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This paper demonstrates the robustness of Lipschitz-regularized α-divergences as objective functionals 
in generative modeling, showing they enable stable learning across a wide range of target distributions 
with minimal assumptions. We establish that these divergences remain finite under a mild condition—that 
the source distribution has a finite first moment—regardless of the properties of the target distribution, 
making them adaptable to the structure of target distributions. Furthermore, we prove the existence and 
finiteness of their variational derivatives, which are essential for stable training of generative models such 
as generative adversarial networks and gradient flows. For heavy-tailed targets, we derive necessary and 
sufficient conditions that connect data dimension, α and tail behaviour to divergence finiteness, that also 
provide insights into the selection of suitable α’s. We also provide the first sample complexity bounds for 
empirical estimations of these divergences on unbounded domains. As a byproduct, we obtain the first 
sample complexity bounds for empirical estimations of these divergences and the Wasserstein-1 metric 
with group symmetry on unbounded domains. Numerical experiments confirm that generative models 
leveraging Lipschitz-regularized α-divergences can stably l earn distributions in various challenging 
scenarios, including those with heavy tails or complex, low-dimensional, or fractal support, all without 
any prior knowledge of the s tructure of target distributions.

Keywords : probability divergences; Lipschitz regularization; generative modeling; heavy tails; m anifolds; 
attractors.  

1. Introduction 

In generative modeling, the goal is to create new samples that resemble those from an unknown data 
distribution by designing algorithms that minimize a probability divergence or metric between the 
generated distribution and the target distribution. However, the diverse characteristics of real-world 
data distributions—such as heavy tails, low-dimensional structures, manifold constraints, or fractal-
like supports—introduce significant challenges in the training of generative models. These challenges 
are manifested as instabilities, reduced robustness and a need for specialized architectures, as standard 
generative frameworks struggle to adapt to complex data structures. Addressing these issues is essential 
for developing models t hat are not only accurate but also robust across a wide range of scenarios for the 
tar get distribu tion.
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2 Z. CHEN ET AL.

Features such as heavy-tailed distributions arise in various fields, including extreme events in 
ocean waves [16], floods [35], social sciences [27, 43], human activities [29, 55], biology [30] and 
computer science [46]. Learning to generate heavy-tailed distributions has been explored with generative 
adversarial networks (GANs). However, GANs based on integral probability metrics (IPMs), such as 
the Wasserstein-1 metric, may struggle to learn these distrib utions without additional tail estimation 
strategies [1, 17, 23]. This limitation arises because the Wasserstein-1 metric between two distributions 
becomes infinite when one lacks a finite first moment, and accurately estimating tail behaviour often 
requires extensive data from that tail, which may be difficult to obtain. Consequently, capturing 
discrepancies between distributions with a metric that remains finite, is stable to compute, and is less 
sensitive to the need for extensive tail data is essential for stable and effective learning. 

On the other hand, many empirical results suggest that real-world data, such as images, exhibit lo w-
dimensional structures [44]. While there are theoretical guarantees for GANs to learn distributions with 
low-dimensional support [22, 28], recent works on flow-based models, such as continuous normalizing 
flows (CNFs), neural ordinary dif ferential equations (ODEs) and score-based diffusion models, often 
rely on density assumptions [9, 32]. These models can struggle to learn low-dimensional structures 
without additional regularization or specific architectures, such as autoencoders (see Section 7). This 
limitation arises because their performance is typically evaluated using the Kullback–Leibler (KL) or f -
divergences, which require absolute continuity between probability measures. Thus, it is crucial to select 
a divergence that remains flexible and inherently compatible with the structure of the data distrib ution. 

In this work, we demonstrate that the Lipschitz-regularized α-divergence, as proposed in [4, 15], is a 
suitable objective functional for generative modeling with minimal assumptions on the target distribution, 
denoted by Q from now on. First, we revisit the definition of the Lipschitz-regularized α-divergence 
between two distributions P and Q defined as: 

DL 
α(P‖Q) := sup 

γ∈LipL(Rd)

{
EP[γ ] − EQ[f ∗

α (γ ) ]
}

, (1.1) 

where LipL(Rd) is the class of L-Lipschitz functions on Rd; see more details in Section 3. In particular, 
we show that the Lipschitz-regularized α-divergences are suitable for stably learning a broad range of 
distributions from three perspectives: 

• Finiteness. The objective of generative modeling using (1.1) can be formulated as minθ D
L 
α(Pθ‖Q), 

where Pθ is the generated distribution parametrized by θ and Q is the target distribution. Thus, the 
divergence needs to be finite. On the contrary, an infinite or large divergence value can be an indicator 
of the divergence of an algorithm (see Table G1 in Appendix G). We prove that these divergences 
remain finite whenever the generated distribution has a finite first moment, with no assumptions 
necessary on the target distribution Q. When both distributions have power-law-decay densities, we 
provide sufficient and necessary conditions for the divergences to be finite. Notably, the Lipschitz-
regularized KL divergences require minimal assumptions on both the tails of the generated and the 
target distributions. 

• Existence of variational derivatives. To find the optimal parameter θ in the optimization 
minθ D

L 
α(Pθ‖Q), one often uses gradient-based algorithms. Formally, the gradient of DL 

α(Pθ‖Q) 
in terms of θ can be evaluated as 

∇θ DL 
α(Pθ‖Q) =

∫
δDL 

α(P‖Q) 
δP 

(Pθ (x)) · ∇θ Pθ (x) dx, (1.2) 
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ROBUST GENERATIVE LEARNING WITH LIPSCHITZ-REGULARIZED α-DIVERGENCES 3 

therefore it is essential that the variational derivative δDL 
α(P‖Q) 
δP is well-defined. We prove that these 

divergences have well-defined variational derivatives for any target distribution Q,  given  P has a 
finite first moment. This is a crucial property for stable optimizations in generative learning and the 
associated gradient flows, and it illustrates that algorithms using this class of divergences can stably 
learn distributions without extensive prior knowledge of the tail behaviour or density formulation of 
the target. In contrast, those using divergences without Lipschitz regularization generally can fail to 
learn (see Section 7). 

• Convergence of empirical estimations. As distributions are only accessible through their finite 
samples, it is important to know how fast the divergence between their empirical measures converges 
to the true value of the divergence. We prove the first result of empirical estimations of this class of 
divergences on Rd, and as a byproduct of the proof, we offer the first sample complexity bounds 
for empirical estimations of the Lipschitz-regularized α-divergences and the Wasserstein-1 metric 
with group invariance on Rd with sub-Weibull assumptions. The key to these results is the Lipschitz 
regularization, without which we cannot prov e such bounds. 

The rest of the paper is organized as follows. We review and discuss some related work in Section 2. 
Section 3 provides background and motivation for the proposed divergences. Finiteness results, including 
the variational derivatives and their gradient flow for the Lipschitz-re gularized α-divergences are 
presented in Section 4. Section 5 provides the first convergence rate for finite-sample estimations of 
these divergences in Rd. Based on the results and proofs from Section 5, in Section 6, we provide the 
first sample complexity bounds for empirical estimations of the Lipschitz-regularized α-divergences 
and the W asserstein-1 metric with group symmetry in Rd. Numerical experiments are detailed in 
Section 7 including synthetic heavy-tailed distributions, distributions on a low-dimensional manifold, 
real keystroke data and trajectories from the attractor of the Lorentz system, which is known to exhibit 
fractal properties. Finally, we conclude this paper in Section 8. 

2. Related w ork 

Generative models for heavy-tailed distributions. Although heavy-tailed distributions are common, 
there are few results to date in their generative modeling, primarily using GANs. For example, [53] 
generates heavy-tailed financial time series data by logarithmically transforming the data and then 
exponentiating the output, which produces distributions whose tails follow lognormal asymptotic rather 
than distributions with power-law tails considered in our paper. In a dif ferent approach, GANs are used 
for cosmological analysis [17], sharing a similarity with Pareto GANs [23] in their use of a heavy-tailed 
latent variable. However, both papers require accurate estimations of the tail decay rate for each marginal 
distribution. Exterme-Value (EV)-GANs [1] use neural network approximations of the quantile function 
to encode the tail decay rate in an asymptotic sense, which is essentially also a tail estimation approach. 
We note that the focus of our work is to devise appropriate divergences as objective functionals for 
comparing and learning heavy-tailed distributions stably, without prior knowledge of the tail behaviour . 

Generative models for distributions with low-dimensional structures. In [22, 28] it is rigorously 
shown that IPM-GANs are able to learn distributions with low-dimensional support. There are some 
other generati ve models that learn high-dimensional distributions from the lo w-dimensional latent space 
provided by auto-encoders [33, 51], such as Bidirectional GANs [14], Variational Auto-Encoders [26] 
and Generalized Denoising Auto-Encoders [3]. However, it is not clear if the low-dimensional latent 
space matches the low-dimensional structure of the data distribution and no convergence guarantees 
have been provided, and these results are largely empirical.
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4 Z. CHEN ET AL.

Empirical estimations of divergences. [37, 45, 48] estimate f -divergences using various assump-
tions and estimators, and [13] considers in particular the α-divergences. However, these studies either 
make additional structural assumptions or consider light tails or without establishing a convergence rate 
of the estimation. Recently , [31, 34] studied the convergence rate of entropic optimal transport (OT) 
and OT with smooth costs. While our proof of the convergence rate of the empirical estimations of 
the Lipschitz-regularized α-divergences is inspired by these works, the structure inherited from the α-
divergences in our study requires different, non-trivial treatment due to the nonlinear and asymmetric 
variational form, particularly as we consider e ven heavier tails. When the distributions are in variant to 
some group actions, [10] shows that empirical estimations of the Lipschitz-regularized α-divergences and 
the Wasserstein-1 metric enjoy a faster convergence using symmetry-informed estimators on bounded 
domains of Rd, and later [49] extends the result to closed Riemannian manifolds with group symmetry 
only for Sobolev-IPMs that are s ymmetric. 

Lipschitz-regularized divergences. The class of Lipschitz-regularized f -divergences w as first 
proposed in [15] in the context of Lipschitz-regularized KL-divergences with its first variation formula, 
under the assumptions that both the source and the target distributions have finite f irst moments. Later , 
[4] generalized it to the class of Lipschitz-regularized f -divergences and observed that GANs optimizing 
Lipschitz-regularized f -divergences outperform those optimizing either the Wasserstein-1 metric or the 
f -divergences in learning heavy-tailed distributions. In [20], under the assumption that Q has a finite 
first moment, the gradient flows of the Lipschitz-regularized α-divergences were introduced, using the 
variational derivatives to define a corresponding generative particle algorithm (GPA), outperforming 
other generative models in scarce and high-dimensional data regimes. In this paper , we provide the first 
theoretical explanations, not only for learning heavy-tailed distributions but also for learning distributions 
with manifold or fractal support, essentially making the generative modeling agnostic to the target data 
assumptions. 

3. Background 

Let P(Rd) be the space of probability measures on Rd.  A  map  D : P(Rd)×P(Rd) → [0, ∞]  is  called  
a divergence on P(Rd) if 

D(P, Q) = 0 ⇐⇒ P = Q ∈ P (Rd), (3.1) 

hence providing a notion of ‘distance’ between probability measures. In particular , the class of α-
di vergences [ 2, 21], denoted by Dα , which is a sub-class of f -divergences [11], is defined as 

Dα(P‖Q) :=
∫
Rd 

fα

(
dP 
dQ

)
dQ,  if  P 
 Q, (3.2) 

where fα(x) = xα−1 
α(α−1)

, with α  >  0 and α �= 1, and P 
 Q means P is absolutely continuous with respect 
to Q . When P is not absolutely continuous with respect to Q, w e write Dα(P‖Q) = ∞. 

REMARK 1. Note that the α-divergences can be equivalently defined as Dα(P‖Q) = ∫
f̃α( dP 

dQ ) dQ, where 
f̃α(x) = xα−x 

α(α−1) by noticing that
∫
(fα − f̃α)( dP 

dQ ) dQ = 0 for any P 
 Q. In the limiting case for f̃α(x) 
when α → 1, we have limα→1 

xα−x 
α(α−1) = x ln x, recovering the KL divergence. In this paper, we use 

fα(x) = xα−1 
α(α−1)

, and simply mean to replace fα in (3.2)  by  f (x) = x ln x whenever we refer to α = 1.
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ROBUST GENERATIVE LEARNING WITH LIPSCHITZ-REGULARIZED α-DIVERGENCES 5

The α-divergence can be equivalently formulated in its dual form [4, 39]  as  

Dα(P‖Q) = sup 
γ ∈Mb(R

d)

{
EP[γ ] − EQ[f ∗

α (γ )]
}

, ( 3.3) 

where Mb(R
d) is the set of bounded measurable functions and f ∗

α is the conv ex conjugate (Legendre 
transform) of fα , 

f ∗
α (y) =

{
α−1(α − 1) 

α 
α−1 y 

α 
α−1 1y>0 + 1 

α(α−1)
, α  >  1, 

∞1y≥0 +
(
α−1(1 − α)− α 

1−α |y|− α 
1−α − 1 

α(1−α)

)
1y<0, α ∈ ( 0, 1). 

(3.4) 

Compared to ( 3.3), the formulation of the Lipschitz-regularized α-divergences in (1.1) can be viewed as 
imposing Lipschitz regularization on the space of test functions in the variational form of α-divergences. 
In our work, we focus on the case when α  >  1  or  α = 1 (corresponding to the KL divergence). It has 
been proved in [4] that the Lipschitz-regularized α-divergence defined in (1.1) has an equivalent primal 
formulation 

DL 
α(P‖Q) = inf 

η∈P(Rd) 
{Dα(η‖Q) + L · W1(P, η)}, ( 3.5)  

where W1 is the Wasserstein-1 metric. One can easily verify that DL 
α satisfies the conditions for being 

a divergence using ( 3.5). Equation (3.5) can be viewed as the infimal convolution between the α-
divergence and the Wasserstein-1 metric. Though (1.1) is more often used in generative modeling as 
training objectives, its primal formulation is also theoretically very important. For example, we have 
from (3.5) that 

DL 
α(P‖Q) ≤ min{Dα(P‖Q), L · W1(P, Q)}. (3.6)  

In practical tasks, such as in generative modeling, we estimate the divergence from f inite samples of P 
and Q, where the absolute continuity assumption in ( 3.2) typically no longer holds. Meanwhile, DL 

α(P‖Q) 
is always finite if P and Q are discrete measures of finitely many points with possibly different support 
since DL 

α(P‖Q) ≤ L · W1(P, Q)  <  ∞ by (3.6). 
The following example shows that we can have a strict inequality in (3.6). 

