-divergence defined in (1.1) has an equivalent primal
formulation

Dﬁ(PllQ) = inf {D,(Q) +L- W (P,m)}, (3.5)
neZ(R9)

where W, is the Wasserstein-1 metric. One can easily verify that DL satisfies the conditions for being
a divergence using (3.5). Equation (3.5) can be viewed as the infimal convolution between the «-
divergence and the Wasserstein-1 metric. Though (1.1) is more often used in generative modeling as
training objectives, its primal formulation is also theoretically very important. For example, we have
from (3.5) that

DL (P(1Q) < min{D,(P|Q),L- W, (P,Q)}. (3.6)

In practical tasks, such as in generative modeling, we estimate the divergence from finite samples of P
and Q, where the absolute continuity assumption in (3.2) typically no longer holds. Meanwhile, Dg; (P|lO)
is always finite if P and Q are discrete measures of finitely many points with possibly different support
since DL(P||Q) < L- W, (P, Q) < 0o by (3.6).

The following example shows that we can have a strict inequality in (3.6).

ExampLE 1. Let P and Q be distributions on R such that
—(2438) 1 !
px) = (14 68)x 1.y, g = 5105)«1 + ;leZ'

Then neither D, (P||Q) nor W, (P, Q) is finite for any o > 1,6 > 0, while Dé (P|lQ) < oo.

Proof. Since P is not absolutely continuous with respect to Q, we have D, (P||Q) = oo; applying
the cumulative distribution function formula for the one-dimensional Wasserstein-1 distance, it is
straightforward to see W, (P, Q) = oo as Q does not have a finite first moment. Consider the formula
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6 Z.CHEN ET AL.
(3.5) and in particular, we design the intermediate probability measure as
146 —(2+8
dp = (148)2"x 1 .

Then we have

00 ana(148) . —ad
(1 4 §)pe(+d)y—ad _ 1 ]
D = . = dx < oo,
(1 Q) /2 w@—1) S dr<oo
and
2 ry
W, (P,n) = / / (14 8)x~ @+ dxdy
1 J1
<[ 2 Y 1 2
+/ /(l—l—é)x’( +5>dx—/ (1 + 8)2!0x¢ +8)dx‘dy
2 1 2
2 00
:/ | —y*(”‘”dy—i—/ ’(1 _ )y g = 21+5y7(1+a))‘ dy
1 2
2 00
:/ 1 —y7(1+5>dy+/ Q" - l)yf(]J”s)dy < 00.
1 2
Therefore, Dé(PllQ) <D,(mllQ) +L-W(P,n) < oo. O

Example 1 is not a special example when D(I;[ (P||Q) is finite but neither D, (P||Q) nor W, (P, Q) is
finite. In fact, Dé can be applied to much wider situations. As we will see in Theorem 2 and its proof,
the Lipschitz regularization plays a key role.

For the rest of the paper, we denote by &7, (R?) the space of probability measures on R that have
a finite kth moment, k > 1 and we assume that k can be a non-integer; we also denote by & _, (R") the
space of probability measures on R that have a finite sth moment for any s < k.

4. Finiteness and variational derivatives of D%

In generative modeling, the goal is to approximate a target data distribution Q by a generated distribution
P,,, where g, is typically a neural net parametrization. A specific divergence between the target and the
generated distributions is often chosen as the loss function. We want to build the best approximation P,
of Q using the optimization of a probability divergence or metric:

g+ = arg min D (Py-0) ~ 0, 4.1)

where ¥ is a family of neural nets with certain constraints on the parameters 6. To optimize or minimize
this loss, it is essential to ensure that the loss function or divergence is finite. In Section 4.1, we first
demonstrate that when P has a finite first moment, Dé(PHQ) remains finite without requiring any
assumptions on Q. In Section 4.2, assuming P and Q have densities and tails, we provide necessary
and sufficient conditions for Dé (P||Q) to be finite.

GZ0Z 1890100 8z UO Jasn (8AljoBUl) 1Siaywy - spasnyoesse|y Jo AlIsIaAun Aq G969/ 28/8Z0B. v/ | /o[onJe/ierewl/wod dno olwspeoe//:sdyy Wwolj peapeojumoq
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4.1 Minimal assumptions on the target Q
We make the following assumption on P and Q for this subsection.

Assumption 1. Let P and Q be arbitrary probability measures on R?. In addition, we assume that P has
a finite first moment, i.e. P € &, (RY).

We show in Theorem 2 that Dg; (P||Q) is finite whenever P € &, (R?) without any assumption on Q.
This includes cases when Q has heavy tails, even without a finite first moment, and when Q is supported
on a low-dimensional manifold and does not have a density. Before stating and proving the theorem, we
need the following lemma for measures that are not necessarily probability measures that generalizes
Lemma A.12 in [10], and the proofs are the same in essence.

Lemma 1. For o > 1 and any non-negative measures P and Q defined on some bounded £2  R? with
non-zero integrals, I = Lip; (£2), we have

sup [/ V(x)dP—/fof[y(x)]dQ] = sup ’/ y(x)dP—/fJ[y(x)]dQ], (4.2)
vell /&2 2 yeZ LU 2

where

a—1
F =1y eLip,(2): I¥lly < (@— D! M + L -diam(£2) ¢ .
Jedo

Proof of Lemma 1. For any fixed y € I', define

h(v) =/ (y () +v) dP—/f;[)/(X) +v]do.
2 2

Since sup, ., ¥ (x) —inf .o ¥ (x) < L - diam(£2), interchanging the integration with differentiation is
allowed by the dominated convergence theorem:

H) = / dP —/ f;/(y +v)do,
2 2
where
) = (@— DaTyaTl . 43)

g a—1
Ifinf .oy (x) > (0 — ! (%) , then #'(0) < 0. So there exists some v, < 0 such that () >

h(0). This indicates the supremum on the left side of (4.2) is attained only if sup, .o y(x) < (a —
. a—1
H-! (%) + L - diam(£2). On the other hand, if sup, . ¥ (x) < 0, then there exists vy > 0 that
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8 Z.CHEN ET AL.

satisfies sup,. o ¥ (x) + vy < 0 such that
/ (¥ ) + vp) dP —/ faly @) +vyldQ = / (¥ ) + vy) dP
Q Q 2

> / y (x) dP
2

_ / ) dP — / £y (1 do.
2 2

This indicates that the supremum on the left side of (4.2) is attained only if inf, ., ¥ (x) > —L-diam(£2).
Therefore, we have that the supremum on the left side of (4.2) is attained only if ||y, < (@ —

a—1
-l (%) +L-diam(82). 0

THEOREM 2. Suppose @ > 1 (¢ = 1 refers to the KL) and P, Q satisfy Assumption 1, namely P €
P, (R?), then DE(P||Q) < oo.

The key is the Lipschitz regularization, without which the result will not be true; see the proof below.

Proof. We first prove the case when o > 1. Let I = LipL(Rd), and we have

DL(PIQ) = sup [/y(x)dP—/fJ[y(x)]dQ]

yel’

= sup [/ )’(X)dP—/ fJ[y(x)]dQ]
veLip(Ixll<R) Ul <R el <R

+ sup [/ V(X)dp—/ fJ[y(x)]dQ}
veLip (IxI=R) Ulx|=R =R

For I;, by Lemma 1, we have

I < c/ dP + (a_l(a —DaT1CaT + o Yo — 1)—1)/ dQ < o,
[lx[ <R |[x]| <R

ar a—1
where C = (@ — 1)! (“—R) +2LR.

llxl<R

Now we prove that I, < —+o00. Let M(y) = supj—g |y (x)|, where y € Lip; (|lx]| > R). We show
that there exists some M > 0 such that

I, = sup U Y (X) dP—/ fJ[V(x)]dQ}, (4.4)
ved Ulx|=R NES

GZ0Z 1890100 8z UO Jasn (8AljoBUl) 1Siaywy - spasnyoesse|y Jo AlIsIaAun Aq G969/ 28/8Z0B. v/ | /o[onJe/ierewl/wod dno olwspeoe//:sdyy Wwolj peapeojumoq
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where
¢ ={y eLip,(Ix| = R) : M(y) < M}. (4.5)

Indeed, we have for any y € Lip; (x|l > R),

/ y(x) dP—/ fely(01do
[l =R lxl=R
=[ - ywar— [ g
R<|lx||<2R R<||x||<2R
+/ y(x)dP—/ foly(0]1dQ
lIxl=2R [lx|>2R

s/ y(x)dP—/ f;‘[y(x>]dQ+/ y () dP
R<||x||<2R R<|x||<2R Ix[[>2R

< M(y)+LR) dP — / f;(M()/) —3LR)dQ
R<|lx||<2R R<||x||<2R
+ / (M(y) + LR + L |Jx]]) dP
[lxI>2R
=LR/ dP-I—L/ llx|| dP + M(y) dP
lx[[ >R [lx]|>2R [lx]| >R

—f¥M(y) — 3LR) do,
R<|lx[|<2R

where the last inequality is due to the fact that y (x) is L-Lipschitz and that for any x : ||x|| > R, we have
ly () — M(y)| < L(R+ ||x]l). The first two terms are finite and are independent of y since P € &, (RY).
For the difference between the last two terms, we have

lim  M(y) dP — fX(M(y) — 3LR) dQ = —o0,
M(y)—+oo IxI=R R<|lx]I<2R

since the exponent of x in f;; (x) is ;%7 > 1. This indicates that the supremum in /, should be taken over
y such that M(y) < M for some M > 0. Therefore,

I, = sup [/ Y ) dP—/ f;f[y(x)]dQ]
ved Ulki=R el =R

sup / y (x) dP
ye9 JIxlI=R

sup / (LR + L |Ix]| + M()) dP
Ix[| >R

ye¥

IA

IA

IA

/ (LR + L x|l + M) dP < oco.
lxlI=R
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10 Z.CHEN ET AL.