EXAMPLE 1. Let P and Q be distributions on R such that 

p(x) = (1 + δ)x−(2+δ)1x≥1, q(x) = 
1 
2 

10≤x<1 + 
1 
x2 1x≥2 . 

Then neither Dα(P‖Q) nor W1(P, Q) is finite for any α  >  1, δ  >  0, while D L 
α(P‖Q)  <  ∞. 

Proof. Since P is not absolutely continuous with respect to Q,  we  have  Dα(P‖Q) =  ∞; applying 
the cumulative distribution function formula for the one-dimensional Wasserstein-1 distance, it is 
straightforward to see W1(P, Q) =  ∞  as Q does not have a finite first moment. Consider the formula
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6 Z. CHEN ET AL.

(3.5) and in particular, we design the intermediate probability measure as 

dη = (1 + δ)21+δx−(2+δ)1x≥2.  

Then we have 

Dα(η‖Q) =
∫ ∞ 

2 

(1 + δ)α2α(1+δ)x−αδ − 1 
α(α − 1)

· 1 
x2 dx < ∞,  

and 

W1(P, η) =
∫ 2 

1

∫ y 

1 
(1 + δ)x−(2+δ) dxdy 

+
∫ ∞ 

2

∣∣∣∣∫ y 

1 
(1 + δ)x−(2+δ) dx −

∫ y 

2 
(1 + δ)21+δx−(2+δ) dx

∣∣∣∣ dy 

=
∫ 2 

1 
1 − y−(1+δ)dy +

∫ ∞ 

2

∣∣∣(1 − y−(1+δ) ) − (1 − 21+δy−(1+δ) )
∣∣∣ dy 

=
∫ 2 

1 
1 − y−(1+δ)dy +

∫ ∞ 

2 
(21+δ − 1)y−(1+ δ)dy < ∞ . 

Therefore, DL 
α(P‖Q) ≤ D α(η‖Q) + L · W1(P, η) < ∞ . �

Example 1 is not a special example when DL 
α(P‖Q) is finite but neither Dα(P‖Q) nor W1(P, Q) is 

finite. In fact, DL 
α can be applied to much wider situations. As we will see in Theorem 2 and its proof, 

the Lipschitz regularization plays a key role. 
For the rest of the paper, we denote by Pk(R

d) the space of probability measures on Rd that have 
a finite kth moment, k ≥ 1 and we assume that k can be a non-integer; we also denote by P<k(R

d) the 
space of probability measures on Rd that have a finite sth moment for any s < k . 

4. Finiteness and variational derivatives of DL 
α 

In generative modeling, the goal is to approximate a target data distribution Q by a generated distribution 
Pgθ , where gθ is typically a neural net parametrization. A specific divergence between the target and the 
generated distributions is often chosen as the loss function. We want to build the best approximation Pgθ∗ 
of Q using the optimization of a probability divergence or metric: 

gθ∗ = arg min 
gθ∈G 

D
(

Pgθ , Q
)

≈ Q, (4.1) 

where G is a family of neural nets with certain constraints on the parameters θ . To optimize or minimize 
this loss, it is essential to ensure that the loss function or divergence is finite. I n Section 4.1,  we  first  
demonstrate that when P has a finite first moment, DL 

α(P‖Q) remains finite without requiring any 
assumptions on Q. In Section 4.2, assuming P and Q have densities and tails, we provide necessary 
and sufficient conditions for DL 

α(P‖Q) to be finite.
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ROBUST GENERATIVE LEARNING WITH LIPSCHITZ-REGULARIZED α-DIVERGENCES 7

4.1 Minimal assumptions on the tar get Q 

We make the following assumption on P and Q for this subsection. 

Assumption 1. Let P and Q be arbitrary probability measures on Rd. In addition, we assume that P has 
a finite first moment, i.e. P ∈ P1(R

d). 

We show in Theorem 2 that DL 
α(P‖Q) is finite whenever P ∈ P1(R

d) without any assumption on Q. 
This includes cases when Q has heavy tails, even without a finite first moment, and when Q is supported 
on a low-dimensional manifold and does not have a density. Before stating and proving the theorem, we 
need the following lemma for measures that are not necessarily probability measures that generalizes 
Lemma A.12 in [10], and the proofs are the same in essence. 

LEMMA 1. For α  >  1 and any non-negative measures P and Q defined on some bounded Ω ⊂ R d with 
non-zero integrals, Γ = LipL(Ω),  w  e  have  

sup 
γ∈Γ

{∫
Ω 

γ  (x) dP −
∫

Ω 
f ∗
α [γ  (x)] dQ

}
= sup 

γ ∈F

{∫
Ω 

γ  (x) dP −
∫

Ω 
f ∗
α [γ  (x)] dQ

}
, (4.2) 

where 

F =
{

γ ∈ LipL(Ω) : ‖γ ‖∞ ≤ (α − 1)−1
( ∫

Ω dP∫
Ω dQ

)α −1 
+ L · diam(Ω) 

}
. 

Proof of Lemma 1. For any fixed γ ∈ Γ , define 

h(ν) =
∫

Ω 
(γ  (x) + ν) dP −

∫
Ω 

f ∗
α [γ  (x) + ν] dQ .  

Since supx∈Ω γ  (x) − infx∈Ω γ  (x) ≤ L · diam(Ω), interchanging the integration with differentiation is 
allowed by the dominated convergence theorem: 

h′(ν) =
∫

Ω 
dP −

∫
Ω 

f ∗′
α (γ + ν) dQ ,  

where 

f ∗′
α (y) = (α − 1) 

1 
α−1 y 

1 
α−1 1y>0. (4.3) 

If infx∈Ω γ  (x)  >  (α  − 1)−1
( ∫

dP∫
dQ 

)α−1 
, then h′(0)  <  0. So there exists some ν0 < 0 such that h(ν0)  >  

h(0). This indicates the supremum on the left side of ( 4.2) is attained only if supx∈Ω γ  (x) ≤ (α − 

1)−1
( ∫

dP∫
dQ

)α−1 + L · diam(Ω). On the other hand, if supx∈Ω γ  (x)  <  0, then there exists ν0 > 0 that
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8 Z. CHEN ET AL.

satisfies supx∈Ω γ  (x) + ν0 < 0 such that

∫
Ω

(
γ  (x) + ν0

)
dP −

∫
Ω 

f ∗
α [γ  (x) + ν0] dQ =

∫
Ω

(
γ  (x) + ν0

)
dP 

>

∫
Ω 

γ  (x) dP 

=
∫

Ω 
γ  (  x) dP −

∫
Ω 

f ∗
α [γ  (x) ] dQ .  

This indicates that the supremum on the left side of (4.2) is attained only if infx∈Ω γ  (x) ≥ −L ·diam(Ω). 
Therefore, we have that the supremum on the left side of (4.2) is attained only if ‖γ ‖∞ ≤ (α − 

1)−1
( ∫

dP∫
dQ

)α−1 + L · diam(Ω) . �

THEOREM 2. Suppose α ≥ 1  (α = 1 refers to the KL) and P, Q satisfy Assumption 1, namely P ∈ 
P1(R

d), then DL 
α (P‖Q)  <  ∞. 

The key is the Lipschitz regularization, without which the result will not be true; see the proof below . 

Proof. We first prove the case when α  >  1. Let Γ = LipL(Rd), and we have 

DL 
α(P‖Q) = sup 

γ ∈Γ

{∫
γ  (x) dP −

∫
f ∗
α [γ  (x)] dQ

}

≤ sup 
γ ∈LipL(‖x‖<R)

{∫
‖x‖<R 

γ  (x) dP −
∫

‖x‖<R 
f ∗
α [γ  (x)] dQ

}

+ sup 
γ ∈LipL(‖x‖≥R)

{∫
‖x‖≥R 

γ  (x) dP −
∫

‖x‖≥R 
f ∗
α [γ  (x)] dQ

}
:= I 1 + I 2.  

For I 1, by Lemma 1,  we  have  

I1 ≤ C
∫

‖x‖<R 
dP +

(
α−1(α − 1) 

α 
α−1 C 

α 
α−1 + α−1(α − 1)−1

) ∫
‖x‖<R 

dQ < ∞,  

where C = (α − 1)−1
( ∫

‖x‖<R dP∫
‖x‖<R dQ

)α−1 
+ 2LR. 

Now we prove that I2 < +∞.  Let  M(γ ) = sup‖x‖=R |γ  (x)|, where γ ∈ LipL(‖x‖ ≥ R).  We  show  
that there e xists some M > 0 such that 

I2 = sup 
γ∈G

{∫
‖x‖≥R 

γ  (x) dP −
∫

‖x‖≥R 
f ∗
α [γ  (x)] dQ

}
, (4.4) 
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ROBUST GENERATIVE LEARNING WITH LIPSCHITZ-REGULARIZED α-DIVERGENCES 9 

where 

G = {
γ ∈ LipL(‖x‖ ≥ R) : M(γ ) ≤ M

}
. (4.5) 

Indeed, we have for any γ ∈ LipL(‖x‖ ≥ R),∫
‖x‖≥R 

γ  (x) dP −
∫

‖x‖≥R 
f ∗
α [γ  (x)] dQ 

=
∫

R≤‖x‖<2R 
γ  (x) dP −

∫
R≤‖x‖<2R 

f ∗
α [γ  (x)] dQ 

+
∫

‖x‖≥2R 
γ  (x) dP −

∫
‖x‖≥2R 

f ∗
α [γ  (x)] dQ 

≤
∫

R≤‖x‖<2R 
γ  (x) dP −

∫
R≤‖x‖<2R 

f ∗
α [γ  (x)] dQ +

∫
‖x‖≥2R 

γ  (x) dP 

≤ (M(γ ) + LR)

∫
R≤‖x‖<2R 

dP −
∫

R≤‖x‖<2R 
f ∗
α (M(γ ) − 3LR) dQ 

+
∫

‖x‖≥2R 
(M(γ ) + LR + L ‖x‖) dP 

= LR
∫

‖x‖≥R 
dP + L

∫
‖x‖≥2R

‖x‖ dP + M(γ )
∫

‖x‖≥R 
dP 

− f ∗
α (M(γ ) − 3LR)

∫
R ≤‖x‖<2R 

dQ  ,  

where the last inequality is due to the fact that γ  (x) is L-Lipschitz and that for any x : ‖x‖ ≥ R,  we  have  
|γ  (x) − M(γ )| ≤ L(R+‖x‖). The first two terms are finite and are independent of γ since P ∈ P1(R

d). 
For the difference between the last tw o terms, we have 

lim 
M(γ )→+∞ M(γ )

∫
‖x‖≥R 

dP − f ∗
α (M(γ ) − 3LR)

∫
R≤‖x‖<2R 

dQ = −∞, 

since the exponent of x in f ∗
α (x) is α 

α−1 > 1. This indicates that the supremum in I2 should be taken over 
γ such that M(γ ) ≤ M for some M > 0. Therefore, 

I2 = sup 
γ ∈G

{∫
‖x‖≥R 

γ  (x) dP −
∫

‖x‖≥R 
f ∗
α [γ  (x)] dQ

}

≤ sup 
γ∈G

∫
‖x‖≥R 

γ  (x) dP 

≤ sup 
γ∈G

∫
‖x‖≥R 

(LR + L ‖x‖ + M(γ )) dP 

≤
∫

‖x‖≥R

(
LR + L ‖x‖ + M

)
dP < ∞.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

aiai/article/14/4/iaaf028/8276965 by U
niversity of M

assachusetts - Am
herst (inactive) user on 28 O

ctober 2025



10 Z. CHEN ET AL. 

For α = 1, we bound I1 using a similar Lemma B1 in Appendix B, and the bound for I2 can be derived 
exactly in the same way as for α  >  1 by replacing f ∗

α by f ∗
KL. �

REMARK 2. Lemma 1 and Theorem 2 indeed work for any Lipschitz-regularized f -divergences, if f ∗,  the  
convex conjugate of f , is bounded below and superlinear, i.e. limx→∞ 

f ∗(x) 
x = ∞  . 

REMARK 3. Theorem 2 has important implications in generative modeling that one can learn a data 
distribution Q, without any prior knowledge of whether Q has heavy tails (even without a finite first 
moment) or lies on a low-dimensional manifold such that Q does not have a density, whenever P has a 
finite first moment, which is a very weak assumption; e.g. P can start with the Gaussian which is very 
easy to sample from. In this sense, the generative learning task can be agnostic to the structure of the 
data distribution using Lipschitz-regularized α -divergences as the objecti ve functionals. 

In what follows, we discuss the applicability of two generative models based on Theorem 2. Their 
numerical implementations can be seen in several numerical examples in Section 7. 

Lip-α-GANs GANs based on the Lipschitz-regularized α-divergences, abbreviated as Lip-α-GANs, 
can be formulated as 

inf 
g∈G 

DL 
α(g
P‖Q) = inf 

g∈G 
sup 

γ∈LipL(Rd)

{
Eg
P[γ ] − EQ[f ∗

α (γ )]
}

, (4.6) 

where P is the initial source distribution, typically chosen as a Gaussian, and Q is the target data 
distribution, and G is the class of generators, and g
P is the push-forward measure of P by the map g . 
Theorem 2 informs us that we can learn any probability measure Q if g
P ∈ P1(R

d); e.g. the generator 
can be realized using a ReLU network with a Gaussian source distribution as P. Key to obtaining the 
optimal generator is calculating the gradient of the loss relative to generator parameters, sho wn by the 
chain rule (Regarding the chain rule calculation (4.7), we also refer to a related formal calculation in 
Sec. 3.3 of [38]): 

∇θ DL 
α(Pgθ

‖Q) =
∫

δDL 
α(P‖Q) 
δP 

(Pgθ (x)) · ∇θPgθ (x) dx, (4.7)  

where δDL 
α(P‖Q) 
δP is the variational derivative or the first variation of D L 

α(P‖Q), formally def ined in 
Theorem 3. Therefore, even with a well-designed neural network architecture for the generator gθ , 
a robust and well-defined variational derivative δDL 

α(P‖Q) 
δP (Pgθ (x)) is crucial for stable and effecti ve 

optimization in the parameter θ because it directly impacts the parameter gradient ∇ θ DL 
α(Pgθ

‖Q) via 
(4.7), otherwise computing ∇θ DL 

α(Pgθ , Q) could become unstable, leading to erratic parameter updates 
that hinder convergence. While GANs use discriminators rather than explicit v ariational derivatives, 
Theorem 3 shows that the finiteness of a variational derivative can provide mathematical insight into 
GAN training. On the other hand, it is worth noting that, in light of (3.5), DL 

α offers advantages over both 
D α and W1: 

• The variational derivative does not exist in general for the Wasserstein-1 metric alone (as is used 
in WGANs). For example, let P = δx1 and Q = δx2 be two Dirac delta distributions centered at 
points x1 and x2 in R with the usual distance function. Then the variational derivative in the sense of 

D
ow

nloaded from
 https://academ

ic.oup.com
/im

aiai/article/14/4/iaaf028/8276965 by U
niversity of M

assachusetts - Am
herst (inactive) user on 28 O

ctober 2025



ROBUST GENERATIVE LEARNING WITH LIPSCHITZ-REGULARIZED α-DIVERGENCES 11 

Theorem 3 has a discontinuity: 

∂ 
∂ε

∣∣x1 − x2 + εv
∣∣ ∣∣∣

ε=0 
=
{

v, ifx1 − x2 > 0, 
−v,  i  fx1 − x2 < 0. 