For o = 1, we bound /; using a similar Lemma B1 in Appendix B, and the bound for , can be derived
exactly in the same way as for > 1 by replacing f by f; . g

REMARK 2. Lemma 1 and Theorem 2 indeed work for any Lipschitz-regularized f-divergences, if f*, the

convex conjugate of f, is bounded below and superlinear, i.e. lim_, @

= o0.
RemARk 3. Theorem 2 has important implications in generative modeling that one can learn a data
distribution Q, without any prior knowledge of whether Q has heavy tails (even without a finite first
moment) or lies on a low-dimensional manifold such that QO does not have a density, whenever P has a
finite first moment, which is a very weak assumption; e.g. P can start with the Gaussian which is very
easy to sample from. In this sense, the generative learning task can be agnostic to the structure of the
data distribution using Lipschitz-regularized «-divergences as the objective functionals.

In what follows, we discuss the applicability of two generative models based on Theorem 2. Their
numerical implementations can be seen in several numerical examples in Section 7.

Lip-a-GANs GANs based on the Lipschitz-regularized «-divergences, abbreviated as Lip-o-GANS,
can be formulated as

inf D{(g,P|Q) = inf sup {E —Eolff 1. 4.6
inf D (5.P10) ge%yeupﬁw){ wrl] — Eglfz 1} (4.6)

where P is the initial source distribution, typically chosen as a Gaussian, and Q is the target data
distribution, and ¢ is the class of generators, and g, P is the push-forward measure of P by the map g.

Theorem 2 informs us that we can learn any probability measure Q if g,P € P, (R%); e.g. the generator
can be realized using a ReLU network with a Gaussian source distribution as P. Key to obtaining the
optimal generator is calculating the gradient of the loss relative to generator parameters, shown by the
chain rule (Regarding the chain rule calculation (4.7), we also refer to a related formal calculation in
Sec. 3.3 of [38]):

8DL(PIIQ)

o (Pe, () VPy, (x)dx, 4.7)

V,DL(P,, 10) = /

L
where w is the variational derivative or the first variation of Dé (P||Q), formally defined in

Theorem 3. Therefore, even with a well-designed neural network architecture for the generator g,,

L
a robust and well-defined variational derivative w"‘;ﬂ@g@ (x)) is crucial for stable and effective

optimization in the parameter 6 because it directly impacts the parameter gradient VeDé (P, Q) via
(4.7), otherwise computing VeDé (P, Q) could become unstable, leading to erratic parameter updates
that hinder convergence. While GANs use discriminators rather than explicit variational derivatives,
Theorem 3 shows that the finiteness of a variational derivative can provide mathematical insight into
GAN training. On the other hand, it is worth noting that, in light of (3.5), D% offers advantages over both
D, and Wy:

* The variational derivative does not exist in general for the Wasserstein-1 metric alone (as is used
in WGANS). For example, let P = ‘le and Q = 8x2 be two Dirac delta distributions centered at
points x; and x, in R with the usual distance function. Then the variational derivative in the sense of
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Theorem 3 has a discontinuity:

0 | v, ifx; —x, > 0,
iy _
de 1 —v, ifx; —x, < 0.

e Unregularized f-divergences (such as the KL-divergence) may yield large variational derivatives
when P, and Q do not overlap significantly, potentially causing gradient spikes. This instability can
lead to large, uncontrolled updates in 8, which might result in mode collapse or oscillations in GAN
training. In contrast, the Lipschitz-regularized «-divergences always have well-defined variational
derivatives by Theorem 3. For example, let P = .4 (u,0) and Q = .4 (u,, o) be two univariate
Gaussians with different means but the same variance. Then through a direct calculation, we have
Dy (PIlQ) = M so that 42 KdL;f 19 _ _(” 1-12) We can think of P and Q do not overlap
significantly if p; — Mz has alarge magnitude and ois small so that both Dy (P||Q) and its derivative
in wu; will have a large magnitude.

Gradient flows of DL. To further illustrate the significance of Theorem 2, we provide perspectives
from the Wasserstein gradient flows of D for a feasible distribution learning task. As a particular case of
the Lipschitz-regularized gradient flows proposed in [20], the Lipschitz-regularized «-divergences can
be used to construct gradient flows of the form

3,P, = div (P,Vw) : (4.8)
5P,

o - DL(P||Q) . o
for an initial source probability measure P and a target measure Q, where % is the first variation

of Dé (P||Q), defined in Theorem 3. This type of gradient flows was inspired by the gradient flows
in the 2-Wasserstein space of probability measures in [24, 42]. In [20], the first variation form of
Dé (P||Q) is proved under the assumption that both P,Q < WI(R‘I). In Theorem 3, we extend it to
the case when we only require P € &, (R?) but impose no assumptions on Q. This corresponds to
the condition in Theorem 2. The key to the extension is our Lemma E3 and the proof can be found in
Appendix C.

TueoreM 3. Under Assumption 1, namely P € &, (R?) and Q can be any probability measure,
we define

y* 1= argmax {EP[)/] — EQ[f;()/)]} ) (4.9)
yELipL(Rd)

where the optimizer y* € LipL(Rd) exists, and is defined on supp(P) U supp(Q), and is unique.
Subsequently, we can extend y* to all of R? as 7 with the same Lipschitz constant. Let p be a signed
measure of total mass 0 and let p = p, — p_, where both p, € &, (R) are non-negative and mutually
singular. If P + ep € &, (R?) for sufficiently small € > 0, then

lim — (DL(P+6/0IIQ) D(PIQ) = / 7 dp, (4.10)

€—>
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and we write

SDL(PIQ)

(P =7 @11

As aresult, Theorem 3 provides a reformulation of (4.8) as in [20]:

3P, +div(Ppt) =0, Py=Pe P, (RY),

* * 4.12
V= —Vyr, oyt = argmax {Bp ] - Eolff (1)1} “-12)
y€Lip; (RY)
Moreover, Theorem 2 in [20] tells us that if P, is sufficiently smooth, then we have
d
d—[Dﬁ(P,IIQ) =—1,(P,]0) =0, (4.13)
where I, (P,||Q) is the Lipschitz-regularized Fisher Information:
*[2
I,(PNIQ) = Ep, [| VY] .
Then for any T > 0, we have
T
DL(P;11Q) = D5(PyllQ) — / 1,(Pl|Q) ds < D5(Pyl|Q) . (4.14)
0

Therefore, both the finiteness and the variational derivative of Dg (PyllQ) are crucial for the divergence to
dissipate from the gradient flow perspective. While the convergence of the gradient flow is also important,
we do not address its partial differential equations (PDE) theory in this work, but rather its feasibility to
learn any distribution Q.

4.2  When P and Q have densities and heavy tails

In this subsection, we show that Dg is applicable to comparing heavy-tailed distributions, by providing
necessary and sufficient conditions that relate the tail behaviours of P and Q with «. This also provides
insights into the selection of suitable ¢ ’s. For this purpose, including cases when P ¢ &, (RY) —compare
to Theorem 2—we make the following assumptions on P and Q.

AssumpTioN 2. Let P and Q be distributions on R? whose densities p(x) and g(x) are absolutely
continuous with respect to the Lebesgue measure. However, P and Q are not necessarily absolutely
continuous with respect to each other on some bounded subset.

DEerINITION 1. For a pair of distributions (P, Q) on R?, we say they are of heavy-tail (8 1-B2), By, By > d,
if there exists some R > 0, such that

p) =< IIxI7Pt, g =< IIxlII ™2,
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for [x]| > R. That is, there exist constants 0 < ¢, | < Cpo and 0 < ¢

" SCyo such that

q,1
cpp 177 < p() <y Il 7P, ey X772 < gx) < ey P2,

for ||x|| > R.

Then we prove the following necessary and sufficient conditions on the tail behaviours of (P, Q)
for Dé (P||Q) to be finite. The proof makes extensive use of the variational formula (1.1) and Lipschitz
regularization and is provided in Appendix D.

THEOREM 4 (Necessary and sufficient conditions for Dﬁ < 00, @ > 1). Suppose o > 1, and (P, Q) are
distributions on R¥ of heavy-tail (8, 8,). Then Dé (P||Q) < oo if and only if one of the following two
conditions holds:

) d<‘31§d+1and/32—/31<@:1d;
(i) B; >d+ 1.

REMARK 4. We can relax the assumption in Definition 1 to allow different tail behaviour in different
directions as follows. Let £2; be a finite partition of the spherical coordinates [0, 71972 x [0, 27), where
each £2; has non-zero Lebesgue measure of [0, 71972 x [0, 2m). We can assume that p(x) < ||x||_ﬁlvk
and g(x) =< x| ~#2% on each §2. Then the Dé(PllQ) < oo if and only if B; ; and B, satisfy one of the
conditions of Theorem 4 on each §2,. The proof is the same as that of Theorem 4 constrained on each
£2,.. This relaxation can be adopted in the same way for Theorem 5 and Corollary 6.

For the Lipschitz-regularized KL-divergence, we have the following result whose proof can be found
in Appendix D.

THEOREM 5 (Necessary and sufficient conditions for DﬁL < 00). Suppose @« = 1 (the KL case), and
(P, Q) are distributions on R? of heavy-tail (8, f,), then DﬁL(PllQ) < oo for any B, B, > d.

ReMark 5. Since B, B, > d are the minimal assumptions for P and Q to be probability distributions,
Theorem 5 suggests that using the Lipschitz-regularized KL-divergence is the most robust choice, as it
can be agnostic to both the tails of P and Q, compared to the conditions in Theorem 4.

In cases where both P and Q lie on a low-dimensional submanifold, we have the following corollary.
The proof can be found in Appendix D.