• Unregularized f -divergences (such as the KL-divergence) may yield large variational derivatives 
when Pgθ and Q do not overlap significantly, potentially causing gradient spikes. This instability can 
lead to large, uncontrolled updates in θ , which might result in mode collapse or oscillations in GAN 
training. In contrast, the Lipschitz-regularized α-divergences always have well-defined variational 
derivatives by Theorem 3 . For example, let P = N (μ1, σ)  and Q = N (μ2, σ)  be two univariate 
Gaussians with different means but the same variance. Then through a direct calculation, we have 
DKL(P‖Q) = −(μ1−μ2)

2 

2σ 2 , so that dDKL(P‖Q) 
dμ1 

= −(μ1−μ2) 
σ 2 . We can think of P and Q do not overlap 

significantly if μ1−μ2 has a large magnitude and σ is small, so that both DKL(P‖Q) and its derivative 
in μ 1 will have a large magnitude. 

Gradient flows of DL 
α . To further illustrate the significance of Theorem 2, we provide perspectives 

from the Wasserstein gradient flows of DL 
α for a feasible distribution learning task. As a particular case of 

the Lipschitz-regularized gradient flows proposed in [20], the Lipschitz-regularized α-divergences can 
be used to construct gradient flows of the form 

∂tPt = div

(
Pt∇ 

δDL 
α(Pt‖Q) 
δPt 

)
, ( 4.8) 

for an initial source probability measure P0 and a target measure Q, where δDL 
α( P‖Q) 
δP is the first variation 

of DL 
α(P ‖Q), defined in Theorem 3. This type of gradient flows was inspired by the gradient flo ws 

in the 2-Wasserstein space of probability measures in [24, 42]. In [20], the first variation form of 
DL 

α(P‖Q) is proved under the assumption that both P, Q ∈ P1(R
d). In Theorem 3, we extend it to 

the case when we only require P ∈ P1(R
d) b ut impose no assumptions on Q. This corresponds to 

the condition in Theorem 2. The key to the extension is our Lemma E3 and the proof can be found in 
Appendix C. 

THEOREM 3. Under Assumption 1, namely P ∈ P1(R
d) and Q can be any probability measure, 

we define 

γ � := arg max 
γ∈LipL(Rd)

{
EP[γ ] − EQ[f ∗

α (γ )]
}

, (4.9)  

where the optimizer γ � ∈ LipL(Rd) exists, and is defined on supp(P) ∪ supp(Q), and is unique. 
Subsequently, we can extend γ � to all of Rd as γ̂ with the same Lipschitz constant. Let ρ be a signed 
measure of total mass 0 and let ρ = ρ+ − ρ−, where both ρ± ∈ P1(R

d) are non-negative and mutually 
singular. If P + ερ ∈ P1(R

d) for sufficiently small ε >  0, then 

lim
ε→0 

1

ε

(
DL 

α(P + ερ‖Q) − DL 
α(P‖Q)

)
=
∫

γ̂ dρ, (4.10) 
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12 Z. CHEN ET AL. 

and we write 

δDL 
α(P‖Q) 
δP 

(P) =  ̂  γ . ( 4.11)  

As a result, Theorem 3 provides a reformulation of (4.8)  as  i  n  [20]: 

∂tPt + div(Ptv
L 
t ) = 0, P0 = P ∈ P1(R

d), 

vL 
t = −∇γ �

t , γ �
t = arg max 

γ∈LipL(Rd)

{
E Pt [γ ] − EQ[f ∗

α (γ ) ]
}

. (4.12) 

Moreover, Theorem 2 in [ 20] tells us that if Pt is sufficiently smooth, then we have 

d 
dt 

DL 
α(Pt‖Q) = −Iα(Pt‖Q ) ≤ 0, (4.13) 

where Iα(Pt‖Q) is the Lipschitz-regularized Fisher Information: 

Iα(Pt‖Q) := EPt [
∣∣∇γ �

t

∣∣2 ]. 

Then for any T ≥ 0, we have 

DL 
α(PT‖Q) = DL 

α(P0‖Q) −
∫ T 

0 
Iα(Ps‖Q) ds ≤ DL 

α(P0‖Q) . (4.14) 

Therefore, both the finiteness and the variational derivative of DL 
α(P0‖Q) are crucial for the divergence to 

dissipate from the gradient flow perspective. While the convergence of the gradient flow is also important, 
we do not address its partial differential equations (PDE) theory in this work, b ut rather its feasibility to 
learn an y distribution Q . 

4.2 When P and Q have densities and heavy tails 

In this subsection, we show that DL 
α is applicable to comparing heavy-tailed distributions, by providing 

necessary and sufficient conditions that relate the tail behaviours of P and Q with α. This also provides 
insights into the selection of suitable α’s. For this purpose, including cases when P /∈ P1(R

d) –compare 
to Theorem 2–we make the following assumptions on P and Q . 

ASSUMPTION 2. Let P and Q be distributions on Rd whose densities p(x) and q(x) are absolutely 
continuous with respect to the Lebesgue measure. However, P and Q are not necessarily absolutely 
continuous with respect to each other on some bounded subset. 

DEFINITION 1. For a pair of distributions (P, Q) on Rd, we say they are of heavy-tail (β1, β2), β 1, β2 > d, 
if there exists some R > 0, such that 

p(x) � ‖x‖−β1 , q(x) � ‖x‖−β2 ,
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ROBUST GENERATIVE LEARNING WITH LIPSCHITZ-REGULARIZED α-DIVERGENCES 13 

for ‖x‖ ≥ R. That is, there exist constants 0 < cp,1 ≤ cp,2 and 0 < cq,1 ≤ cq,2 such that 

cp,1 ‖x‖−β1 ≤ p(x) ≤ cp,2 ‖x‖−β1 , cq,1 ‖x‖−β2 ≤ q(x) ≤ c q,2 ‖x‖−β2 , 

for ‖x‖ ≥ R.  

Then we prove the following necessary and sufficient conditions on the tail behaviours of (P, Q) 
for DL 

α(P‖Q) to be finite. The proof makes extensive use of the variational formula (1.1) and Lipschitz 
regularization and is provided in Appendix D. 

THEOREM 4 (Necessary and sufficient conditions for DL 
α < ∞, α  >  1). Suppose α  >  1, and (P, Q) are 

distributions on Rd of heavy-tail (β1, β2) . Then DL 
α(P‖Q)  <  ∞ if and only if one of the following two 

conditions holds: 
(i) d <  β1 ≤ d + 1 and β2 − β1 < β1−d 

α−1 ; 

(ii) β1 > d + 1. 

REMARK 4. We can relax the assumption in Definition 1 to allow different tail behaviour in different 
directions as follows. Let Ωk be a finite partition of the spherical coordinates [0, π ]d−2 × [0, 2π), where 
each Ωk has non-zero Lebesgue measure of [0, π ]d−2 × [0, 2π). We can assume that p(x) � ‖x‖−β1,k 

and q(x) � ‖x ‖−β2,k on each Ωk. Then the DL 
α(P‖Q)  <  ∞ if and only if β1,k and β2,k satisfy one of the 

conditions of Theorem 4 on each Ωk. The proof is the same as that of Theorem 4 constrained on each 
Ωk. This relaxation can be adopted in the same way for Theorem 5 and Corollary 6. 

For the Lipschitz-regularized KL-divergence, we have the following result whose proof can be found 
in Appendix D. 

THEOREM 5 (Necessary and sufficient conditions for DL 
KL < ∞). Suppose α = 1 (the KL case), and 

(P, Q) are distributions on Rd of heavy-tail (β1, β2), then DL 
KL(P‖Q)  <  ∞ for any β1, β2 > d . 

REMARK 5. Since β1, β2 > d are the minimal assumptions for P and Q to be probability distributions, 
Theorem 5 suggests that using the Lipschitz-regularized KL-divergence is the most robust choice, as it 
can be agnostic to both the tails of P and Q, compared to the conditions in Theorem 4. 

In cases where both P and Q lie on a low-dimensional submanifold, we hav e the following corollary. 
The proof can be found in Appendix D. 

COROLLARY 6 (Necessary and sufficient conditions on embedded submanifolds). Let M be a d∗-
dimensional smooth embedded submanifold of Rd via an L∗-Lipschitz embedding ϕ : Rd∗ → Rd with 
M = ϕ(Rd∗ 

) for d∗ < d. Suppose (P, Q) are of heavy-tail (β1, β2) on Rd∗ 
, and let pM and qM be their 

push-forward distributions on M , i.e. pM = p◦ϕ−1 and qM = q◦ϕ−1. Then the Lipschitz-re gularized 
α-divergence between pM and qM , defined as 

DL 
α(pM ‖qM ) = sup 

γ∈LipL(Rd)

{
EpM 

[γ ] − EqM 
[f ∗

α (γ )]
}

,
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14 Z. CHEN ET AL.

is finite if and only if one of the following two conditions holds for α  >  1: 
(1) d∗ <  β1 ≤ d∗ + 1 and β2 − β1 < β 1−d∗ 

α−1 ; 

(2) β1 > d∗ + 1; 

and DL 
α(pM ‖qM )  <  ∞ for any β1, β2 > d∗ if α = 1. 

REMARK 6. The Lipschitz condition on the embedding ϕ is necessary to guarantee that the tails of p M 
and qM do not become heavier than those of p and q. 

5. Lipschitz regularization implies finite-sample estimation of D L 
α on Rd 

In practice, we only have finite i.i.d. samples drawn from P and Q. We denote by X = {x1, .  .  . , xm} and 
Y = {y1, .  .  .  , yn} the i.i.d. samples from P and Q, with empirical distributions Pm = 1 

m

∑m 
i=1 δxi and Qn = 

1 
n

∑n 
j=1 δyj , respectively. Thus it is essential to provide guarantees for how f ast DL 

α(Pm‖Qn) converges 
to DL 

α(P‖Q) in average. This type of convergence rate for the Lipschitz-regularized α-divergences has 
been proved in [10] on bounded domains of Rd. Here, we derive the first result of the convergence of 
the finite-sample estimations on the unbounded domain R d, under certain tail conditions. The result for 
d ≥ 3 is stated below, with its proof deferred to Appendix E. The results for d = 1, 2 can be found as 
and in Appendix E. 

THEOREM 7 (Finite sample estimation of DL 
α on Rd). Assume d ≥ 3. For α  >  1, let P and Q be probability 

measures on Rd such that P ∈ P<β1−d(R
d) and Q ∈ P<β2−d(R

d), where β1 > 3d and β2 > 5d. 
Suppose α satisfies 2dα 

α−1 <  β1 − d and 2α 
α−1 < β2 

d − 3. Then we have 

EX,Y

∣∣∣DL 
α(Pm‖Qn) − DL 

α(P‖Q)

∣∣∣ ≤ 
C1 

m1/d + 
C2 

n1/d , (5.1)  

where C1 depends on M d 
d−1 

(P) and C2 depends on M 2dα 
α−1 

(P), M 2dα 
α−1 

(Q), and Mdr2 (Q) for any 2 + 2α 
α−1 < 

r2 < β2 
d − 1. Here, we use Mr(P) to denote the rth moment of P.  Both  C1 and C 2 are independent of 

m, n, but they depend on L such that C1, C2 → ∞ when L → ∞. 

REMARK 7. The key to proving Theorem 7 is to leverage the Lipschitz condition of the test functions in 
the variational form (1.1). 

6. Finite-sample estimations of DL 
α and W1 with group symmetry on Rd 

Based on Theorem 7 and its proof, we are able to consider one special situation when the distributions 
are invariant with respect to some group symmetry and to provide convergence results for the empirical 
estimations of DL 

α with group symmetry in Rd. Empirical estimations of div ergences with group 
symmetry have been studied in [10, 49] on bounded domains of Rd or on closed Riemannian manifolds. 
Here we provide the first sample complexity bound with group symmetry on unbounded domains, in 
particular, for DL 

α and later f or W1 in this section. Before presenting the theorems, we first briefly review 
the related concepts of group symmetry. Readers of interest can refer to [5, 10, 49] for more details. We 
leave all the proofs for this section in Appendix F.
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ROBUST GENERATIVE LEARNING WITH LIPSCHITZ-REGULARIZED α-DIVERGENCES 15

A group is a set G equipped with a group product satisfying the axioms of associativity, identity and 
invertibility. Given a group G and a set X ⊂ Rd,  a  map  θ : G×X → X is called a group action on X 
if θg := θ(g, ·) : X → X is an automorphism on X for all g ∈ G, and θg2 ◦ θg1 = θg2·g1 , ∀g1, g2 ∈ G. 
By convention, we will abbreviate θ(  g, x) as gx. We make the follo wing assumptions on G. 

ASSUMPTION 3. For any g ∈ G and x ∈ Rd, θg(x) = Ag · x , for some unitary matrix Ag ∈ Rd×d. 

A function γ : X → R is called G-invariant if γ ◦ θg = γ , ∀g ∈ G.  Let  Γ be a set of measurable 
functions γ : X → R; its subset, ΓG,  of  G-invariant functions is defined as 

ΓG := {γ ∈ Γ : γ ◦ θg = γ , ∀g ∈ G}. ( 6.1) 

On the other hand, a probability measure P ∈ P(X ) is called G-invariant if P = (θg)
P, ∀g ∈ G, where 
(θg)
P := P ◦ (θg )

−1 is the push-forward measure of P under θg. We denote the set of all G-invariant 
distributions on X as PG(X ) := {P ∈ P(X ) : P is G-invariant}.  For  P, Q ∈ PG(X ),  [  10] proposes 
the following symmetry-informed estimator 

DL,G 
α (Pm‖Qn) := sup 

γ∈LipG 
L (R

d) 
{EPm [γ ] − EQn [f

∗
α (γ ) ]} (6.2)  

for DL 
α(P‖Q), where LipG 

L (R
d) ⊂ LipL(Rd) that consists of G-invariant L-Lipschitz functions. It is shown 

in Theorem 4.6 in [ 5] that when Pm, Qn are replaced by P, Q ∈ PG(X ) in (6.2), we have DL,G 
α (P‖Q) = 

DL 
α(P‖Q); i.e. the divergence value between P and Q does not change if the supremum is taken ov er 

LipG 
L (R

d) ⊂ LipL(Rd) when both P and Q are G -invariant. 
In particular, we consider the case when both P and Q are sub-Weibull, defined as follows. 

DEFINITION 2 (sub-Weibull distributions). We call a distribution P ∈ P( Rd) sub-Weibull, if 

Pr(x ∼ P : ‖x‖ ≥ r) ≤ a exp(−br1/θ ) for allr > 0, for somea, b, θ  >  0. (6.3) 

REMARK 8. Sub-Gaussian and sub-exponential distributions are special e xamples of sub-Weibull distri-
butions. 

The following definition of intrinsic dimension is adopted from the capacity dimension from [25]. 

DEFINITION 3. The intrinsic dimension of a bounded X ⊂ RD, denoted by dim(X ), is defined as 

dim(X ) := −  lim
ε→0+ 

ln N (X , ε) 
log ε

, ( 6.4) 

where N (X , ε) is the covering number of X with ε-balls in the standard Euclidean metric of Rd. 

For example, if X ⊂ RD has non-empty interior, then dim(X ) = D;  if  X is a d-dimensional 
submanifold of RD, then dim (X ) = d. 

We have the following theorem for the empirical estimation of DL 
α with group symmetry on 

unbounded domains.
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16 Z. CHEN ET AL.

THEOREM 8 (Finite sample estimation of DL 
α with finite group symmetry). For α  >  1, let P, Q ∈ PG(X ) 

for some X ⊂ Rd, where G satisfies Assumption 3. Suppose the quotient space X /G is connected, and 
for any bounded X0 ⊂ X /G with non-empty interior with respect to the subspace topology (X /G ↪→ 
R

d). Let |G| < ∞ be the cardinality of G, and we further assume that both P and Q are sub-Weibull on 
R

d. Then 

• If dim(X0) = d∗ ≥ 3, we have 

EX,Y

∣∣∣DL,G 
α (Pm‖Qn) − DL 

α(P‖Q)

∣∣∣ ≤ C1 
(|G| m)1/d∗ + C2 

(|G| n)1 /d∗ ; ( 6.5) 

• If dim(X0) = d∗ = 2, we have 

EX,Y

∣∣∣DL,G 
α (Pm‖Qn) − DL 

α(P‖Q)

∣∣∣ ≤ 
C1 ln m 

(|G| m)1/2 + 
C2 ln n 

( |G| n)1/2 ; (6.6) 

• If dim(X0) = d∗ = 1, we have 

EX,Y

∣∣∣DL,G 
α (Pm‖Qn) − DL 

α(P‖Q)

∣∣∣ ≤ C1 
(|G| m)1/2 +

C2 
(|G| n) 1/2 , ( 6.7) 

where C1 and C2 depend on Md(P), Md(Q).  Bot  h  C1 and C2 are independent of m, n and G . 

When G is a continuous group, we ha ve the follo wing theorem. 

THEOREM 9 (Finite sample estimation of DL 
α with infinite group symmetry). For α  >  1, let P, Q ∈ 

PG(X ) for some X ⊂ Rd, where G satisfies Assumption 3. Suppose the quotient space X /G is 
connected, and for any bounded X0 ⊂ X /G with non-empty interior with respect to the subspace 
topology (X /G ↪→ Rd). Assume that both P and Q are sub-Weibull on Rd. Then 

• If dim(X0) = d∗∗ ≥ 3, we have 

EX,Y

∣∣∣DL,G 
α (Pm‖Qn) − DL 

α(P‖Q)

∣∣∣ ≤ 
C1 

m1/d∗∗ + 
C2 

n1/d∗∗ ; (6.8) 

• If dim(X0) = d∗∗ = 2, we have 

EX,Y

∣∣∣DL,G 
α (Pm‖Qn) − DL 

α(P‖Q)

∣∣∣ ≤ 
C1 ln m 

m1/2 + 
C2 ln n 

n1/2 ; (6.9) 

• If dim(X0) = d∗∗ = 1, we have 

EX,Y

∣∣∣DL,G 
α (Pm‖Qn) − DL 

α(P‖Q)

∣∣∣ ≤ 
C1 

m1/2 + 
C2 

n1/2 , (6.10) 

where C1 and C2 depend on Md(P), Md(Q).  Both  C 1 and C2 are independent of m, n. 
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ROBUST GENERATIVE LEARNING WITH LIPSCHITZ-REGULARIZED α-DIVERGENCES 17

REMARK 9. If X is a d∗-dimensional connected submanifold of Rd, and G is a compact Lie group acting 
locally smoothly on X , then d∗∗ = d −dim(G) , where dim(G) is the dimension of a principal orbit (i.e. 
the maximal dimension among all orbits) by Theorem IV 3.8 in [6]. 

The proofs of Theorems 8 and 9 also imply the convergence bound for the Wasserstein-1 distance 
with group symmetry on unbounded domains, since the variational form is shift-invariant with respect to 
the test function. We consider the symmetry-informed estimator for P, Q ∈ PG(X ), proposed in [10, 
49], defined as 

WG 
1 (Pm, Qn) := sup 

γ∈LipG 
L (R

d) 
{EPm [γ ] − EQn [γ ] } (6.11) 

for W1(P , Q). 

THEOREM 10 (Finite sample estimation of W1 with finite group symmetry). Let P, Q ∈ PG(X ) for s ome 
X ⊂ Rd, where G satisfies Assumption 3. Suppose the quotient space X /G is connected, and for any 
bounded X0 ⊂ X /G with non-empty interior with respect to the subspace topology (X /G ↪→ Rd). 
Let |G| < ∞ be the cardinality of G, and we further assume that both P and Q are sub-Weibull on Rd. 
Then 

• If dim(X0) = d∗ ≥ 3, we have 

EX,Y

∣∣∣WG 
1 (Pm, Qn) − W1(P, Q)

∣∣∣ ≤ 
C1 

(|G| m)1/d∗ + C2 
(|G| n) 1/d∗ ; ( 6.12) 

• If dim(X0) = d∗ = 2, we have 

EX,Y

∣∣∣WG 
1 (Pm, Qn) − W1(P, Q)

∣∣∣ ≤ 
C1 ln m 

(|G| m)1/2 + 
C2 ln n 

( |G| n)1/2 ; ( 6.13) 

• If dim(X0) = d∗ = 1, we have 

EX,Y

∣∣∣WG 
1 (Pm, Qn) − W1(P, Q)

∣∣∣ ≤ 
C1 

(|G| m)1/2 +
C2 

(|G| n )1/2 , (6.14)  

where C1 and C2 depends on Md(P), Md(Q).  Bot  h  C1 and C2 are independent of m, n and G . 

When G is a continuous group, we ha ve the follo wing theorem. 

THEOREM 11 (Finite sample estimation of W1 with infinite group symmetry). Let P, Q ∈ PG( X ) for 
some X ⊂ Rd, where G satisfies Assumption 3. Suppose the quotient space X /G is connected, and for 
any bounded X0 ⊂ X /G with non-empty interior with respect to the subspace topology (X /G ↪→ Rd). 
Assume that both P and Q are sub-Weibull on Rd. Then we have 

• If dim(X0) = d∗∗ ≥ 3, we have 

EX,Y

∣∣∣WG 
1 (Pm, Qn) − W1(P, Q)

∣∣∣ ≤ 
C1 

m1/d∗∗ + 
C2 

n1/d∗∗ ; (6.15) 
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18 Z. CHEN ET AL.

• If dim(X0) = d∗∗ = 2, we hav e 

EX,Y

∣∣∣WG 
1 (Pm, Qn) − W1(P, Q)

∣∣∣ ≤ 
C1 ln m 

m1/2 + 
C2 ln n 

n1/2 ; (6.16) 

• If dim(X0) = d∗∗ = 1, we hav e 

EX,Y

∣∣∣WG 
1 (Pm, Qn) − W1(P, Q)

∣∣∣ ≤ 
C1 

m1/2 + 
C2 

n1/2 , (6.17)  

where C1 and C2 depend on Md(P), Md(Q).  Both  C 1 and C2 are independent of m, n. 

REMARK 10. Although the multiplicative constants in Theorems 10 and 11 are not optimal, but the rate 
is optimal compared to Theorem 1 in [18]  for  W1, when d∗ or d∗∗ are greater than or equal to three, or 
equal to one. 

7. Numerical experiments 

In this section, we demonstrate how using the Lipschitz-regularized α-divergences as objective func-
tionals enables stable learning of heavy-tailed distributions and distributions with low-dimensional 
manifolds or fractal structures with v arious generative models. Note that the Lipschitz-regularized α-
divergences have an equivalent primal formulation in (3.5), which can be viewed as α-divergences 
with W1-proximal regularization. One may consider replacing the W1-proximal regularization with a 
W2-proximal regularization, where W2 is the Wasserstein-2 distance, as the W2 distance and proximal 
regularization is widely used in generative modeling; e.g. see [41, 52]. The α-divergences with W2-
proximal regularization are defined as 

Dλ 
α,2(P‖Q) := inf 

η∈P(Rd) 
{Dα(η‖Q) + λ · W2 

2 (P , η)}. (7.1)  

In Section 7.1, we introduce the generative models used and explain how their learning objectives relate 
to α-divergences with W1 or W2 proximals. We illustrate our points with four examples. In Section 7.2, 
we compare the effects of incorporating W1 or W2 proximals in the learning objectives by training 
on a two-dimensional Student-t distribution and on a real-world keystroke dataset. In Section 7.3, 
we show the importance of Lipschitz-regularized α-divergences when learning distributions with low-
dimensional structures with an e xample of learning a strange attractor from the Lorenz 63 model. I n 
Section 7.4, we present the task of learning an anisotropic heavy-tailed distribution embedded in a 
high-dimensional space and the results highlight that the Lipschitz-regularized α-divergences make 
generative learning agnostic to heavy-tailed and manifold assumptions. We use Gaussian priors for all 
our experiments, and the implementation details including the network architectures can be found in the 
Supplementary Material. 

7.1 Generative models with differ ent learning objectives 

W1 and W2 proximals can be found, sometimes implicitly, in the learning objectives of several existing 
generative models. Below, we list various models based on α-divergences used in our experiments and 
explain why some of them are (either implicitly or explicitly) regularized by Wasserstein proximal.
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ROBUST GENERATIVE LEARNING WITH LIPSCHITZ-REGULARIZED α-DIVERGENCES 19

(1) Generative models without proximal regularization: 

• α-GAN: GANs [19, 40] based on the variational representation of the α-divergence (3.3); 

• α-GPA: GPA based on the α-divergence [20]; 

• CNF:  CNFs  by  [8 ], where the loss function is based on the KL divergence, a special case of 
the α-divergence when α = 1. 

(2) Generative models with W1-proximal regularization: 

• Lip-α-GAN [4]: GANs using the Lipschitz-regularized α-divergence (1.1) as the objective 
function, with the Lipschitz constant set to L = 1 in our e xperiment; 

• Lip-α-GPA [20]: GPAs using the Lipschitz-regularized α-divergence (1.1) as the objective 
function, with the Lipschitz constant set to L = 1 in our experiment. This is the implementation 
of the gradient flow formulation (4.12). 

(3) Generative models with W2-proximal regularization: We consider the following class of flow-
based models, which minimize α-divergences with W2 proximal (7.1) written a s (7.2) via the Benamou-
Brenier formula, 

inf 
v,ρ 

F (ρ(·, T)) + C
∫ T 

0 

1 
2
|v(x, t)|2ρ(x, t) dx dt. (7.2) 

Here, ρ : Rd × [0, T] → R is the evolution of the probability measure via the (trainable) velocity field 
v : Rd × [0, T] → Rd, satisfying the Fokker–Planck equation: 

ρt + ∇ ·  (ρv) = 
σ 2 

2 
Δρ, ρ(·, 0) = ρ0 is a tractable prior distribution, e.g. Gaussian. (7.3) 

• OT flow [41]: OT normalizing flows, which are equivalent to the W2-proximal of CNFs, with 
F (ρ(·, T)) = DKL(Q‖ρ(·, T)) and σ = 0  i  n  (7.2); 

• Variance-exploding (VE)-Score-based generative model (SGM) [ 47]: SGMs with VE 
forward stochastic differential equations (SDEs) [47]. According to the mean-field game 
formulation  b  y  [54], it is equivalent to (7.2) with stochastic dynamics (σ  >  0) and a cross-
entropy terminal cost F (ρ(·, T)) = −Eρ(·,T ))[log Q], essentially also a W2-proximal of CNFs. 

We refer to Fig. 1 for a visual illustration of the relationships among the models being compared. 

7.2 Learning heavy-tailed distrib utions 

7.2.1 Two-dimensional Student-t example We compare various generative models for learning a 
heavy-tailed two-dimensional isotropic Student-t distribution with ν degrees of freedom, q(x) ∝ (1 + 
|x|2 

ν ) 
ν+2 

2 . This synthetic example allows us to adjust the tail decay rate β = ν + 2 by selecting different 
degrees of freedom ν. In the main text, we present a heavy-tailed example with β = 3 that does not have 
a finite first moment, while the relatively easier case of β = 5 is deferred to the Supplementary Material . 
We use 10,000 samples to train the models.
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20 Z. CHEN ET AL.

FIG. 1. Generative models in the experiment and their relationship with the α-diver gences with W1 or W2 proximal regularization. 
See Section 7.1 for detailed explanations of the models and notations. 

FIG. 2. Learning a two-dimensional isotropic Student-t with degree of freedom ν = 1 (tail index β = 3.0) using generative models 
based on α-divergences with α = 2 with or without Lipschitz regularization. Models with Lipschitz regularization (right) learn 
the heavy-tailed distribution significantly better than those without (left). See Section 7.1 for detailed explanations of the models. 