CoroLLaRY 6 (Necessary and sufficient conditions on embedded submanifolds). Let .#Z be a d*-
dimensional smooth embedded submanifold of R? via an L*-Lipschitz embedding ¢ : RY" — RY with
M = (p(Rd*) for d* < d. Suppose (P, Q) are of heavy-tail (8;, B,) on Rd*, and letp , and g , be their
push-forward distributions on .#,i.e.p , = po ¢ land g n =490 ¢~ !. Then the Lipschitz-regularized
a-divergence between p , and g ,,, defined as

PEp ey = s (B, Iy1-E, 1z},
y €Lip; (R9)
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14 Z.CHEN ET AL.

is finite if and only if one of the following two conditions holds for & > 1:
(1) d* <B, <d*+1land B, — f; < B=L,
@) By >d* +1;
and D5(p_4\iq 4) < oo forany By, B, > d* ifa = 1.

RemARK 6. The Lipschitz condition on the embedding ¢ is necessary to guarantee that the tails of p
and g _, do not become heavier than those of p and g.

5. Lipschitz regularization implies finite-sample estimation of Dé on R?

In practice, we only have finite i.i.d. samples drawn from P and Q. We denote by X = {xy,...,x,} and
Y ={y,...,y,) theii.d. samples from P and Q, with empirical distributions P,, = % > 8, andQ, =
% j'.’: 1 8y_," respectively. Thus it is essential to provide guarantees for how fast DL (P,110,) converges
to DL(P||Q) in average. This type of convergence rate for the Lipschitz-regularized a-divergences has
been proved in [10] on bounded domains of R?. Here, we derive the first result of the convergence of
the finite-sample estimations on the unbounded domain R9, under certain tail conditions. The result for
d > 3 is stated below, with its proof deferred to Appendix E. The results for d = 1,2 can be found as

and in Appendix E.

Tueorem 7 (Finite sample estimation of DL on RY). Assume d > 3. Fora > 1, let P and Q be probability
measures on RY such that P € 3”<ﬁl_d(Rd) and Q € 9<ﬂ2_d(Rd), where B, > 3d and B, > 5d.

Suppose « satisfies % < By —dand % < % — 3. Then we have

C C
Exy [DL(PullQ) = DEPIQ)| <~ + —20. 5.1)

where C; depends on M e (P) and C, depends on M 24« (P), M 240 (Q), and M, dr (Q) for any 2 + O% <
—1 a—1 a—1

ry < % — 1. Here, we use M,.(P) to denote the rth moment of P. Both C; and C, are independent of
m, n, but they depend on L such that C;, C, — oo when L — oo.

Remark 7. The key to proving Theorem 7 is to leverage the Lipschitz condition of the test functions in
the variational form (1.1).

6. Finite-sample estimations of DL and W, with group symmetry on R4

Based on Theorem 7 and its proof, we are able to consider one special situation when the distributions
are invariant with respect to some group symmetry and to provide convergence results for the empirical
estimations of DL with group symmetry in R¢. Empirical estimations of divergences with group
symmetry have been studied in [10, 49] on bounded domains of R¢ or on closed Riemannian manifolds.
Here we provide the first sample complexity bound with group symmetry on unbounded domains, in
particular, for Dé and later for W, in this section. Before presenting the theorems, we first briefly review
the related concepts of group symmetry. Readers of interest can refer to [5, 10, 49] for more details. We
leave all the proofs for this section in Appendix F.
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A group is a set G equipped with a group product satisfying the axioms of associativity, identity and
invertibility. Given a group Gand aset 2° C R, amap6 : Gx 2 — % is called a group action on 2~
if Qg =0(g,:) : & — Z isan automorphism on 2" for all g € G, and ng oegl = ng,gl,\?’gl,gz eG.
By convention, we will abbreviate 6 (g, x) as gx. We make the following assumptions on G.

AssumptioN 3. For any g € G and x € RY, 0, (x) = A, - x, for some unitary matrix A, € R9*4,

8

A function y : £ — R s called G-invariant if y o 0, = v,Vg € G.Let I' be a set of measurable
functions y : 2~ — R; its subset, I';;, of G-invariant functions is defined as

FGzz{yeF:yOngy,VgeG}. (6.1)

On the other hand, a probability measure P € Z(Z") is called G-invariant if P = (Qg)ﬁP, Vg € G, where

(Og)ﬁP :=Po (Gg)_1 is the push-forward measure of P under Gg. We denote the set of all G-invariant
distributions on £~ as Z;(Z") 1= {P € P(Z') : Pis G-invariant}. For P, Q € Z;(Z"), [10] proposes
the following symmetry-informed estimator

DO, 10, = sup {Ep [y]—Eg [fi()]} (6.2)
yeLip¥ (R9)

for D{; (P||Q), where Lipf R4 c Lip 9 (R?) that consists of G-invariant L-Lipschitz functions. It is shown
in Theorem 4.6 in [5] that when P,,, Q, are replaced by P, Q € Z5(Z") in (6.2), we have Dé’G (PllQ) =
Dé (P||Q); i.e. the divergence value between P and Q does not change if the supremum is taken over
Lipg RY) ¢ Lip; (R%) when both P and Q are G-invariant.

In particular, we consider the case when both P and Q are sub-Weibull, defined as follows.

DEFINITION 2 (sub-Weibull distributions). We call a distribution P € Z2(R?) sub-Weibull, if

Prx~P: x| >r) < aexp(—brl/g) for allr > 0, for somea, b,6 > 0. (6.3)

ReMARK 8. Sub-Gaussian and sub-exponential distributions are special examples of sub-Weibull distri-
butions.

The following definition of intrinsic dimension is adopted from the capacity dimension from [25].

DerINITION 3. The intrinsic dimension of a bounded 2" C RP, denoted by dim (%), is defined as

dim(2) := — lim W, (6.4)
e—0F loge

where A (2, €) is the covering number of .2~ with e-balls in the standard Euclidean metric of R<.

For example, if 2~ C RP has non-empty interior, then dim(.2") = D; if 2 is a d-dimensional
submanifold of R”, then dim(2") = d.

We have the following theorem for the empirical estimation of Dé with group symmetry on
unbounded domains.
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Tueorem 8 (Finite sample estimation of DL with finite group symmetry). Fora > 1,1et P, Q € P(Z)
for some .2 C R?, where G satisfies Assumption 3. Suppose the quotient space .2 /G is connected, and
for any bounded 2, C £ /G with non-empty interior with respect to the subspace topology (2 /G —
RZ). Let |G| < oo be the cardinality of G, and we further assume that both P and Q are sub-Weibull on
R¢. Then

+ Ifdim(Z,) =d* > 3, we have

C C
LG _pL 1 2.
+ Ifdim(Z,) =d* =2, we have
Cilnm C,Inn
E ‘DLG P, DL ’ L 2 : 6.6
X.Y P10, — Dy (PIO)| < G )1/2+ (G172 (6.6)
* Ifdim(Z,) =d* =1, we have
C C
Exy [P0, 10,) - DEPIO)| = —=! : ©.7)

= GIm 2 T (G

where C; and C, depend on M ;(P), M;(Q). Both C; and C, are independent of m,n and G.
When G is a continuous group, we have the following theorem.

THeOREM 9 (Finite sample estimation of Dg with infinite group symmetry). For ¢ > 1, let P,Q €
P () for some X~ C R9, where G satisfies Assumption 3. Suppose the quotient space 2 /G is
connected, and for any bounded 2, C 2 /G with non-empty interior with respect to the subspace
topology (2" /G — R?). Assume that both P and Q are sub-Weibull on R?. Then

o Ifdim(Z,) = d** > 3, we have

C
Bxy [PEOP,10,) ~ DEPIO)| = —The + 2 638)
» Ifdim(Z,) = d** =2, we have
Cilnm C,lnn
Exy ) = DEPIQ)| = =Lt + 255 6.9)
» Ifdim(Z,) = d** =1, we have
LG L ¢ G
EXY‘D (P,l1Q,) — D, (P||Q)‘ .Y +m, (6.10)

where C; and C, depend on M;(P), M ;(Q). Both C; and C, are independent of m, n.
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REMARK 9. If 2 is a d*-dimensional connected submanifold of R¢, and G is a compact Lie group acting
locally smoothly on 27, then d** = d — dim(G), where dim(G) is the dimension of a principal orbit (i.e.
the maximal dimension among all orbits) by Theorem IV 3.8 in [6].

The proofs of Theorems 8 and 9 also imply the convergence bound for the Wasserstein-1 distance
with group symmetry on unbounded domains, since the variational form is shift-invariant with respect to
the test function. We consider the symmetry-informed estimator for P, Q € Z;(Z"), proposed in [10,
49], defined as

Wi(P,,0,) = sup (Ep [y]—Eg [y]} (6.11)
y€Lip8 (RY)

for W (P, Q).

THeoreM 10 (Finite sample estimation of W, with finite group symmetry). Let P, Q € Z;(Z’) for some
Z C R?, where G satisfies Assumption 3. Suppose the quotient space 2" /G is connected, and for any
bounded 2, C 2 /G with non-empty interior with respect to the subspace topology (£ /G — RY).
Let |G| < oo be the cardinality of G, and we further assume that both P and Q are sub-Weibull on R¥.
Then

e Ifdim(Z,) = d* > 3, we have
G

c
G _ 1 X
Exy |WEP,.0,) mm@kﬂ%ww+wmw, 6.12)
* Ifdim(Z,) = d* =2, we have
Ci lnm C,yInn
G B 1 2 .
Exy WO, 0,) mm@kﬂwwﬂ+wmm, (6.13)
* Ifdim(Z,) = d* = 1, we have
c c
G B 1 2
E”Wm%g)mm@kﬂwwﬂﬂmww (6.14)

where C; and C, depends on M;(P), M ,;(Q). Both C; and C, are independent of m,n and G.
When G is a continuous group, we have the following theorem.

THeoreM 11 (Finite sample estimation of W with infinite group symmetry). Let P,Q € P;(X") for
some 2~ C R? where G satisfies Assumption 3. Suppose the quotient space 2" /G is connected, and for
any bounded 2, C £ /G with non-empty interior with respect to the subspace topology (2 /G — RY).
Assume that both P and Q are sub-Weibull on R?. Then we have

o Ifdim(%,) = d** > 3, we have

C c
Exy W (P, Q) = Wi(P.Q)| <~ + — 0 (6.15)
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+ Ifdim(Z,) = d** =2, we have

Cilnm C,Inn
EX,Y‘WIG(PmsQn)—Wl(P’Q)‘ = #4‘#; (6.16)

+ Ifdim(Z,) = d** =1, we have

C C
Eyy ‘WIG(Pm’ 0,) — W (P, Q)‘ < ml—jz + nl_/22 6.17)

where C; and C, depend on M;(P), M ;(Q). Both C; and C, are independent of m, n.

REmARK 10. Although the multiplicative constants in Theorems 10 and 11 are not optimal, but the rate
is optimal compared to Theorem 1 in [18] for W, when d* or d** are greater than or equal to three, or
equal to one.

7. Numerical experiments

In this section, we demonstrate how using the Lipschitz-regularized «-divergences as objective func-
tionals enables stable learning of heavy-tailed distributions and distributions with low-dimensional
manifolds or fractal structures with various generative models. Note that the Lipschitz-regularized o-
divergences have an equivalent primal formulation in (3.5), which can be viewed as «-divergences
with W;-proximal regularization. One may consider replacing the W;-proximal regularization with a
W,-proximal regularization, where W, is the Wasserstein-2 distance, as the W, distance and proximal
regularization is widely used in generative modeling; e.g. see [41, 52]. The a-divergences with W,-
proximal regularization are defined as

D},(PIQ) == inf {D,([Q)+ 1 W3 (P, )} (7.1)
ne P R4)

In Section 7.1, we introduce the generative models used and explain how their learning objectives relate
to ae-divergences with Wy or W, proximals. We illustrate our points with four examples. In Section 7.2,
we compare the effects of incorporating W, or W, proximals in the learning objectives by training
on a two-dimensional Student-t distribution and on a real-world keystroke dataset. In Section 7.3,
we show the importance of Lipschitz-regularized a-divergences when learning distributions with low-
dimensional structures with an example of learning a strange attractor from the Lorenz 63 model. In
Section 7.4, we present the task of learning an anisotropic heavy-tailed distribution embedded in a
high-dimensional space and the results highlight that the Lipschitz-regularized o-divergences make
generative learning agnostic to heavy-tailed and manifold assumptions. We use Gaussian priors for all
our experiments, and the implementation details including the network architectures can be found in the
Supplementary Material.

7.1 Generative models with different learning objectives

W, and W, proximals can be found, sometimes implicitly, in the learning objectives of several existing
generative models. Below, we list various models based on «-divergences used in our experiments and
explain why some of them are (either implicitly or explicitly) regularized by Wasserstein proximal.
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(1) Generative models without proximal regularization:
e «-GAN: GANs [19, 40] based on the variational representation of the «-divergence (3.3);
e «-GPA: GPA based on the a-divergence [20];

e CNF: CNFs by [8], where the loss function is based on the KL divergence, a special case of
the a-divergence when o = 1.

(2) Generative models with W, -proximal regularization:

e Lip-¢-GAN [4]: GANSs using the Lipschitz-regularized «-divergence (1.1) as the objective
function, with the Lipschitz constant set to L = 1 in our experiment;

* Lip-a-GPA [20]: GPAs using the Lipschitz-regularized «-divergence (1.1) as the objective
function, with the Lipschitz constant set to L = 1 in our experiment. This is the implementation
of the gradient flow formulation (4.12).

(3) Generative models with W,-proximal regularization: We consider the following class of flow-
based models, which minimize a-divergences with W, proximal (7.1) written as (7.2) via the Benamou-
Brenier formula,

T
inf 7 (p(, 1)) + c/ %|v(x, H2p(x, 1) dx dt. (7.2)
v, 0

Here, p : R? x [0,7] — R is the evolution of the probability measure via the (trainable) velocity field
v:R? x [0, T] — R4, satisfying the Fokker—Planck equation:

2
o+ V.- (pv) = %Ap, p(-,0) = py is a tractable prior distribution, e.g. Gaussian. (7.3)

* OT flow [41]: OT normalizing flows, which are equivalent to the W,-proximal of CNFs, with
F(p(,T)) = Dy (Qllp(-,T)) and 0 = 0in (7.2);

e Variance-exploding (VE)-Score-based generative model (SGM) [47]: SGMs with VE
forward stochastic differential equations (SDEs) [47]. According to the mean-field game
formulation by [54], it is equivalent to (7.2) with stochastic dynamics (o > 0) and a cross-
entropy terminal cost .Z (o (-, T)) = —E (7 10g Ol essentially also a W,-proximal of CNFs.

We refer to Fig. 1 for a visual illustration of the relationships among the models being compared.

7.2 Learning heavy-tailed distributions

7.2.1 Two-dimensional Student-t example We compare various generative models for learning a
heavy-tailed two-dimensional isotropic Student-t distribution with v degrees of freedom, g(x) o (1 +

%)%2. This synthetic example allows us to adjust the tail decay rate § = v + 2 by selecting different
degrees of freedom v. In the main text, we present a heavy-tailed example with 8 = 3 that does not have
a finite first moment, while the relatively easier case of 8 = 5 is deferred to the Supplementary Material.
We use 10,000 samples to train the models.
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a,a# 1 ol KL
*GPA aGAN ,-” " CNF
Lip-a-GPA %~ | VESGM
Lip-a-GAN OT(W>) fiow
W proximal W4, proximal

FiG. 1. Generative models in the experiment and their relationship with the a-divergences with Wy or W, proximal regularization.
See Section 7.1 for detailed explanations of the models and notations.
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(a) o-GAN (left) and its counterpart with W, -proximal regularization, Lip-a-GAN (right)
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(b) a-GPA (left) and its counterpart with W;-proximal regularization, Lip-a-GPA (right)

FiG. 2. Learning a two-dimensional isotropic Student-t with degree of freedom v = 1 (tail index 8 = 3.0) using generative models
based on a-divergences with @ = 2 with or without Lipschitz regularization. Models with Lipschitz regularization (right) learn
the heavy-tailed distribution significantly better than those without (left). See Section 7.1 for detailed explanations of the models.

Figures 2 and 3 present the performance of various generative models. Each model is evaluated
in two plots. First, a two-dimensional scatter plot displays the generated samples (orange) and the true
samples (blue), providing a visual assessment of the sample quality. Next, the tail behaviour is assessed by
plotting the ground truth Radial Complementary Cumulative Distribution Function (rCCDF) (red curve)
and the histogram of the radii of generated samples (gray). The rCCDF is defined as rCCDF(r) = 1 —
CDEF(r), where CDF(r) is the cumulative distribution function of the radius. We then calculate the L, error
between the ground truth rCCDF and the generated sample histogram. Generative models with Lipschitz
regularization (W -proximal) significantly outperform the others in learning heavy-tailed distributions,
corroborating our theoretical results in Section 4.
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Fic. 3. Learning a two-dimensional isotropic Student-t with degree of freedom v = 1 (tail index 8 = 3.0) using generative models
based on «-divergences with or without Wy-proximal regularization and o« = 2. See Section 7.1 for detailed explanations of the
models.

100

rCCDF
rCCDF
rCCDF

1072

10° 10? 104

(a) a-GPA (left), ¢-GAN (right) (b) CNF

Fic. 4. Sample generation of inter-arrival time between keystrokes. Generative models based on the «-divergences with @ = 2 (a),
and the KL divergence (b).

7.2.2  Keystroke example For areal-world heavy-tailed example, we consider learning the inter-arrival
time between keystrokes from multiple users typing sentences [12]. The target dataset consists of 7,160
scalar samples, and we generated 10,000 samples using generative models with W; or W, proximal
regularization.

We display the tail behaviour by plotting the ground truth CCDF (red curve) and the corresponding
histogram of the generated samples (gray) in Fig. 4 and Fig. 5. Unlike the previous synthetic example,
the ground truth CCDF here is obtained by interpolating the heights of the histogram bins of the true
samples. In Fig. 5, generative models with W;-proximal regularization (Lip-a-GPA and Lip-a-GAN)
outperform those regularized with W,-proximals (OT flow and VE-SGM) in capturing the tails. This
observation suggests that W,-proximal algorithms can potentially handle heavier tails more effectively
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rCCDF
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(a) Lip-a GPA (left), Lip-ot GAN (right) (b) OT flow (left), VE SGM (right)

Fi16. 5. Sample generation of inter-arrival time between keystrokes. Generative models with Wy -proximal regularization, panel (a),
outperform those with W5-proximal regularization, panel (b), in capturing the tails. This observation suggests that Wy-proximal
algorithms can potentially handle heavier tails more effectively than W;-proximal methods.

than W,-proximal methods. In other words, algorithms based on the Lipschitz-regularized «-divergences
are more agnostic to heavy-tailed assumptions.

7.3 Learning attractors of chaotic dynamical systems

Strange attractor from Lorenz 63 example The Lorenz 63 model is renowned for its strange attractor,
which exhibits a complex fractal structure characterized by a non-integer Hausdorff dimension. In
this example, we use various generative models to learn the geometric shape of the attractor, without
accounting for its underlying dynamics. The target dataset .7 for the generative models consists of
N = 5,000 positions, defined as: 7 = {x(t;) = (x;(#;),x,(t;), x3(¢;)) : t; ~ Unif([9, 900, 10, 000])}5.\’:1
where (x (%), x,(t;), x5(¢;)) is a numerically computed solution trajectory of the Lorenz 63 model with

the standard parameter values a = 10,b = 28,c¢ = 8.3. The generated samples are represented
as 9 = {y; = ;) y3)},, where M is the number of generated points which does not
necessarily match N. We use M = 10,000 generated samples across various generative models for this
example.

Because the generated samples lack time labels, the dynamics cannot be directly observed. Instead,
we consider two standards: (1) measurement of how close the generated particles land on the attractor
and (2) characteristic of the fractal structure. These standards are measured by corresponding metrics:

(a) Mean square sum of the errors (MSE) between generated samples y; and their closest validation
sample v = argminvjea,/lyi — v;| where the validation dataset is given as YV = {v, =

J
V1 (5, v (1)), v3 (1)) = £; = 9,900 + 0.01 - j} %%

M
1 2 2
=

which measures the deviation of generated samples from the attractor trajectory.