Figures 2 and 3 present the performance of various generative models. Each model is evaluated 
in two plots. First, a two-dimensional scatter plot displays the generated samples (orange) and the true 
samples (blue), providing a visual assessment of the sample quality. Next, the tail behaviour is assessed by 
plotting the ground truth Radial Complementary Cumulative Distribution Function (rCCDF) (red curve) 
and the histogram of the radii of generated samples (gray). The rCCDF is defined as rCCDF(r) = 1 − 
CDF(r), where CDF(r) is the cumulative distribution function of the radius. We then calculate the L1 error 
between the ground truth rCCDF and the generated sample histogram. Generative models with Lipschitz 
regularization (W1 -proximal) significantly outperform the others in learning heavy-tailed distrib utions, 
corroborating our theoretical results in Section 4.
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ROBUST GENERATIVE LEARNING WITH LIPSCHITZ-REGULARIZED α-DIVERGENCES 21

FIG. 3. Learning a two-dimensional isotropic Student-t with degree of freedom ν = 1 (tail index β = 3.0) using generative models 
based on α-divergences with or without W2-proximal regularization and α = 2. See Section 7.1 for detailed explanations of the 
models. 

FIG. 4. Sample generation of inter-arrival time between keystrokes. Generative models based on the α-divergences with α = 2  (a),  
and the KL divergence (b). 

7.2.2 Keystroke example For a real-world heavy-tailed example, we consider learning the inter-arrival 
time between keystrokes from multiple users typing sentences [ 12]. The target dataset consists of 7,160 
scalar samples, and we generated 10,000 samples using generative models with W1 or W 2 proximal 
re gularization. 

We display the tail behaviour by plotting the ground truth CCDF (red curv e) and the corresponding 
histogram of the generated samples (gray) in Fig. 4 and Fig. 5. Unlike the previous synthetic example, 
the ground truth CCDF here is obtained by interpolating the heights of the histogram bins of the true 
samples. In Fig. 5, generative models with W1-proximal regularization (Lip-α-GPA and Lip-α-GAN) 
outperform those regularized with W2-proximals (OT flow and VE-SGM) in capturing the tails. This 
observation suggests that W1-proximal algorithms can potentially handle heavier tails more effectively
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22 Z. CHEN ET AL.

FIG. 5. Sample generation of inter-arrival time between keystrokes. Generative models with W1-proximal regularization, panel (a), 
outperform those with W2-proximal regularization, panel (b), in capturing the tails. This observation suggests that W1-proximal 
algorithms can potentially handle heavier tails more effectively than W 2-proximal methods. 

than W2-proximal methods. In other words, algorithms based on the Lipschitz-regularized α-divergences 
are more agnostic to heavy-tailed assumptions. 

7.3 Learning attractors of c haotic dynamical systems 

Strange attractor from Lorenz 63 example The Lorenz 63 model is renowned for its strange attractor, 
which exhibits a complex fractal structure characterized by a non-integer Hausdorff dimension. In 
this example, we use various generative models to learn the geometric shape of the attractor, without 
accounting for its underlying dynamics. The target dataset T for the generative models consists of 
N = 5, 000 positions, defined as: T =  {x(ti) = (x1(ti), x2(ti), x3(ti)) : ti ∼ Unif([9, 900, 10, 000])}N 

i=1 
where (x1(ti), x2(ti), x3(ti)) is a numerically computed solution trajectory of the Lorenz 63 model with 
the standard parameter values a = 10, b = 28, c = 8.3. The generated samples are represented 
as G =  {yi = (y1i, y2i, y3i)}M 

i=1, where M is the number of generated points which does not 
necessarily match N.  We  use  M = 10, 000 generated samples across various generative models for this 
example.

Because the generated samples lack time labels, the dynamics cannot be directly observed. Instead, 
we consider two standards: (1) measurement of how close the generated particles land on the attractor 
and (2) characteristic of the fractal structure. These standards are measured by corresponding metrics: 

(a) Mean square sum of the errors (MSE) between generated samples yi and their closest validation 
sample v∗

i = argminvj∈V |yi − vj| where the validation dataset is given as V =  {vj = 
(v1(tj), v2(tj), v3(tj)) : tj = 9, 900 + 0.01 · j}10,000 

j=1 

MSE = 
1 
M 

M∑
i=1 

|yi − v∗
i |2, (7.4) 

which measures the deviation of generated samples from the attractor trajectory . 

(b) Adapted Correlation dimension for measuring dimensionality of the space occupied by point 
clouds of generated samples {yi}M 

i=1 without time information. Original correlation dimension is 
a characteristic measure to distinguish between deterministic chaos and random noise, to detect 
potential faults [7]. Real correlation dimension for the attractor of Lorenz 63 should be 2.05. We 
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TABLE 1 Performance metrics: (i) MSE (7.4) between generated samples and the validation dataset 
V that measures how close the generated particles land on the attractor, and (ii) Correlation 
dimension for M = 10, 000 generated samples from different generative models 

Model MSE Correlation 
dimension 

Computation 
time (sec) 

Lip-α = 2 GAN 0.1240 2.00 491.851 
Lip-KL GAN 0.1226 2.01 505.330 
α = 2 GAN 0.945 1.99 336.272 
KL GAN 0.1612 1.99 486.941 
Lip-α = 2  GPA 0.2984 1.60 410.385 
Lip-KL GPA 0.1369 1.91 398.344 
α = 2  GPA - - -
KL GPA - - -
OT(W2)  flow 0.6231 2.29 ≥ 60, 000 
CNF 1.2674 2.31 ≥ 60, 000 
VE SGM 0.0791 2.31 2,382.733 
The ground truth correlation dimension measured on the validation dataset V is 2.04. A higher correlation dimension implies 
that noise dominates the shape of the attractor. A lower correlation dimension implies that the point clouds are more sparsely 
populated on the attractor; see, for instance, Lip-α = 2 GPA compared to Lip-α = 2 GAN in Fig. 6. We do not report the MSE 
and correlation dimension for α = 2 GPA and KL GPA (no Lipschitz regularization) since generated particles diverged in the 
early stage of training. Although SGM has the smallest MSE, it takes a significant longer time to train, requiring much deeper 
network architecture (otherwise it does not conv erge), and it still significantly over-estimates the fractal dimension. See also 
Fig. 6 for visualizations. 

obtained a reference value 2.04 by applying to our validation dataset V from a selection of the 
algorithm’s parameter radius r ∈ [0.7, 1.1].  

The results can be found in Table 1. The results illustrate that (1) Lipschitz-regularized methods 
in general capture the attractor and its structure while those without Lipschitz regularization fail; (2) 
other methods such as OT flows, CNFs and SGMs fail to accurately capture the attractor even they 
are trained for a longer time with more complicated network architecture. We additionally visualize 
generated samples in Fig. 6. Similar results when N = 1, 000 and M = 2, 000 can be found in the 
Supplementary Material . 

7.4 Learning distributions supported on low dimensional manifolds 

7.4.1 10D heavy-tailed manifold embedded in 110D We provide a high-dimensional example 
adapted from [ 23]. In this example, a 10D heavy-tailed distribution is embedded in R110. Each of the 
first 10 axes is drawn from the standard Cauchy distribution wi ∼ Cauchy, then powered by a random 
exponent ti ∼ Unif([0.5, 2]), i.e. xi = sign(wi)|wi|ti for i = 1, .  .  .  , 10. Values of the remaining axes 
are set to zero: xi = 0  f  or  i = 11, · · ·  , 110. In our experiment, we fix the exponents ti, i = 1, · · · 10, to 
(1.31, 0.91, 1.13, 1.76, 0.50, 0.68, 1.50, 1.73, 0.70, 1.36). We present two metrics similar to those used in 
the multivariate distributions example in [23] to demonstrate (a) whether the algorithm can capture the 
heavy tails in the first 10 dimensions and (b) whether the generated distribution correctly lies on the 10-
dimensional plane. For (a), we calculate the averaged L1 error over the first 10 dimensions between the 
empirical rCCDF Fv built from a validation dataset consisting of 100K target samples and the empirical
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FIG. 6. Generated samples (M = 10, 000) of the Lorenz 63 strange attractor from N = 5, 000 target samples. Lipschitz-regularized 
methods in general capture the attractor and its dimension while those without Lipschitz regularization fail. Other methods such 
as OT flows, CNFs and SGMs cannot accurately capture the fractal structure. See Table 1 for error metrics. 

rCCDF Fg built from generated samples: 

L1(Fv, Fg) = 
20,000∑

i=1 
|Fv(zi) − Fg(zi)|(zi+1 − zi), (7.5)  

where zi are sampled in equi-distance from the interval [1, 5 × 106]. For (b), we calculate the Euclidean 
distance of the generated samples to their projections on the first 10-dimensional subspace which is 
written as

∑110 
i=11 Eyi [‖yi‖] where the orthogonal subspace is represented as zero [0, · · ·  , 0  ] ∈ R100 . 

The results in Table 2 verify that models with the Lipschitz-regularized α-divergences as objectives 
are more agnostic to both heavy-tailed and manifold assumptions.
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TABLE 2 Learning 10D heavy-tailed data embedded in R110 using 10K target samples 

Model Heavy-tailed subspace Orthogonal subspace 
avg L1 error avg Euclidean distance 

Lip-α GPA 3.1155e + 02 3.4179e + 00 
α GPA 4.9993e + 06 1.7150e + 15 
Lip-α GAN 3.4645e + 02 1.0990e − 01 
α GAN 4.4994e + 06 2.4480e − 03  
OT(W2)  flow 4.9993e + 06 inf 
CNF 4.9993e + 06 inf 
VE SGM 3.6031e + 02 1.4441e + 03  
We report the L1 error defined in (7.5) averaging over the first 10 dimensions. Generative models without Lipschitz-regularized 
learning objectives, such as unregularized models or those using W2-proximal regularization, either fail to capture the heavy tails 
or fail to capture the manifold. In contrast, Lipschitz-regularized α-divergence enables generative models to learn heavy-tailed 
distributions even when the tails exhibit different power-law behaviours, i.e. Q(xi) ∼ |xi|−βi for i = 1, · · ·  , 10. In addition, the 
Lipschitz-regularized α-divergence encourages generated samples to lie near the data manifold. The unconstrained discriminator 
in α-GAN produces large values outside the manifold, forcing the generator to map the source onto the 10D plane. However, the 
unconstrained α-GAN fails to learn the tails. For further comparison of training objectiv e function values for GANs and GPAs, 
see Table G1 in Appendix G. 

8. Conclusions and discussions 

In this paper, we prove that Lipschitz-regularized α-divergences, introduced in previous works, enable 
robust and stable learning for target distributions with minimal assumptions. In particular, we prove 
that these divergences are always finite and have a well-defined variational derivative when the first 
input distribution has a finite first moment. We also prove the sufficient and necessary conditions for 
the divergence to be finite when both distributions have power-law-decay tails. A first convergence 
rate of the finite-sample estimations of these divergences on Rd is proved. As a result, we derive the 
first sample complexity bounds for the empirical estimations of DL 

α and W1 with group symmetry 
on Rd. Numerical simulations further confirm the robustness of these divergences, showing that they 
significantly improve the learning process across a range of challenging scenarios, such as heavy-tailed 
distributions or distributions supported on low-dimensional manifolds or fractals.

Some future directions are unexplored in this work. First, it is not clear if there is an optimal α or if 
the α should be chosen adaptively to make the learning more efficient. Second, the PDE theory of the 
Lipschitz-regularized gradient flow is not established, and the convergence of the gradient flow is an 
important topic and may require some new functional inequalities. Lastly, Theorem 7 is not sharp, and a 
sharp convergence bound will help better understand this class of divergences and further derive better 
generalization bounds for algorithms based on this class of di vergences. 
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A. Notation for t he pr oofs 

We denote by A � B if there are some c, d > 0, such that A ≤ cB + d; and A � B if both A �
B and B � A hold. For a bounded set Ω ⊂ Rd,  diam(Ω) = supx,y∈Ω ‖x − y‖2, where ‖·‖2 is the 
Euclidean norm on Rd. Moreover, given a probability density p(x),  we  use  Mr(p) to denote the rth 
moment of p(x). For convenience, we will abuse notation and use symbols p, q and P, Q, to represent 
probability distributions as well as the density functions associated with them. Whether a character refers 
to a probability distribution or a density should be c lear from the conte x t.

B. Additional lemma of Theorem 2 

For the Lipschitz-regularized KL-divergence, we have the following lemma similar to Lemma 1. 

LEMMA B1. For the KL case, i.e. f ∗
KL(y) = ey−1 and any non-negative measures P and Q defined on 

some bounded Ω ⊂ Rd with non-zero integrals, Γ = LipL(Ω ),  we  h  ave  

sup 
γ∈Γ

{∫
Ω 

γ  (x) dP −
∫

Ω 
f ∗
KL[γ  (x)] dQ

}
= sup 

γ ∈F

{∫
Ω 

γ  (x) dP −
∫

Ω 
f ∗
KL[γ  (x)] dQ

}
, (B1)
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where 

F =
{
γ ∈ LipL(Ω) :  ln

∫
Ω dP∫
Ω dQ 

+ 1 − L · diam(Ω) ≤ γ ≤ ln
∫
Ω d P∫
Ω dQ 

+ 1 + L · diam(Ω)

}
. 

Proof. For any fixed γ ∈ Γ , define 

h(ν) =
∫

Ω 
(γ  (x) + ν) dP −

∫
Ω 

f ∗
KL[γ  (x) + ν ] dQ. 

Since supx∈Ω γ  (x) − infx∈Ω γ  (x) ≤ L · diam(Ω), interchanging the integration with differentiation is 
allowed by the dominated convergence theorem: 

h′(ν) =
∫

Ω 
dP −

∫
Ω 

f ∗′
KL(γ + ν) d Q. 

If infx∈Ω γ  (x)  >  ln
∫

dP∫
dQ + 1, then h ′(0)  <  0. So there exists some ν0 < 0 such that h(ν0)  >  h(0) .  This  

indicates the supremum on the left side of ( B1) is attained only if supx∈Ω γ  (x) ≤ ln
∫

dP∫
dQ

+1+L·diam(Ω). 

On the other hand, if supx∈Ω γ  (x)  <  ln
∫

dP∫
dQ + 1, then h′(0)  >  0. So there exists some ν0 > 0 such that 

h(ν0)  >  h(0). This indicates that the supremum on the left side of (B1) is attained only if infx∈Ω γ  (x) ≥ 
ln

∫
dP∫
dQ + 1 − L · diam(Ω) . �

C. Proof of Theor em 3 

Proof of Theor em 3. The existence and uniqueness of γ � follow from Theorem 4.9 i n [15] and Theorem 
25 in [4]. We extend γ � from supp(P) ∪ supp(Q) to all of Rd by 

γ̂  (y) = sup 
x∈supp(P)∪supp(Q) 

{γ �(x) + L |x − y|}. (C1)  

And it is a well-kno wn result (e.g. see the proof of Lemma 2.3 i n [ 20]) that γ̂ is L-Lipschitz continuous 
on Rd and 

γ̂ = sup 
h 

{h(x) : h ∈ LipL(Rd), h(y) = γ �(y), ∀y ∈ supp(P) ∪ supp(Q)}. (C2  )   

W e need to show that 

lim inf
ε→0+ 

1

ε

(
DL 

α(P + ερ‖Q) − DL 
α(P‖Q)

)
≥
∫

γ̂ d ρ, (C3)  

and 

lim sup
ε→0+ 

1

ε

(
DL 

α(P + ερ‖Q) − DL 
α(P‖Q)

)
≤
∫

γ̂ dρ. (C4  )  
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If P + ερ ∈ P1(R
d), t hen by Theorem 2, DL 

α(P + ερ‖Q)  <  ∞ and thus we have 

DL 
α(P + ερ‖Q) = sup 

γ∈LipL(Rd)

(
EP+ερ[γ ] − EQ[f ∗

α (γ )]
)

≥ EP+ερ[γ̂ ] − EQ[f ∗
α ( ̂γ  )] 

= ε

∫
Rd 

γ̂ dρ + EP[γ̂ ] − EQ[f ∗
α (γ̂  )  ] 

= ε

∫
Rd 

γ̂ dρ + DL 
α (P ‖Q) . 

Thus, we have 

lim inf
ε→0+ 

1

ε

(
DL 

α(P + ερ‖Q) − DL 
α(P‖Q)

)
≥
∫

γ̂ dρ. (C5)   

To prove the other direction, we define F(ε) = DL 
α(P + ερ‖Q). Then by Theorem 18 in [ 4], F(ε) 

is convex, lower semi-continuous and finite on [0, ε0]  for  some ε0 > 0. Due to the convexity of F,  it  is  
differentiable on (0, ε0) except for a countable number of points. If γ̂ε is the optimizer for DL 

α( P+ερ‖Q), 
similar t o (C5), we have for δ  >  0 sufficiently small 

DL 
α(P + (ε + δ)ρ‖Q) − DL 

α(P + ερ‖Q) ≥ δ
∫

γ̂ε dρ, (C6)   

and 

DL 
α(P + (ε − δ)ρ‖Q) − DL 

α(P + ερ‖Q) ≥ −δ

∫
γ̂ε dρ. (C7)  

If F is differentiable at ε, this implies that∫
γ̂ε dρ ≤ lim 

δ→0 

1 
δ

(
DL 

α(P + (ε + δ)ρ‖Q) − DL 
α(P + ερ‖Q)

)
= F′(ε) 

= lim 
δ→0 

1 
δ

(
DL 

α(P + ερ‖Q) − D L 
α(P + (ε − δ)ρ‖Q)

)
≤
∫

γ̂ε dρ . 

Consequently, 

F′(ε) =
∫

γ̂ε dρ. (C8)  

Let F′+(0) be the right derivative at ε = 0, i.e. F′+(0) = limε→0+ 
1
ε
(F(ε) − F(0)). By conv exity, for any 

sequence εn such that F is differentiable at εn and εn ↘ 0, we hav e 

F′+(0) = lim 
n→∞ F′(εn) = lim 

n→∞

∫
γ̂εn dρ. (C9)  
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We write Rd =  ∪m∈NKm with Km ⊂ Rd being a compact set and Km ⊂ Km+1 . The optimizers γ̂εn are 
unique. Moreo ver, by Lemma E3, they satisfy

∣∣γ̂εn (x)
∣∣ ≤ L(|x| + R) + Mn, where 

Mn = inf 
M

{
(M + LR) + L

∫
Rd 

|x| dP + εnL
∫
Rd 

|x| dρ  <  f ∗
α (M − 3LR)

∫
|x|<2R 

dQ

}
(C10)  

where R > 0 is fixed for all n such that
∫
|x|<2R dQ > 0. Thus, b y the linear dependence on εn on 

the left side i nside the infimum i n ( C10), we have Mn ≤ M for all sufficiently large n. Therefore, the 
sequence {γ̂εn

} is equibounded and equicontinuous on Km. By the Arzelà-Ascoli theorem, there exists a 
subsequence of γ̂εn that converges uniformly in Km. Using diagonal argument, by taking subsequences 
sequentially along {Km}m∈N we conclude there exists a subsequence such that γ̂εnk 

converges uniformly 
in any Km and thus γ̂εnk 

converges pointwise in Rd.  Let  ̂γ0 be the limit, then γ̂0 is L-Lipschitz due to 
the uniform convergence of L-Lipschitz functions. For simplicity, we also denote by γ̂εn the convergent 
subsequence. Thus, given ρ± ∈ P1(R

d), we have by the dominated convergence theorem, 

F′+(0) = lim 
n→∞

∫
Rd 

γ̂εn dρ =
∫
Rd 

γ̂0 dρ. ( C11) 

By the lower semi-continuity of DL 
α(·‖Q),  we  have  

DL 
α(P‖Q) ≤ lim inf 

n→∞ 
DL 

α(P + εnρ‖Q) 

= lim inf 
n→∞

{
EP+εnρ

[γ̂εn ] − EQ[f ∗
α (γ̂εn )]

}
= lim 

n→∞ 
EP+εnρ

[ ̂γεn ] − lim sup 
n→∞ 

EQ[f ∗
α (γ̂εn )] 

= EP[ ̂γ0] − lim sup 
n→∞ 

EQ[f ∗
α (γ̂εn )] 

≤ EP[ ̂γ0] − EQ[f ∗
α ( ̂γ0)] 

≤ DL 
α (P‖Q) ,  

where in the third equality we use the dominated convergence theorem, and in the second-to-last 
inequality we apply the Fatou’s lemma. Thus, we have γ̂0 =  ̂γ P, Q– a.s., and γ̂0 ≤  ̂γ for all x ∈ Rd.  The  
latter is true since ˆ γ is the Lipschitz extension of γ �

0 by (C1), and (C2) guarantees that γ̂ is the supremum 
of all the L-Lipschitz functions whose restriction on supp(P) ∪ supp(Q) is equal to γ̂0. It can be shown 
(as in the beginning of the proof of Theorem 1 in [20]) that ρ− is absolutely continuous with respect to 
P, then we have 

F′+(0) =
∫

γ �
0 dρ =

∫
γ �

0 dρ+ −
∫

γ �
0 dρ− =

∫
γ �

0 dρ+ −
∫

γ̂ dρ− ≤ 
∫

γ̂ dρ. (C12) 

Thus, ( C4) is proved. �
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D. Proofs of Theorems 4 and 5 

Proof of Theor em 4. 1. Sufficiency.  Let  Γ = LipL(Rd), and we have 

DL 
α(P‖Q) = sup 

γ∈Γ

{∫
γ  (x)p(x) dx −

∫
f ∗
α [γ  (x)]q(x) dx

}

≤ sup 
γ∈LipL(‖x‖<R)

{∫
‖x‖<R 

γ  (x)p(x) dx −
∫

‖x‖<R 
f ∗
α [γ  (x)]q(x) dx

}

+ sup 
γ∈LipL(‖x‖≥R)

{∫
‖x‖≥R 

γ  (x)p(x) dx −
∫

‖x‖≥R 
f ∗α [γ  (x)]q(x) dx

}
:= I1 + I 2.  

For I1, b y Lemma 1,  we  have  

I1 ≤ C
∫

‖x‖<R 
p(x) dx +

(
α−1(α − 1) 

α 
α−1 C 

α 
α−1 + α−1(α − 1)−1

) ∫
‖x‖<R 

q(x) dx < ∞, 

where C = (α − 1)−1
(∫

‖x‖<R p(x) dx∫
‖x‖<R q(x) dx

)α−1 
+ 2 LR. 

For I2,  we  ha  ve∫
‖x‖≥R 

γ  (x)p(x) dx −
∫

‖x‖≥R 
f ∗
α [γ  (x)]q(x) dx =

∫
‖x‖≥R 

p(x)

(
γ  (x) − f ∗

α [γ  (x )] 
q(x) 
p(x)

)
d x. 

(1) If d <  β1 ≤ d + 1 and β2 − β1 < β1−d 
α− 1 :  

Note that the set of bounded L-Lipschitz functions on {x : ‖x‖ ≥ R} is a subset of Mb(x :
‖x‖ ≥ R), and the supremum over all the L-Lipschitz functions can be bounded by taking the 
supremum over all the measurable functions. Moreover, we can solve for the optimal γ̂  (x) that 
maximizes γ  (x) − f ∗

α [γ  (x)] q(x) 
p(x) within the class of measurable functions: the stationary point 

of γ  (x) − f ∗
α [γ  (x)] q(x) 

p (x) in γ for every x provides γ̂  (x) = 1 
α−1

(
p(x) 
q(x)

)α−1 
. Therefore, we have 

sup 
γ ∈LipL(x:‖x‖≥R)

∫
‖x‖≥R 

p(x)

(
γ  (x) − f ∗

α [γ  (x)] 
q(x) 
p(x)

)
dx 

≤
∫

‖x‖≥R 
p(x)

(
γ̂  (x) − f ∗

α [ ̂γ  (x)] 
q(x) 
p(x)

)
dx 

=
∫

‖x‖≥R 

1 
α(α − 1)

([
p(x) 
q(x)

]α 
− 1

)
q(x) dx

�
∫

‖x‖≥R
‖x‖α(β2−β1)−β2 dx < ∞ , 

since α(β2 − β1 ) − β2 = (α − 1)(β2 − β1) − β1 < − d.  
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(2) If β1 > d + 1: the proof follows that of Theorem 2. 
2. Necessity. 
Suppose β1 ≤ d + 1 and β2 − β1 ≥ β1−d 

α−1 . We split β2 − β1 ≥ β1−d 
α−1 into two cases. 

(1) If β2 − β1 ≥ 1 
α−1 : 

Let γ̂  (x) = τ ‖x‖, where τ ∈ (0, L] is to be determined. Then we have γ̂ ∈ LipL(Rd).  Using  
this γ̂ ,  we  have  

DL 
α(P‖Q) ≥

∫
γ̂  (x)p(x) dx −

∫
f ∗
α [γ̂  (x)]q(x) dx 

=
∫

‖x‖<R
γ̂  (x)p(x) − f ∗

α [γ̂  (x)]q(x) dx +
∫

‖x‖≥R
γ̂  (x)p(x) − f ∗

α [γ̂  (x)]q(x) dx .  

It is straightforward that the first integral over ‖x‖ < R is finite. For the latter one, we have∫
‖x‖≥R

γ̂  (x)p(x) dx −
∫

‖x‖≥R 
f ∗
α [γ̂  (x)]q(x) dx �

∫
‖x‖≥R

(
τ ‖x‖1−β1 − τ 

α 
α−1 ‖x‖ α 

α−1 −β2
)

dx . 

We need to show the right-hand side is infinite. First, since α 
α−1 > 1, we can choose τ 

sufficiently small such that τ  >  τ  
α 

α−1 . Moreover, by the assumption, we have 1 − β1 ≥ −d and 
α 

α−1 − β2 ≤ 1 − β 1, so that we have∫
‖x‖≥R

(
τ ‖x‖1−β1 − τ 

α 
α−1 ‖x‖ α 

α−1 −β2
)

dx = ∞  , 

and thus DL 
α (P‖Q) = ∞  . 

(2) If β1−d 
α−1 ≤ β2 − β1 < 1 

α−1 : 

Define

γ̂  (x) =
{

τR(α−1)(β2−β1), if ‖x‖ < R; 
τ ‖x‖(α−1)(β2−β1) ,  if ‖x‖ ≥ R , 

where τ ∈ (0, L] is to be determined. Since in this case we have (β2 − β1)(α − 1)  <  1, we 
have γ̂  (x) ∈ LipL(Rd) if we pick R sufficiently large which is independent of τ ≤ L. Using this
γ̂  (x),  we  have  

DL 
α(P‖Q) ≥

∫
γ̂  (x)p(x) dx −

∫
f ∗
α [γ̂  (x)]q(x) dx 

=
∫

‖x‖<R
γ̂  (x)p(x) − f ∗

α [γ̂  (x)]q(x) dx +
∫

‖x‖≥R
γ̂  (x)p(x) − f ∗

α [γ̂  (x)]q(x ) dx .  

By the definition of γ̂ , we know that the first integral over ‖x‖ < R is finite. For the latter one, 
we ha ve in this case ∫

‖x‖≥R
γ̂  (x)p(x) dx −

∫
‖x‖≥R 

f ∗
α [γ̂  (x)]q(x) dx

�
∫

‖x‖≥R

(
τ ‖x‖(α−1)(β2−β1)−β1 − τ 

α 
α−1 ‖x‖(α−1)(β2−β1)−β1

)
dx. 
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34 Z. CHEN ET AL. 

We show the right-hand side is infinite. Again, we can choose τ sufficiently small such that τ  >  
τ 

α 
α−1 . On the other hand, by the assumption in this case, we have (α − 1)(β2 − β1) − β1 ≥ −d, 

so that we have∫
‖x‖≥R

(
τ ‖x‖(α−1)(β2−β1)−β1 − τ 

α 
α−1 ‖x‖(α−1)(β2−β1)−β1

)
d x = ∞  , 

hence DL 
α(P‖Q) = ∞. �

Proof of Theor em 5. Same as in the beginning of the proof of Theorem 4, we can split DL 
KL(P‖Q) into 

I1 and I2, where I1 is bounded by Lemma B1 with appropriate R. 
For I2,  we  have  

sup 
γ∈LipL(x:‖x‖≥R)

∫
‖x‖≥R 

γ  (x)p(x) dx −
∫

‖x‖≥R 
f ∗
KL[γ  (x)]q(x) dx 

≤ sup 
γ ∈Mb(x:‖x‖≥R)

∫
‖x‖≥R 

γ  (x)p(x) dx −
∫

‖x‖≥R 
f ∗
KL[γ  (x)]q(x) dx 

=
∫

‖x‖≥R 
ln 

p(x) 
q(x) 

p(x) dx

�
∫

‖x‖≥R
‖x‖−β1 ln ‖x‖ dx < ∞,  

since β1 > d and the equality is due to the dual formula of KL divergence. �

Proof of Corollary 6. Note the change-of-variable formula∫
Rd 

γ  (y) dpM (y) =
∫
Rd∗ (γ ◦ ϕ)(x) · p(x) dx , (similarly for qM and q ) 

and γ ◦ ϕ is an LL∗-Lipschitz function on Rd∗ 
for any γ ∈ LipL(Rd). Then the proof of Theorem 4 can 

be follo wed. �

E. Proofs of results in Section 5 

To prove Theorem 7, we need a few lemmas. Let x1, x2, .  .  . , xm ∈ Rd be i.i.d. samples of distribution P, 
and Pm be the corresponding empirical distributions. We define L2(Pm) the metric between any functions 

f , g as L2(Pm)(f , g) =
√

1 
m

∑m 
i=1

∣∣f (xi) − g(xi )
∣∣2 . 