(b) Adapted Correlation dimension for measuring dimensionality of the space occupied by point
clouds of generated samples {yi}f‘i | Without time information. Original correlation dimension is
a characteristic measure to distinguish between deterministic chaos and random noise, to detect

potential faults [7]. Real correlation dimension for the attractor of Lorenz 63 should be 2.05. We
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TABLE 1  Performance metrics: (i) MSE (7.4) between generated samples and the validation dataset
YV that measures how close the generated particles land on the attractor, and (ii) Correlation
dimension for M = 10,000 generated samples from different generative models

Model MSE Correlation Computation
dimension time (sec)
Lip-o = 2 GAN 0.1240 2.00 491.851
Lip-KL GAN 0.1226 2.01 505.330
o =2 GAN 0.945 1.99 336.272
KL GAN 0.1612 1.99 486.941
Lip-o =2 GPA 0.2984 1.60 410.385
Lip-KL GPA 0.1369 1.91 398.344
o =2 GPA - - -
KL GPA - - -
OT(W,) flow 0.6231 2.29 > 60,000
CNF 1.2674 2.31 > 60,000
VE SGM 0.0791 2.31 2,382.733

The ground truth correlation dimension measured on the validation dataset ¥ is 2.04. A higher correlation dimension implies
that noise dominates the shape of the attractor. A lower correlation dimension implies that the point clouds are more sparsely
populated on the attractor; see, for instance, Lip-o = 2 GPA compared to Lip-« = 2 GAN in Fig. 6. We do not report the MSE
and correlation dimension for « = 2 GPA and KL GPA (no Lipschitz regularization) since generated particles diverged in the
early stage of training. Although SGM has the smallest MSE, it takes a significant longer time to train, requiring much deeper
network architecture (otherwise it does not converge), and it still significantly over-estimates the fractal dimension. See also
Fig. 6 for visualizations.

obtained a reference value 2.04 by applying to our validation dataset " from a selection of the
algorithm’s parameter radius r € [0.7, 1.1].

The results can be found in Table 1. The results illustrate that (1) Lipschitz-regularized methods
in general capture the attractor and its structure while those without Lipschitz regularization fail; (2)
other methods such as OT flows, CNFs and SGMs fail to accurately capture the attractor even they
are trained for a longer time with more complicated network architecture. We additionally visualize
generated samples in Fig. 6. Similar results when N = 1,000 and M = 2,000 can be found in the
Supplementary Material.

7.4 Learning distributions supported on low dimensional manifolds

7.4.1 10D heavy-tailed manifold embedded in 110D We provide a high-dimensional example
adapted from [23]. In this example, a 10D heavy-tailed distribution is embedded in R'!°. Each of the
first 10 axes is drawn from the standard Cauchy distribution w; ~ Cauchy, then powered by a random
exponent #; ~ Unif([0.5,2]), i.e. x; = sign(wl-)|w,-|"‘ for i = 1,...,10. Values of the remaining axes
are set to zero: x; = O fori = 11,---,110. In our experiment, we fix the exponents #;,i = 1,--- 10, to
(1.31,0.91,1.13,1.76,0.50, 0.68, 1.50, 1.73,0.70, 1.36). We present two metrics similar to those used in
the multivariate distributions example in [23] to demonstrate (a) whether the algorithm can capture the
heavy tails in the first 10 dimensions and (b) whether the generated distribution correctly lies on the 10-
dimensional plane. For (a), we calculate the averaged L, error over the first 10 dimensions between the
empirical rCCDF F, built from a validation dataset consisting of 100K target samples and the empirical
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alpha=2-Lipschitz=1 GAN KL-Lipschitz=1 GAN alpha=02.00-Lipschitz=1 GPA KL-Lipschitz=1 GPA

(a) Generated samples from generative models with Lipschitz-regularized ct-divergences as learning objectives. o = 2-Lipschitz-1 GAN (first),
KL-Lipschitz-1 GAN (second), & = 2-Lipschitz-1 GPA (third), KL-Lipschitz-1 GPA (fourth)
alpha=2 GAN KL GAN alpha=02.00 GPA KL GPA

(b) Generated samples from generative models with un-regularized c-divergences as learning objectives. &t =2 GAN (first), KL GAN (second),
a =2 GPA (third), KL GPA (fourth). Snapshots from o = 2 and KL GPAs are transient and eventually blew up.
OT flow CNF VE SGM

(c) Generated samples from generative models with different learning objectives. OT-flow: W,-reverse KL divergence (left), CNF: reverse KL
divergence (center), VE-SGM: W5 -proximal regularized cross-entropy (right)

FiG. 6. Generated samples (M = 10, 000) of the Lorenz 63 strange attractor from N = 5, 000 target samples. Lipschitz-regularized
methods in general capture the attractor and its dimension while those without Lipschitz regularization fail. Other methods such
as OT flows, CNFs and SGMs cannot accurately capture the fractal structure. See Table 1 for error metrics.

rCCDF F, built from generated samples:
20,000
Li(F.F) = D |F, ) = Fo(2)|(y — 2, (7.5)
i=1

where z; are sampled in equi-distance from the interval [1,5 x 10°]. For (b), we calculate the Euclidean
distance of the generated samples to their projections on the first 10-dimensional subspace which is
written as Z,lzl(l)l IEyi[|| ¥;ll] where the orthogonal subspace is represented as zero [0, - - - ,0] € R100,

The results in Table 2 verify that models with the Lipschitz-regularized «-divergences as objectives
are more agnostic to both heavy-tailed and manifold assumptions.
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TaBLE2  Learning 10D heavy-tailed data embedded in R''° using 10K target samples

Model Heavy-tailed subspace Orthogonal subspace
avg L error avg Euclidean distance

Lip-o GPA 3.1155e + 02 3.4179e + 00

o GPA 4.9993¢ + 06 1.7150e + 15
Lip-« GAN 3.4645¢ + 02 1.0990e — 01

o GAN 4.4994¢ + 06 2.4480e — 03
OT(W,) flow 4.9993¢ + 06 inf

CNF 4.9993¢ + 06 inf

VE SGM 3.6031e 4+ 02 1.4441e 4+ 03

We report the L error defined in (7.5) averaging over the first 10 dimensions. Generative models without Lipschitz-regularized
learning objectives, such as unregularized models or those using W>-proximal regularization, either fail to capture the heavy tails
or fail to capture the manifold. In contrast, Lipschitz-regularized «-divergence enables generative models to learn heavy-tailed
distributions even when the tails exhibit different power-law behaviours, i.e. Q(x;) ~ |x,~|7ﬂi fori=1,.--,10. In addition, the
Lipschitz-regularized «-divergence encourages generated samples to lie near the data manifold. The unconstrained discriminator
in @-GAN produces large values outside the manifold, forcing the generator to map the source onto the 10D plane. However, the
unconstrained o-GAN fails to learn the tails. For further comparison of training objective function values for GANs and GPAs,
see Table G1 in Appendix G.

8. Conclusions and discussions

In this paper, we prove that Lipschitz-regularized «-divergences, introduced in previous works, enable
robust and stable learning for target distributions with minimal assumptions. In particular, we prove
that these divergences are always finite and have a well-defined variational derivative when the first
input distribution has a finite first moment. We also prove the sufficient and necessary conditions for
the divergence to be finite when both distributions have power-law-decay tails. A first convergence
rate of the finite-sample estimations of these divergences on R? is proved. As a result, we derive the
first sample complexity bounds for the empirical estimations of DL and W, with group symmetry
on R?. Numerical simulations further confirm the robustness of these divergences, showing that they
significantly improve the learning process across a range of challenging scenarios, such as heavy-tailed
distributions or distributions supported on low-dimensional manifolds or fractals.

Some future directions are unexplored in this work. First, it is not clear if there is an optimal « or if
the « should be chosen adaptively to make the learning more efficient. Second, the PDE theory of the
Lipschitz-regularized gradient flow is not established, and the convergence of the gradient flow is an
important topic and may require some new functional inequalities. Lastly, Theorem 7 is not sharp, and a
sharp convergence bound will help better understand this class of divergences and further derive better
generalization bounds for algorithms based on this class of divergences.
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A. Notation for the proofs
We denote by A < B if there are some ¢,d > 0, suchthat A < ¢cB+d; and A < Bif both A <
B and B < A hold. For a bounded set 2 C RY, diam(£2) = SUPy ye lx — yll,, where ||-||, is the

Euclidean norm on R¢. Moreover, given a probability density p(x), we use M, (p) to denote the rth
moment of p(x). For convenience, we will abuse notation and use symbols p, g and P, Q, to represent
probability distributions as well as the density functions associated with them. Whether a character refers
to a probability distribution or a density should be clear from the context.

B. Additional lemma of Theorem 2

For the Lipschitz-regularized KL-divergence, we have the following lemma similar to Lemma 1.

Lemma B1. For the KL case, i.e. fg; (y) = e’~! and any non-negative measures P and Q defined on
some bounded £2 C R? with non-zero integrals, I" = Lip; (£2), we have

sup {/ J/(x)dP—/fIEL[V(X)]dQ} = sup [/ y () dP—/fﬁL[V(X)]dQ], B
2 2 2 2

ver yeZ
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where

[, dP
Jodo

Jo dP
Jodo

+1—L-diam(£2) <y <In

[y € Lip;(£2) : In + 14+L- dlam(.Q)]

Proof. For any fixed y € I', define

h(v) = /J(2 (y () +v) dP—/QfEL[)/(X) +v]dQ.