LEMMA E1 (Metric entropy with empirical measures). Let F be a class of real-valued functions on Rd 

and 0 ∈ F .  Let  ξ = {ξ1, ξ2, .  .  .  , ξm} be a set of independent random variables that take values on {−1, 1} 
with equal probabilities (also known as Rademacher variables). Suppose X = {x1, x 2, .  .  . , xm} ⊂  Rd are 
i.i.d. samples of distribution P, then we have 

Eξ sup 
f ∈F

∣∣∣∣∣ 1 
m 

m∑
i=1 

ξif (xi)

∣∣∣∣∣ ≤ inf 
0<θ<MX

(
4θ + 

12√
m

∫ MX 

θ

√
ln N (F , δ, L2(Pm)) dδ

)
, 

where MX = supf ∈F

√
1 
m

∑m 
i=1

∣∣f (xi)
∣∣2 . 
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ROBUST GENERATIVE LEARNING WITH LIPSCHITZ-REGULARIZED α-DIVERGENCES 35

Proof. Let N ∈ N be an arbitrary positive integer and δk = MX · 2−(k−1), k = 1, .  .  .  , N, with 

MX = supf ∈F

√
1 
m

∑m 
i=1

∣∣f (xi)
∣∣2 .  Let  Vk be the cover achieving N (F , δk, L2(Pm)), and denote

∣∣Vk

∣∣ = 
N (F , δk, L2(Pm)). For any f ∈ F ,  let  πk(f ) ∈ Vk, such that√√√√ 1 

m 

m∑
i=1

∣∣f (xi) − πk(f )(xi)
∣∣2 ≤ δ k. (E1)   

We have 

Eξ sup 
f ∈F

∣∣∣∣∣ 1 
m 

m∑
i=1 

ξif (xi)

∣∣∣∣∣
≤ Eξ sup 

f ∈F

∣∣∣∣∣ 1 
m 

m∑
i=1 

ξi

(
f (xi) − πN(f )(xi)

)∣∣∣∣∣ + 
N−1∑
j=1 

Eξ sup 
f ∈F

∣∣∣∣∣ 1 
m 

m∑
i=1 

ξi

(
πj+1(f )(xi) − πj(f )(xi)

)∣∣∣∣∣
+ Eξ sup 

f ∈F

∣∣∣∣∣ 1 
m 

m∑
i=1 

ξiπ1(f )(xi)

∣∣∣∣∣ .  

For the third term, observe that it suffices to take V1 = {0} so that π1(f ) is the zero function and the third 
term vanishes. The first term can be bounded using Cauchy–Schwartz inequality as 

Eξ sup 
f ∈F

∣∣∣∣∣ 1 
m 

m∑
i=1 

ξi

(
f (xi) − πN(f )(xi)

)∣∣∣∣∣ ≤ 
1 
m

√√√√ m∑
i=1 

Eξ (ξi)
2

√√√√ sup 
f ∈F 

m∑
i=1

(
f (xi) − πN(f )(xi)

)2 

≤ δ N .  

To handle the middle term, for each j,  let  Wj =  {πj+1(f ) − πj(f ) : f ∈ F }.  We  have
∣∣∣Wj

∣∣∣ ≤∣∣∣Vj+1

∣∣∣ ∣∣∣Vj

∣∣∣ ≤
∣∣∣Vj+1

∣∣∣2 
, then 

N−1∑
j=1 

Eξ sup 
f ∈F

∣∣∣∣∣ 1 
m 

m∑
i=1 

ξi

(
πj+1(f )(xi) − πj(f )(xi)

)∣∣∣∣∣ = 
N−1∑
j=1 

Eξ sup 
w∈Wj

∣∣∣∣∣ 1 
m 

m∑
i= 1 

ξiw(xi)

∣∣∣∣∣ .  

Moreover, we have 

sup 
w∈Wj

√√√√ m∑
i=1 

w(xi)
2 

= sup 
f ∈F

√√√√ m∑
i=1

(
πj+1(f )(xi) − πj(f )(xi)

)2 

≤ sup 
f ∈F

√√√√ m∑
i=1

(
πj+1(f )(xi) − f (xi)

)2 + sup 
f ∈F

√√√√ m∑
i=1

(
f (xi) − πj(f )(xi)

)2 

≤ √
mδj+1 + √

m · δj 

= 3
√

mδj+1.
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36 Z. CHEN ET AL. 

By the Massart finite class lemma (see, e.g. [36]), we have 

Eξ sup 
w∈Wj

∣∣∣∣∣ 1 
m 

m∑
i=1 

ξiw(xi)

∣∣∣∣∣ ≤ 
3
√

mδj+1

√
2 ln

∣∣∣Wj

∣∣∣
m

≤ 
6δj+1

√
ln
∣∣∣Vj+1

∣∣∣
√

m 
. 

Therefore, 

Eξ sup 
f ∈F

∣∣∣∣∣ 1 
m 

m∑
i=1 

ξif (xi)

∣∣∣∣∣ ≤ δN + 
6√
m 

N−1∑
j=1 

δj+1

√
ln N (F , δj+1, L2(Pm)) 

≤ δN + 
12√

m 

N∑
j=1 

(δj − δj+1)
√

ln N (F , δj, L2(Pm)) 

≤ δN + 
12√

m 

∫ MX 

δN+1

√
ln N (F , δ, L2(Pm )) dδ.  

Finally, select any θ ∈ (0, MX) and let N be the largest integer with δN+1 >  θ , (implying δ N+2 ≤ θ and 
δN = 4δN+2 ≤ 4θ ), so that 

δN + 
12√

m

∫ MX 

δN+1

√
ln N (F , δ, L2(Pm)) dδ ≤ 4θ + 

12√
m

∫ MX 

θ

√
ln N (F , δ , L2(Pm)) dδ . 

�

LEMMA E2. Suppose Pm is the empirical distribution of P ∈ P1(R
d), and Λ = 1 

m

∑m 
i=1 ‖x‖β̂ with 

1 ≤ β̂  <  β  − d, then for 1 ≤ z ≤ β̂,  we  h  ave  

EPm
‖x‖z ≤ Λ + 1. 

Proof. Note that ‖x‖z ≤ max{1, ‖x‖β̂} ≤  1 + ‖x‖β̂ , so we have the bound. �
We provide the following lemma that sets up a landmark for the magnitude of the Lipschitz functions 

under the s upremum. 

LEMMA E3. Suppose α  >  1, and P ∈ P1(R
d).  Let  M(γ ) = sup‖x‖=R |γ  (x)|, then there e xists M that 

depends on P, Q, L and R , such that 

DL 
α(P‖Q) = sup 

γ∈LipL(Rd) 
M(γ )≤M

{
EP[γ ] − EQ[f ∗α (γ ) ]

}
,  

where 

M = inf

{
M̂ : (M(γ ) + LR)

∫
dP + L

∫
‖x‖ dP − f ∗

α (M(γ ) − 3LR)

∫
‖x‖<2R 

dQ < 0, ∀M(γ ) > M̂
}

. 
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Proof. For any γ ∈ LipL(Rd),  let  

J1 :=
∫

‖x‖<R 
γ  (x) dP −

∫
‖x‖<R 

f ∗
α [γ  (x)] dQ, J2 :=

∫
‖x‖≥R 

γ  (x) dP −
∫

‖x‖≥R 
f ∗
α [γ  (x) ] dQ , 

then ∫
γ  (x) dP −

∫
f ∗
α [γ  (x)] dQ = J 1 + J2  . 

We have for any γ ∈ LipL(Rd), 

J1 ≤
∫

‖x‖<R 
(M(γ ) + LR) dP −

∫
‖x‖<R 

f ∗
α (M(γ ) − 3LR) dQ 

= (M(γ ) + LR) ·
∫

‖x‖<R 
dP − f ∗

α (M(γ ) − 3LR) ·
∫

‖x‖<R 
d Q. 

On the other hand, by the same ar gument in the proof of Theorem 2 (for proving I2 < ∞ therein), we 
have 

J2 ≤ LR
∫

‖x‖≥R 
dP + L

∫
‖x‖≥2R

‖x‖ dP + M(γ )
∫

‖x‖≥R 
dP 

− f ∗
α (M(γ ) − 3LR) 

∫
R≤‖x‖<2R 

d Q ,  

Both the upper bounds for J1 and J2 tend to −∞ as M(γ ) → ∞. Thus, there exists such M as claimed. 
Moreover, we ha ve 

J1 + J2 ≤ (M(γ ) + LR)

∫
dP + L

∫
‖x‖ dP 

− f ∗
α (M(γ ) − 3LR )

∫
‖x‖<2R 

d Q .  

Therefore, we can pick M > 0  as  

inf

{
M̂ : (M(γ ) + LR)

∫
dP + L

∫
‖x‖ dP − f ∗

α (M(γ ) − 3LR)

∫
‖x‖<2R 

dQ < 0, ∀M(γ ) > M̂
}

, 

and it is obvious that M > 0 only depends on P , Q and R . �
Let Mm,n be the quantity in Lemma E3 where (P, Q) are replaced by their empirical counterparts 

(Pm, Qn), then Mm,n is a random variable. We have the following lemma to estimate the expectation of 
the rth moment (r ≥ 1) of Mm,n. The proof is different from that for Lemma E3. 

LEMMA E4. Suppose α  >  1, and (P, Q) are distributions on Rd of heavy-tail (β1, β2) with β1, β2 > d + r 
for some r ≥ 1. Let M(γ ) = sup‖x‖= R |γ  (x)|, then there exists Mm,n that depends on Pm , Qn and R, s uch 
that 

DL 
α(Pm‖Qn) = sup 

γ∈LipL(Rd) 
M(γ )≤Mm,n

{
EPm [γ ] − EQn [f

∗
α (γ )]

}
,
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38 Z. CHEN ET AL. 

Moreover, we have 

EX,Y

[
M r m,n

]
≤ Mp,q,r, 

where Mp,q,r depends on α, L, R, Mr(p) and Mr(q) , and is independent of m, n. 

Proof. We have 

EPm [γ ] − EQn [f
∗
α (γ )] ≤ 

m∑
i=1 

M(γ ) + L
∣∣∥∥xi

∥∥ − R
∣∣

m
− 

n∑
j=1 

f ∗
α

(
M(γ ) − 2LR − L

∣∣∣∥∥∥yj

∥∥∥ − R
∣∣∣)

n 
.  

Hence Mm,n can be taken as 

Mm,n = inf 

⎧⎨⎩z : 
m∑

i=1 

s + L
∣∣∥∥xi

∥∥ − R
∣∣

m 
< 

n∑
j=1 

f ∗
α

(
s − 2LR − L

∣∣∣∥∥∥yj

∥∥∥ − R 
∣∣∣)

n 
, ∀s > z 

⎫⎬⎭ .  

Moreover, by Jensen’s inequality, we have 

n∑
j=1 

f ∗
α

(
s − 2LR − L

∣∣∣∥∥∥yj

∥∥∥ − R
∣∣∣)

n
≥ f ∗

α 

⎛⎝s − 2LR − L 
n∑

j=1

∣∣∣∥∥∥yj

∥∥∥ − R
∣∣∣

n 

⎞⎠  ,  

since the convex conjugate f ∗
α is convex, and so that 

Mm,n ≤ inf 

⎧⎨⎩z : 
m∑

i=1 

s + L
∣∣∥∥xi

∥∥ − R
∣∣

m 
< f ∗

α 

⎛⎝s − 2LR − L 
n∑

j=1

∣∣∣∥∥∥yj

∥∥∥ − R
∣∣∣

n 

⎞⎠ , ∀s > z 

⎫⎬⎭ 

:= M̃ m,n.  

It is obvious that M̃m,n solves the following equation in v ariable z: 

f ∗
α (z − c1) = z + c 2, (E2  )   

where 

c1 = 2LR + L 
n∑

j=1

∣∣∣∥∥∥yj

∥∥∥ − R
∣∣∣

n 
, 

c2 = 
m∑

i=1 

L
∣∣∥∥x i

∥∥ − R
∣∣

m 
. 

Equation ( E2) can be reformulated as to find y∗ that solves: 

f ∗
α (y) − y = c1 + c2, (E3)  

where z − c1 = y. We derive an upper bound for y∗ as follows. Let g(y) = f ∗
α (y) − y, t hen 

g′(y) = (α − 1) 
1 

α−1 y 
1 

α−1 1y>0 − 1, 
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ROBUST GENERATIVE LEARNING WITH LIPSCHITZ-REGULARIZED α-DIVERGENCES 39 

such that g′(y) ≥ 1  for  y > 2α−1(α − 1)−1. Given that g
(
2α−1(α − 1)−1

) = 2α 

α + 1 
α(α−1) − 2α−1 

α−1 ,  we  

can take y∗ ≤ 2α−1(α − 1)−1 + c1 + c2 +
∣∣∣ 2α 

α + 1 
α(α−1) − 2α−1 

α−1

∣∣∣. Therefore, we have 

Mm,n ≤ M̃m,n = y∗ + c1 ≤ 2α−1(α − 1)−1 + 2c1 + c2 +
∣∣∣∣2α 

α 
+ 

1 
α(α − 1 ) 

− 
2α−1 

α − 1 

∣∣∣∣ .  

The claim follows since by Jensen’s inequality, EX

[(∑m 
i=1

‖xi ‖
m

)r] ≤ EX

[∑m 
i=1

‖xi‖r 

m

]
= Mr(p). 

(Similarly for EY

[(∑n 
j=1 

‖yj‖
n

)r]
.) �

Proof of Theor em 7. Without loss of generality, we assume that both∫
‖x‖≤1 

p(x) dx > 0,
∫

‖x‖≤1 
q(x ) dx > 0. 

Let Ω0 =  {x ∈ Rd : ‖x‖ ≤ 1} and Ωk =  {x ∈ Rd :  2k−1 < ‖x‖ ≤ 2k} for k ≥ 1. For each k ∈ N,  the  

Lebesgue measure of {x :  d(x, Ωk) ≤ 1} is bounded by Cd2kd for some Cd > 0. Let Λ2 = 1 
n

∑n 
j=1

∥∥∥yj

∥∥∥β̂2 
, 

where 2 + 2α 
α−1 < β̂2 < β2 

d − 1. By Markov’s inequality, the mass or proportion of Qn that lies in Ωk is 
bounded by 

Pr(x ∼ Qn : ‖x‖ > 2k−1) = Pr(x ∼ Qn : ‖x‖β̂2 > 2(k−1) β̂2) 

≤ 
EQn

‖x‖β̂2 

2(k−1) ˆ β2 
= Λ22−(k−1) ˆ β2 .  

Let M = max(M, Mm,n), where M is the quantity in Lemma E3 with R = 1, and Mm,n is the random 
counterpart for (Pm, Qn) as defined in Lemma E4. M is a random variable since Mm,n is random. Let FM 
be the following class of functions 

Fα,M =
{

f ∗
α (γ ) : γ ∈ LipL(Rd),  sup

‖x‖=1 
|γ  (  x)| ≤ M

}
. (E4)   

By formulas ( 3.4) and (4.3), functions in Fα,M have Hölder norm on Ωk bounded by Cα(M 
α 

α−1 + 
L 

α 
α−1 2 

αk 
α−1 ) for some Cα > 0 that only depends on α. By Corollary 2.7.4 in [50] with V = d and r = 2, 

we ha ve 

ln(Fα,M , δ, L2(Qn)) 

≤ Kδ−d

( ∞∑
k=0 

(Cd2kd) 
2 

d+2

(
Cα(M 

α 
α−1 + L 

α 
α−1 2 

αk 
α−1 )

) 2d 
d+2 

(Λ22−(k−1) β̂2) 
d 

d+2

) d+2 
2 

≤ Kδ−d(M + L) 
dα 

α−1 Λ
d/2 
2

( ∞∑
k=0 

2 
2kd 
d+2 + 2αkd 

(α−1)(d+2)
− β̂2d(k−1) 

d+2

) d+2 
2 

≤ Kδ−d(M + L) 
dα 

α−1 Λ
d/2 
2 . 
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where the constant K can vary from line to line and does not depend on n, and the last step follows as 
the choice of β̂2 such that the series is summable over k independent of Qn. Then we have 

EX,Y

∣∣∣DL 
α(Pm‖Qn) − DL 

α(P‖Q)

∣∣∣
= EX,Y

∣∣∣∣∣∣∣∣ sup 
γ ∈LipL(Rd) 
M(γ )≤Mm,n

{
EPm [γ ] − EQn [f

∗
α (γ )]

} − sup 
γ∈LipL(Rd) 

M(γ )≤M

{
EP[γ ] − EQ[f ∗

α (γ )]
}∣∣∣∣∣∣∣∣

≤ EX,Y sup 
γ∈LipL(Rd) 

M(γ )≤M

∣∣EPm [γ ] − EQn [f
∗
α (γ )] − (

EP[γ ] − EQ[f ∗
α (γ )]

)∣∣
≤ EX sup 

γ ∈LipL(Rd)

∣∣EP[γ ] − EPm [γ ]
∣∣ + EX,Y sup 

γ∈LipL(Rd) 
M(γ )≤M

∣∣EQ[f ∗
α (γ )] − EQn [f

∗
α (γ )]

∣∣

≤ EX sup 
γ ∈LipL(Rd)

∣∣EP[γ ] − EPm [γ ]
∣∣ + EXEYEY ′Eξ sup 

γ ∈LipL(Rd) 
M(γ )≤M

∣∣∣∣∣∣1 
n 

n∑
j=1 

ξi

(
f ∗
α [γ  (yj)] − f ∗

α [γ  (y′
j)]
)∣∣∣∣∣∣

≤ EX sup 
γ∈LipL(Rd)

∣∣EP[γ ] − EPm [γ ]
∣∣ + 2EXEYEξ sup 

γ ∈LipL(Rd) 
M(γ )≤M

∣∣∣∣∣∣1 
n 

n∑
j=1 

ξif
∗ 
α [γ  (yj)]

∣∣∣∣∣∣
≤ EX sup 

γ∈LipL(Rd)

∣∣EP[γ ] − EPm [γ ]
∣∣ + 2EX,Y inf 

θ>0

(
4θ + 

12√
n

∫ ∞ 

θ

√
ln N (F α,M , δ, L2(Qn)) d δ

)
,   

where ξi’s are the Rademacher variables. 
First note that the first term EX supγ ∈LipL(Rd)

∣∣EP[γ ] − EPm [γ ]
∣∣ is the convergence rate of the 

Wasserstein-1 distance and the bound follows the result of Theorem 1 in [ 18]: 

EX sup 
γ ∈LipL(Rd)

∣∣EP[γ ] − EPm [γ ]
∣∣ ≤ 

CM1/r 
r ( p) 

m1/ d ,  

with r = d 
d−1 . For the s econd term, we ha ve 

EX,Y inf 
θ>0

(
4θ + 

12√
n

∫ ∞ 

θ

√
ln N (Fα,M , δ, L2(Qn)) dδ

)
≤ EX,Y inf 

θ>0

(
4θ + 

12√
n 

K(M + L) 
dα 

2(α−1) Λ
d/4 
2

∫ ∞ 

θ 
δ− d 

2 dδ

)
≤ EX,Y inf 

θ>0

(
4θ + 

12√
n 

K(M + L) 
dα 

2(α−1) Λ
d/4 
2 · 2 

2 − d 
θ1−d/2

)
≤ EX,Y

(
4n− 1 

d + 12K(M + L) 
dα 

2(α−1) Λ
d/4 
2 · 2 

2 − d 
n− 1 

d

)
= 4n− 1 

d + 
24K 

2 − d 
n− 1 

d · EX,Y

[
(M + L) 

dα 
2(α−1) Λ

d /4 
2 

]
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where we pick θ = n− 1 
d . By the Cauchy-Schwartz inequality, we have 

EX,Y

[
(M + L) 

dα 
2(α−1) Λ

d/4 
2

]
≤
√
EX,Y(M + L) 

dα 
(α−1)

√
EYΛ

d/2 
2 .  

Notice that EX,Y(M+ L) 
dα 

(α−1) is bounded by Lemma E4 and the bound depends on M dα 
α−1 

(p) and M dα 
α−1 

(q). 

By Jensen’s inequality, we have EYΛ
d/2 
2 ≤ (EYΛd 

2)
1/2. And we have 

EYΛd 
2 = EY 

⎛⎝1 
n 

n∑
j=1

∥∥∥yj

∥∥∥β̂2 

⎞⎠d 

≤ EY 

⎛⎝1 
n 

n∑
j=1

∥∥∥yj

∥∥∥β̂2d 
⎞⎠ = M

β̂2d(q ), 

where the inequality follows Jensen’s inequality. Combining all these bounds, we obtain the result as in 
the statement of the theorem. �

PROPOSITION E1. For d = 2. Assume (P, Q) are distributions on Rd of heavy-tail (β1, β2), where β1 > 10 
and β2 > 18. Suppose α satisfies 4α 

α−1 + 4 <  β1 − 2 and 8α 
α−1 <  β2 − 10, then if m and n are sufficiently 

large, we have 

EX,Y

∣∣∣DL 
α(Pm‖Qn) − DL 

α(P‖Q)

∣∣∣ ≤ 
C1 ln m 

m1/2 + 
C2 ln n 

n1/2 , (E  5)   

where C1 depends on Mr1 (p) for any r1 > 2 and C2 depends on M 4α 
α−1 +4(p), M 4α 

α−1 +4(q) and Mdr2 (q) for 

any 2 + 2α 
α−1 < r2 < β2−2 

4 ; both C1 and C2 are i ndependent of m, n. 

PROPOSITION E2. For d = 1. Assume (P, Q) are distributions on Rd of heavy-tail (β1, β2), where β1 > 7 
and β2 > 13. Suppose α satisfies 2α 

α−1 + 4 <  β1 − 1 and 6α 
α−1 <  β2 − 7, then if m and n are sufficiently 

large, we have 

EX,Y

∣∣∣DL 
α(Pm‖Qn) − DL 

α(P‖Q)

∣∣∣ ≤ 
C1 

m1/2 + 
C2 

n 1/2 , (E6  )   

where C1 depends on M2(p) and C2 depends on M 2α 
α −1 +4(p), M 2α 

α−1 +4(q) and Mdr2 (q) for any 2 + 2α 
α−1 < 

r2 < β2−1 
3 ; both C1 and C2 are independent of m, n. 

Proof. The only difference from the proof of Theorem 7 is that we need to bound the random metric 
entropy differently since

√
ln N (Fα,M , δ, L2(Qn)) is no longer inte grable at infinity, and the upper limit 

of the integral in Lemma E1 cannot be relaxed to ∞. Instead, we have 

EX,Y inf 
0<θ<MY

(
4θ + 

12√
n

∫ MY 

θ

√
ln N (Fα,M , δ, L2(Qn)) dδ

)
≤ EX,Y inf 

0<θ<MY

(
4θ + 

12√
n 

K(M + L) 
dα 

(α−1) Λ d/2 
2

∫ MY 

θ 
δ− d 

2 dδ

)
,  

where MY = supγ ∈Fα,M

√
1 
n

∑n 
j=1

∣∣∣γ  (yj)

∣∣∣2 ≤
√

1 
n

∑n 
j=1 (M + L + L

∥∥∥yj

∥∥∥)  2. 
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For d = 2, we have
∫ MY 
θ δ− d 

2 dδ = ln My − ln θ , and we can pick θ = ln n √
n , and use the inequality 

ln My ≤ My − 1 and combine it with Lemmas E2 and E4 as in the proof of Theorem 7. 

For d = 1, we have
∫MY 
θ δ− d 

2 dδ = 
√

My−
√

θ 
2 , and we can pick θ = 1√

n to balance the two terms. �

F. Proofs of results in Section 6 

Proof of Theor em 8. The proof is very similar to that of Theorem 7, therefore we only outline the 
improvement we can obtain. First, same as the beginning of the proof of Theorem 4.8 in [10], we can 
restrict the domain from X to X /G by invariance, so that we focus on Lipschitz functions on X /G. 
Indeed, we have 

EX,Y

∣∣∣DL,G 
α (Pm‖Qn) − DL 

α(P‖Q)

∣∣∣
= EX,Y

∣∣∣∣∣∣∣∣∣ sup 
γ∈LipG 

L (X ) 
M(γ )≤Mm,n

{
EPm [γ ] − EQn [f

∗
α (γ )]

} − sup 
γ∈LipG 

L (X ) 
M(γ )≤M

{
EP[γ ] − EQ[f ∗

α (γ )]
}
∣∣∣∣∣∣∣∣∣

≤ EX,Y sup 
γ ∈LipG 

L (X ) 
M(γ )≤M

∣∣∣∣∣∣ 1 
m 

m∑
i=1 

γ  (xi) − 
1 
n 

n∑
j=1 

f ∗
α [γ  (yj)] − (

EP[γ ] − EQ[f ∗
α (γ )]

)∣∣∣∣∣∣
= EX,Y sup 

γ ∈LipG 
L (X ) 

M(γ )≤M

∣∣∣∣∣∣ 1 
m 

m∑
i=1 

γ  (TG(xi)) − 
1 
n 

n∑
j=1 

f ∗
α [γ  (TG(yj))] −

(
EP[γ ] − EQ[f ∗

α (γ )]
)∣∣∣∣∣∣

≤ EX,Y sup 
γ ∈LipG 

L (X /G) 
M(γ )≤M

∣∣∣∣∣∣ 1 
m 

m∑
i=1 

γ  (TG(xi)) − 
1 
n 

n∑
j=1 

f ∗
α [γ  (TG(yj))] −

(
EPX /G 

[γ ] − EQX /G 
[f ∗

α (γ )]
)∣∣∣∣∣∣ . 

where TG : X → X /G is the quotient map, and PX /G, QX /G are restrictions of P, Q on X /G 
since both P, Q are G-invariant, and TG(xi) and TG(yj) can be viewed as i.i.d. samples drawn from 
P X /G, QX /G. Compared to the proof of Theorem 7, we have some minor differences. First, in the 
sub-Weibull setting, the bound provided by Markov’s inequality has Weibull-type decay in k, and we 
can simply choose β̂2 = 1. Therefore, the summation in bounding ln(Fα,M , δ, L2(Qn)) is summable in 
k. Moreover, to bound ln (Fα,M , δ, L2(Qn)),  we  have  δ−d improved to δ−d∗ 

due to the intrinsic dimension 
assumption. Due to Assumption 3 on the group and the partition Ωk’s are circular about the origin, the 
Lebesgue measure induces a reduction by a factor of 1/ |G| by working on X /G compared to X , which 
then makes a reduction by 1/ |G| in the bound of ln(Fα,M , δ, L2(Qn)), and it eventually contributes to the 
factor |G| in the bound in Theorem 8. On the other hand, we bound EX supγ∈LipL(Rd)

∣∣EP[γ ] − EPm [γ ]
∣∣

using the same procedure using metric entropy instead. Since the magnitude of Lipschitz functions grows 
slower than Fα,M , the procedure is straightforward. This finally creates a factor of |G| in front of m in 
the final bound. For cases when the intrinsic dimension is 1 or 2, we can apply proofs of and after the 
above treatment. �
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Proof of Theor em 9. Compared to the proof of that of Theorem 8, we do not need to make a factor |G|. 
Instead, in bounding ln(Fα,M , δ, L2(Qn)),  we  have  δ−d∗ 

i mproved to δ−d∗∗ 
due to the intrinsic dimension 

assumption. �

Proof of Theorem 10 and Theorem 11. Since the variational form of W1 is shift-invariant to γ ∈ LipL(Rd), 
we can always assume γ  (0) = 0. Thus, Lemmas E3 and E4 are not useful. Compared to the proof of 
Theorem 7, we can pick β̂2 = 1 and M can be set to 0. Finally, it is the limiting case of α → ∞  . �

G. Values of different training objecti ves in Section 7.4 

Training objective function values for Lipschitz-regularized and standard α-diver gence 
Table G1 summarizes the training objective (divergence) values for the standard and Lipschitz-

regularized α-divergence in different GPA and GAN models in the experiment Section 7.4. 

TABLE G1 Final values of the training objective for GANs and GPAs under Lipschitz-regularized (L = 1) 
and standard α-diver gences with α = 2 

Model Objective function (divergence) v alue 

Lip-α GPA 0.0129187 
α GPA 3.0554032e + 26  
Lip-α GAN 0.358602 
α GAN 3.25298e + 7 
See the example in Section 7.4.
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