Since sup,., ¥ (x) —inf o ¥ (x) < L - diam(£2), interchanging the integration with differentiation is
allowed by the domlnated convergence theorem:

W) = / ap - / (v + 1) dQ.
2 2

Ifinf, o y(x) > In jf"dQ + 1, then 7/ (0) < 0. So there exists some v, < 0 such that 4(vy) > h(0). This

indicates the supremum on the left side of (B1) is attained only if sup, . o ¥ (x) < In ff 0 +14L-diam(£2).

On the other hand, if sup, ., ¥ (x) < In f + 1, then #’(0) > 0. So there exists some v, > 0 such that
h(vy) > h(0). This indicates that the supremum on the left side of (B1) is attained only if inf, . ¥ (x) >

d.
In ﬁg+1—Ldme) .

C. Proof of Theorem 3

Proof of Theorem 3. The existence and uniqueness of y* follow from Theorem 4.9 in [15] and Theorem
25 in [4]. We extend y* from supp(P) U supp(Q) to all of R4 by

P = sup {y*(x) + Lx—yl} €D
xesupp(P)Usupp(Q)

And it is a well-known result (e.g. see the proof of Lemma 2.3 in [20]) that p is L-Lipschitz continuous
on R? and

Y= Slzp{h(X) - h € Lip, (RY), h(y) = y* (), ¥y € supp(P) U supp(Q)}. (C2)

‘We need to show that

1
iimint * (D5 + epl0) ~ DEP10)) = [ 7, (©3)
e—0+ €
and
1 A
timsup & (D4(P+ ep0) ~ DEPIQ) = [ 7 dp. (4
e—~0+ €
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IfP+ep e P (R%), then by Theorem 2, Dg(P + €p]|Q) < oo and thus we have

DL(P+eplQ) = sup  (Epyeyly] —Eolf ()1)
y€Lip; (RY)

> Bp, o, [7] — Eglf ()]

— e /Rd P dp + Eplp] — Byl ()]

= [ 7ao+DhP10)
R4
Thus, we have

timint * (D5 + pl0) - DEP10)) = [ 7. ()
e—>0+ €

To prove the other direction, we define F(e) = Dé (P + €p||Q). Then by Theorem 18 in [4], F(€)

is convex, lower semi-continuous and finite on [0, €] for some €, > 0. Due to the convexity of F, it is

differentiable on (0, ;) except for a countable number of points. If y, is the optimizer for Dé (P+e€p|Q),

similar to (C5), we have for 6 > 0 sufficiently small

Dﬁ(P+(6+8)pIIQ)—D(I;[(P+6;0||Q)zﬁ/ﬁdp, (C6)
and
DEP + (e — $)pllQ) — DL(P + epl| Q) = —s/ﬁg dp. )

If F is differentiable at €, this implies that

- dp < lim < (DL(P + (e + 9)0110) ~ DLP + epl1Q))
Ve dp < lim < (D p o (P+ep
= F'©)

1
= lim (DL + epllQ) — DL (P + (e — 6)p]| Q)

s/ﬂm

Fle) = / 7. dp. (C8)

Consequently,

Let F/, (0) be the right derivative at € = 0,1.e. F/_(0) = lim,_, ¢+ é(F (¢) — F(0)). By convexity, for any
sequence ¢, such that F' is differentiable at €, and €, \ 0, we have

F\ (0) = lim F'(¢,) = lim /7;5 dp. (C9)
n—00 n—00 n
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We write RY = U,,_yK,, with K,, C R? being a compact set and K,, C K,, +1- The optimizers y, are
unique. Moreover, by Lemma E3, they satisfy |)7€n (x)| < L(|x| + R) + M,,, where

ani}‘]/lf[(M—i—LR)—i-L/ |x|dP+enL/ |x|dp < f7(M — 3LR) dQ] (C10)
R4 R4

|x]<2R

where R > 0 is fixed for all n such that f|x|<2R

the left side inside the infimum in (C10), we have M, < M for all sufficiently large n. Therefore, the
sequence {)?gn} is equibounded and equicontinuous on K,,. By the Arzela-Ascoli theorem, there exists a
subsequence of )?En that converges uniformly in K,,. Using diagonal argument, by taking subsequences
sequentially along {K,,},,cy We conclude there exists a subsequence such that ﬁenk converges uniformly

dQ > 0. Thus, by the linear dependence on €, on

in any K|, and thus )?énk converges pointwise in R?. Let 7 be the limit, then p, is L-Lipschitz due to
the uniform convergence of L-Lipschitz functions. For simplicity, we also denote by )96,‘ the convergent
subsequence. Thus, given p, € &, (R%), we have by the dominated convergence theorem,

F\ (0) = nlin;o/ Ve, dp0 = / 7o dp. (C11)
= JRd R4
By the lower semi-continuity of D§(~ [|Q), we have
L P L
Dy (P||Q) < liminf Dg(P + €,p[10)

=timinf (B, 17,1~ Eolf 7)1}

n—o0

= nlinc}o EP—i-enp [7}5)1] - hm Sup EQ[]‘:(J}\G,’)]

n—oo
= Ep[yp] — limsup EQV;(?@,)]
n—oo

=< ]Ep[);o] - EQ[}C;(J;())]

< DG(P|Q),
where in the third equality we use the dominated convergence theorem, and in the second-to-last
inequality we apply the Fatou’s lemma. Thus, we have 7, = 7 P, O—a.s., and ), < p forall x € R?. The
latter is true since p is the Lipschitz extension of yJ by (C1), and (C2) guarantees that y is the supremum
of all the L-Lipschitz functions whose restriction on supp(P) U supp(Q) is equal to 9. It can be shown

(as in the beginning of the proof of Theorem 1 in [20]) that p_ is absolutely continuous with respect to
P, then we have

F;(O)z/y()*dpz/yadp+—/y6dp_=/V6dp+—/1?dp_s/?dp- (C12)

Thus, (C4) is proved. O
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D. Proofs of Theorems 4 and 5

Proof of Theorem 4. 1. Sufficiency. Let I' = LipL(Rd), and we have

D5 (P|Q) = sup [/V(X)p(X)dx—/f;[y(x)]fJ(x)dXI

yell

< sup [ / y (0)p(x) dx — fj[y(x)]q(x)dx]
[lx[| <R llx]| <R

yeLipg (x| <R)
+  sup [ / y (0p(x) dx — / faly @)]g(x) dx]
yeLipy (x[=R) U/ |x[=R [IxI=R
For I;, by Lemma 1, we have

IISC/ p(x)dx+( (a—l)ilcil—i—a 05—1)71)/ q(x) dx < o0,
lxlI<R llx]|<R

. 1
Jiserp@ )

_ -1 -
where C = (¢ — 1) (f|x<R q(x)dx) + 2LR.

For I, we have

/n yorea [ fyelemas [ p (y(x) ~ iy i ))

px)

lxlI=R

(1) Ifd <B, <d+1land B, — g, < 24

a—1 :

Note that the set of bounded L-Lipschitz functions on {x : ||x|| > R} is a subset of .Z,(x :
[lx]l = R), and the supremum over all the L-Lipschitz functions can be bounded by taking the
supremum over all the measurable functions. Moreover, we can solve for the optimal 7 (x) that

maximizes y (x) — fa[y (x)] "8 within the class of measurable functions: the stationary point

a—1
of y(x) — fX[y (x)]l% in y for every x provides 7 (x) = alTl (%) . Therefore, we have

sup / p) (y(x) e )]@)
y€Lipy (x:llx|=R) J [Ix[| >R (€9)

< / (o) (?(x) G )]@)
llxll >R (%)

! p(x)
/|x|>R ala —1) ([q(x)} ) q(x)

x/ ”x”a(ﬂz—ﬂl)—ﬁz dx < oo,
[l =R

since a(By — B1) — B = (@ — 1)(B, — By) — B; < —d.
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(2) If B; > d + 1: the proof follows that of Theorem 2.

2. Necessity.

Suppose ) <d+1and B, — B; > i‘:ld. We split 8, — B; > @%Id into two cases.
() Ifp, — By =

@

Let 7(x) = 7 ||x|l, where T € (0,L] is to be determined. Then we have ¥ € Lip; (R%). Using
this 7, we have

D(PQ) > /?(X)P(X)dx— /fi[?(X)]q(X)dx

- /” TP~ W0 dr+ / PP — 7 @1g0) dv.

llxlI=R

It is straightforward that the first integral over ||x|| < R is finite. For the latter one, we have

/| g @@ dr= | fal70lg0) deZ / (e e 1 — e a2 i,

lxI=R lxI=R

We need to show the right-hand side is infinite. First, since 0% > 1, we can choose T

sufficiently small such that 7 > t 1. Moreover, by the assumption, we have 1 — 8; > —d and
=% — By < 1 — By, so that we have

o
a o
/ (7 1P — 23T )12 de = oo,
lxI=R

and thus DL (P||Q) = oo.

—d 1.
Ifi‘_l <B— B < ;¢

Define
500 TR@=DB2—p1) if |x|| < R;
X) =
’ Tl @DEA) | if x| = R,
where T € (0, L] is to be determined. Since in this case we have (8, — B))(«¢ — 1) < 1, we

have ¥ (x) € Lip, (RY) if we pick R sufficiently large which is independent of T < L. Using this
7 (x), we have

DL(PIQ) = /7()6)1?()6)(1)6— /fJ[?(X)JLI(X)dx

_ /” TP~ P00 dr+ / PIP() —£I701g() d.

llxlI=R

By the definition of 7, we know that the first integral over ||x|| < R is finite. For the latter one,
we have in this case

/H I R?(X)p (x) dx — £ 7 @1g(x) dx

lxl=R

~

>/ (.[ [lx]| @~ DB2=BO=F1 _ TasT ||x||(‘¥—1)(ﬁ2—/31)—/31) dx.
llxlI=R

GZ0Z 1890100 8z UO Jasn (8AljoBUl) 1Siaywy - spasnyoesse|y Jo AlIsIaAun Aq G969/ 28/8Z0B. v/ | /o[onJe/ierewl/wod dno olwspeoe//:sdyy Wwolj peapeojumoq



34 Z.CHEN ET AL.

We show the right-hand side is infinite. Again, we can choose 7 sufficiently small such that T >
T o1, On the other hand, by the assumption in this case, we have (¢ — 1)(8, — ;) — B; = —d,
so that we have

/ (.L- ||x||(0¢*1)(/32*/31)*ﬁ1 _ras ||x||(0t*1)(ﬁ2*ﬁ1)*;‘51) dx = o0,
lxI=R
hence DL (P||Q) = oo. 0

Proof of Theorem 5. Same as in the beginning of the proof of Theorem 4, we can split DﬁL (P||Q) into
I, and I, where I, is bounded by Lemma B1 with appropriate R.
For I,, we have

sup / y (Op(x) dx — Jrly ®1q(x) dx
yeLip, (llxl=R) / x| =R lel=R

= sup / y (0)p(x) dx — JiLly (0)]g(x) dx
yeMp(x:lIx|=R) 7 IxI=R llxlI=R
= / In @p(x) dx
=R 40
= [ g dx < oo,
IxlI=R
since B; > d and the equality is due to the dual formula of KL divergence. 0

Proof of Corollary 6. Note the change-of-variable formula
/Rd ydp , ) = /Rd* (¥ o 9)(x) - p(x) dx, (similarly for g , and q)

and y o ¢ is an LL*-Lipschitz function on RY" for any y € Lip L(Rd ). Then the proof of Theorem 4 can
be followed. U

E. Proofs of results in Section 5

To prove Theorem 7, we need a few lemmas. Let x;,x,,...,x,, € RY be i.i.d. samples of distribution P,
and P,, be the corresponding empirical distributions. We define L, (P,,) the metric between any functions

Fogas LP)(.8) = 2 30 ) — gt

Lemma E1 (Metric entropy with empirical measures). Let .# be a class of real-valued functions on RY
and0 € .F.Leté = {£,,5,,...,&, ) be aset of independent random variables that take values on {—1, 1}

with equal probabilities (also known as Rademacher variables). Suppose X = {x{,x,,...,x,,} C RY are
i.i.d. samples of distribution P, then we have
12 [Mx
E; sup |— f(x;))| < inf 40 + — In AN (F,8,L,(P,))ds ),
e S m;m ) _0<9<MX( T ), VA (ZELE) )

2
where My = sup;. » %Z:n:l lf(xi)| .
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Proof. Let N € N be an arbitrary positive integer and §, = My - 2=6=D k= 1,...,N, with

My = supse z +/ % > [f(xi)|2. Let V, be the cover achieving 4 (.#, §;, L,(P,,)), and denote |Vk| =
N (F,8,L,(P,,)). Forany f € 7, let . (f) € V,, such that

1 m
=2 ) = mop)| < 5 (E1)
i=1
We have
1 m
E — £(x
o
N—1 m
< Ey sup Zs (FOr) =y ()| + D Ee sup Z & (1 (D) — nj(f)(x,-))‘
feg j=1 fey =1
1 m
+ B sup [— D & )|
S | ;:Eﬂl(f)(x)

For the third term, observe that it suffices to take V; = {0} so that 7, (f) is the zero function and the third
term vanishes. The first term can be bounded using Cauchy—Schwartz inequality as

E; sup

fe.

1 — B ” :
- (e NP S N |
m ;& (f) — mn (N (X)) | < - ; (&) ;25; (F(x) — my (D) ()

To handle the middle term, for each j, let W, = {m; (/) — 7;(f) : f € Z}. We have ‘W]‘ <

] 9] 2 e
,Z_;]EE;;B %i (Hl(f)(xi)—nj(f)(xi))‘ Z]Es WS;I; 1é$iw(xi) :

Moreover, we have

> wix)?

i=1

sup
weW;

m 2
T res P CMGEAEEAGER)

i=1

= (2 (1) —F5) -+ sup > (1o - () 0))

< Vm  +/m-
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By the Massart finite class lemma (see, e.g. [36]), we have

L 3y 2 W) 68, |V
E; sup |— Ewx)| < < .
Swer mg e m Jm
Therefore,
1 m 6 N-—1
]ngsug = Safen)| <oy + NG > 5j+1\/ln</1/(§, 8s1:Ly(P,y))
€7 i=1 =

N
12
5%+zﬁzpﬁ@m¢mmf%%mm
j=1

12 [Mx
<Oy + — VIn AV (F,8,L,(P,)) ds.
\/’_” IN+1

Finally, select any 6 € (0, My) and let N be the largest integer with &5, | > 0, (implying &y, , < 6 and

12 [Mx

Vm SN+1

12 [Mx
\/anV(ﬂ,S,LZ(Pm)) ds <40 + —/ \/anV(ﬁ,S,LZ(Pm)) ds.
vm Jo
O
LEMMAA E2. Suppose P, is the erripirical distribution of P € &, (R?), and A = %Z:":] ||x||’§ with
1 <B < pB—dthenforl <z < g, wehave

Ep, IIxI° <A+ 1.

Proof. Note that [|x]|? < max{1, [lx|?} < 1 + |lx||?, so we have the bound. 0

We provide the following lemma that sets up a landmark for the magnitude of the Lipschitz functions
under the supremum.

Lemma E3. Suppose ¢ > 1, and P € &, (Rd). Let M(y) = SUP||y| =R |y (x)|, then there exists M that
depends on P, Q, L and R, such that

DLPIQ) = sup  {Eplyl—Eylfy (1)1},
y€Lip, (RY)
My)=M

where

M = inf [M S (M(y) +LR)/dP+ L/ llxll dP — £¥(M(y) — 3LR) dQ < 0,VM(y) > M] )

llxll <2R
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Proof. Forany y € LipL(Rd), let

Ji :=/ )/(X)dP—/ faly®1dQ,  J, :=/ y(x)dP—/ Jaly®1dQ,
llell <R el <R leli=R =R

then
/y(x) ap - /f:[y(x)]dQ =y + 1.
We have for any y € LipL(Rd),

i S/ (M(y)+LR)dP—/ Jo(M(y) —3LR) dQ
llell <R

lxll <R
= (M(y)+LR) - . RdP —fa(M(y) —3LR) - . RdQ.

On the other hand, by the same argument in the proof of Theorem 2 (for proving I, < oo therein), we
have

Jy < LR/ aP + L/ x|l dP + M(y) dpr
=R Ixll>2R =R

—f¥(M(y) — 3LR) do,
R<|lx[|<2R

Both the upper bounds for J; and J, tend to —oo as M(y) — oo. Thus, there exists such M as claimed.
Moreover, we have

htdy =)+ [ape [ar

—fo M(y) — 3LR) do.
Il <2R

Therefore, we can pick M > 0as

inf {0 : (M(y) +LR)/dP+L/ x| dP — ££(M(y) — 3LR) dQ < 0,YM(y) > M]

llxll <2R
and it is obvious that M > 0 only depends on P, Q and R. O

Let A_/Im’n be the quantity in Lemma E3 where (P, Q) are replaced by their empirical counterparts
(P,,,0,), then A_lm’n is a random variable. We have the following lemma to estimate the expectation of
the rth moment (» > 1) of ]\_/Im’n. The proof is different from that for Lemma E3.

LemMa E4. Suppose « > 1, and (P, Q) are distributions on R¢ of heavy-tail (B}, B,) with B, B, > d+r
forsomer > 1. Let M(y) = SUP | =R |y (x)|, then there exists M, , that depends on P,,, Q,, and R, such
that

DLP,IQ) = sup {Ep [y]1—Ey i1},
y€Lip, (RY)
M) <M p
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Moreover, we have

—r
IEX,Y [Mm,n] = Mp,q,r’

where Mp’ o depends on «, L, R, M,.(p) and M,(q), and is independent of m, n.

Proof. We have

Ep, [y]—Eq [ ()] < i M(y) + Ln|1||xi|| —R| Z":fj (M(y) -~ 2L11— L ( Hy]” _ RD |

i=1 j=1

Hence M,, , can be taken as

iz oan o] -¥)

m
A_dm’nzinf z:2%<z . ,Vs >z

i=1 j=I

Moreover, by Jensen’s inequality, we have

O Cecanta | 1 ),

_ R‘
=1 8 =

since the convex conjugate f; is convex, and so that

m n A=
A_/Im’n < inf ZZ;% <fF S_QLR_L]_ZIM Vs >z
=M,,,
It is obvious that ]\A/'Im’n solves the following equation in variable z:
fiz—c)) =z2+cy, (E2)

where

¢ = 2LR+LZ—)HyJH A

j=1

o~ L% - R|
e =y LA
i=1
Equation (E2) can be reformulated as to find y* that solves:
fe®) —y=c| +cy, (E3)

where z — ¢; = y. We derive an upper bound for y* as follows. Let g(y) = fi(y) — , then

1
g/(y) = ((x - l)otflyctfl 1y>() -
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ROBUST GENERATIVE LEARNING WITH LIPSCHITZ-REGULARIZED «-DIVERGENCES 39

such that g'(y) > 1 fory > 2* 1(a« — 1)~1. Given that g (2"‘_1(05 - 1)_1) = % + m — %f%ll, we
2¢ 1 201

can take y* <2 Mo — D)7 +¢; + ¢y + & taen — T

. Therefore, we have

20 1 a1
+

M §Mm’n=y*+c1§2°‘_l(o( 1)1+261~|—C2~|—

m,n

al@—1) a—1|

The claim follows since by Jensen’s inequality, Ey [(Zm_ M) ] Ey [Zl 1 ”x"”r] = M,.(p).

i=1 m

(Similarly for E, [(Z]’.’:l M) r] ) 0

Proof of Theorem 7. Without loss of generality, we assume that both

/||| 1p(x)dx>0, /|| 1q()c)dx>0.

Let 2, = {x e R : |lx|| < 1} and 2, = {x € R? : 2871 < ||x|| < 2¥} for k > 1. For each k € N, the

Lebesgue measure of {x : d(x £2;) < 1}is bounded by Cded forsome C; > 0.Let A, = = j 1 Hy] s
where 2 + =5 < ,32 — 1. By Markov’s inequality, the mass or proportion of Q,, that lies in £2, is
bounded by

Pr(x ~ Q, : Ixll > 2571 = Pr(x ~ @, « IIx||? > 2%~ D)

B R
< B, X v
= 26-Df

Let M = max(M,M,, ), where M is the quantity in Lemma E3 with R = 1, and M, , is the random
counterpart for (P,,, 0,) as defined in Lemma E4. M is a random variable since A_/Im,n israndom. Let .7,
be the following class of functions

Fam = {fa (y) : v € Lip,(RY, Shlpl ly @] < M] (E4)

By formulas (3.4) and (4.3), functions in ﬂa’M have Holder norm on 2, bounded by C,(M a1 4
LaT ZHL—I{I) for some C, > 0 that only depends on «. By Corollary 2.7.4 in [50] with V = d and r = 2,
we have

In(.Z, Ms5 L,(0,))
d+2
oo 2d_
<K& (Z(Cdzk")diz (Q(Mffl +Lfﬁ2a“fkl)) (a2 ”f’z)w)
k=0
00 =N
< Ks~M + DyaT AY (Z AR e ”)

da
< K5~4(M + Lyw1 A9,
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where the constant K can vary from line to line and does not depend on rn, and the last step follows as
the choice of B, such that the series is summable over k independent of Q,,. Then we have

Exy [DE(P,1Q,) — DEPIQ)|

=Exy| sup {Ep [y1—Eylful}— sup {Eply]l—Eylfy ()1}

yeLipLLﬂ%d) yeLipL(]IS")
M(y)<Mmn M(y)=M
<Eyy sup [Ep [y]—Egy ()] — (Eply] —Eolfi(1)])]
y€Lip, (RY)
M(y)=M
<Ey sup |Eplyl—Ep [¥l|+Eyxy sup [Eolfy()]—Eg, [fz ()]
y €Lipy (RY) y€Lip; (RY)
M(y)=M

n

1
SEy s [Eplyl—Ep [yl + BxEyEyE,  sup  |— > & (lv0pl - fily 6)I)

yeLipy (RY) yeLip,®%) | ™ 527
M(y)=Mm
<Ey sup [Eply]—Ep [y]|+2E4EyE, sup Zafa [y )]
y €Lip; (RY) yeL1pL(Rd) =1
M(y)=M

<Exy sup |Eply]l—Ep [v]|+2Exy inf (49+ —/ \/1n,/V( w8 L2 (0, ))d8)
yeLip, (RY) o=0

where &;’s are the Rademacher variables.
First note that the first term Ey sup, oy wa) ‘Ep[y] - IEPm[y]| is the convergence rate of the
Wasserstein-1 distance and the bound follows the result of Theorem 1 in [18]:
1/r
CM," (p)
Ex sup [Eplyl—Ep [yl = — 7.
y €Lipy (RY) m

with r = %. For the second term, we have

Eyy inf (49 n _/ S (F 418,150, ))d5)

12 d/4 _d
< Eyy inf 46 + —=K(M + L) 7D A Yot
NG 6
. 12 do d/4 2 1—d/2
<E f (40 + —=KWM + L)%e=1 A" . ——_g'=4/
= X,Yglgo( +ﬁ M+L) S

1 e d4 2
<Eyy (4070 + 12KM + 170 49 =

+ 224Kdn‘5 [(M + L) Te- 1>Ad/4]

U

=4n~
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where we pick 6 = ni. By the Cauchy-Schwartz inequality, we have

do
Exy [(M + L) Ad/“] < \/ Ey y(M + L)@ \/ Ey45”

da
Notice that Ey (M +L) @D is bounded by Lemma E4 and the bound depends on M da (p) and M o @.

1/2

By Jensen’s inequality, we have IEYA‘ZI/ 2 < (IEYAg) . And we have

pod

d
el —g (LS 1 <
yAy =%y | Z Hyj <Ey - Z Hyj Mg (@),
j=1 j=1
where the inequality follows Jensen’s inequality. Combining all these bounds, we obtain the result as in
the statement of the theorem. O

ProposiTioN E1. Ford = 2. Assume (P Q) are distributions on R? of heavy-tail (8, B,), where 8; > 10
and B, > 18. Suppose o satisﬁes 7 +4 < By —2and O% < B, — 10, then if m and n are sufficiently
large, we have

Cilnm C,Inn
ml/2 + nl/2

Eyy |D5(P,l1Q,) — Dg(PIQ)| < (E5)

where C, depends on Mr1 (p) for any r; > 2 and C, depends on M 4a_ 44 »), M47a+4 (g) and Mglr2 (g) for
a—1 a—1

any2+ ;=5 <rp < 24_ B2 poth C, and C, are independent of m, n.

ProrosiTion E2. Ford = 1. Assume (P, Q) are distributions on R? of heavy-tail (8, B,), where 8, > 7
and B, > 13. Suppose « satisfies 2= +4 < B — l and ;>; < B, — 7, then if m and n are sufficiently
large, we have

C
Eyy |D5(P,110,) — D5(PIQ)| < + n—2 (E6)

1/2 12"

where C; depends on M, (p) and C, depends on M 2a )M 2 4@ and M, (¢) for any 2+ az—“l <

ry < B2 and C, are independent of m, n.

Proof. The only difference from the proof of Theorem 7 is that we need to bound the random metric
entropy differently since ,/In .4~ (Z .M 8,L,(0Q,)) is no longer integrable at infinity, and the upper limit
of the integral in Lemma E1 cannot be relaxed to co. Instead, we have

My
E,, inf (49+— / SN (T 08,100, ))dé)

> 0<6<My

. 12 an M _a
<Ey, inf (46+ KM +L)@D D A / §72ds),
> 0<O<My \/_ 0

/ 2
where My = SUP, e 7, %Z]’}:l ’y(yj)‘ < \/% > M+L+L HyjH)2.
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For d = 2, we have fQMY 575ds = In M, —In6, and we can pick 6 = 1“7:, and use the inequality
In My < My — 1 and combine it with Lemmas E2 and E4 as in the proof of Theorem 7.

For d = 1, we have feMY 8’% dé = —W, and we can pick 6 = L” to balance the two terms. []

F. Proofs of results in Section 6

Proof of Theorem 8. The proof is very similar to that of Theorem 7, therefore we only outline the
improvement we can obtain. First, same as the beginning of the proof of Theorem 4.8 in [10], we can
restrict the domain from 2" to Z°/G by invariance, so that we focus on Lipschitz functions on 2" /G.
Indeed, we have

Exy [DEOP,10,) — D(PIO)|

=Exy| sup {Ep [¥]1—Ep I} — sup {Eply]l—Eylfs()1}
yeLip(2) yeLip? (2)
M(V)SMm,n M(}/)SM

1 — I -
<Eyy  sup | y0p) == > Syl = ([Eply] = Eglf; (0)])

yeLipf(2) | i=1 j=1
M(y)<M

l — 1 —
=Eyy sup |= D> vTe) — = D filyTeo] — (Bply]l = Eglfs (1))
yeLipf(2) | 5 ns
M(y)<M

J=1

1 < I <
<Eyy S|y @) — - DL T = (Epy oY) = Eqg, ol 0)])|-
yeLipf(2/G) | i=1 j=1
M(y)=M

where T = 2" — 27/G is the quotient map, and P g/, Q 9/ are restrictions of P,Q on 2°/G
since both P,Q are G-invariant, and T;(x;) and TG(yj) can be viewed as i.i.d. samples drawn from
Py /G Oy /G- Compared to the proof of Theorem 7, we have some minor differences. First, in the
sub-Weibull setting, the bound provided by Markov’s inequality has Weibull-type decay in k, and we
can simply choose 8, = 1. Therefore, the summation in bounding In(.%, ;/,8,L,(Q,,)) is summable in

k. Moreover, to bound In(.%, a6 Lr(0,)), we have § —d improved to § —d" due to the intrinsic dimension
assumption. Due to Assumption 3 on the group and the partition §2,’s are circular about the origin, the
Lebesgue measure induces a reduction by a factor of 1/ |G| by working on 2" /G compared to 2", which
then makes a reduction by 1/ |G| in the bound of In(7,, y, 8, L, (Q,))), and it eventually contributes to the
factor |G| in the bound in Theorem 8. On the other hand, we bound Ey sup,, ¢ i, (e |]E plyl—Ep, [y]|
using the same procedure using metric entropy instead. Since the magnitude of Lipschitz functions grows
slower than .7, ,,, the procedure is straightforward. This finally creates a factor of |G| in front of m in
the final bound. For cases when the intrinsic dimension is 1 or 2, we can apply proofs of and after the
above treatment. d
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Proof of Theorem 9. Compared to the proof of that of Theorem 8, we do not need to make a factor |G|.
Instead, in bounding ln(ﬁa’ w0, L,(0,)), we have 8 - improved to & =" due to the intrinsic dimension
assumption. (]

Proof of Theorem 10 and Theorem 11. Since the variational form of W is shift-invariantto y € Lip;, R,
we can always assume y (0) = 0. Thus, Lemmas E3 and E4 are not useful. Compared to the proof of
Theorem 7, we can pick 8, = 1 and M can be set to 0. Finally, it is the limiting case of @ — oo. ]

G. Values of different training objectives in Section 7.4

Training objective function values for Lipschitz-regularized and standard «-divergence
Table G1 summarizes the training objective (divergence) values for the standard and Lipschitz-
regularized «-divergence in different GPA and GAN models in the experiment Section 7.4.

TaBLE G1  Final values of the training objective for GANs and GPAs under Lipschitz-regularized (L = 1)
and standard o-divergences with a = 2

Model Objective function (divergence) value
Lip-o GPA 0.0129187

o GPA 3.0554032¢ + 26

Lip-o GAN 0.358602

o GAN 3.25298e + 7

See the example in Section 7.4.
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