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Statistical Guarantees of Group-Invariant GANs\ast 

Ziyu Chen\dagger , Markos A. Katsoulakis\dagger , Luc Rey-Bellet\dagger , and Wei Zhu\dagger 

Abstract. This work presents the first statistical performance guarantees for group-invariant generative models.
Many real-world datasets, such as images and molecules, are invariant to certain group symmetries,
which can be taken advantage of to learn more efficiently, as we rigorously demonstrate in this
work. Here we specifically study generative adversarial networks (GANs) and quantify the gains
when incorporating symmetries into the model. Group-invariant GANs are a type in which the
generators and discriminators are hardwired with group symmetries. Empirical studies have shown
that these networks are capable of learning group-invariant distributions with significantly improved
data efficiency. In this study, we aim to rigorously quantify this improvement by analyzing the
reduction in sample complexity and in the discriminator approximation error for group-invariant
GANs. Our findings indicate that when learning group-invariant distributions, the number of samples
required for group-invariant GANs decreases proportionally by a factor of the group size, and the
discriminator approximation error has a reduced lower bound. An important point is that the
overall error reduction cannot be achieved merely through data augmentation on the training data.
Numerical results substantiate our theory and highlight the stark contrast between learning with
group-invariant GANs and using data augmentation. This work also sheds light on the study of
other generative models with group symmetries, such as score-based generative models.
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generalization error

MSC codes. 62E10, 62E17, 60-08

DOI. 10.1137/24M1666628

1. Introduction. The machine learning community has shown a growing interest in gen-
erative models, which aim to understand the underlying distribution of data and generate
new samples from it. Among the various generative models, generative adversarial networks
(GANs) [20] have garnered significant attention due to their ability to learn and sample from
complex data distributions. Empirical evidence shows that GANs achieve remarkable perfor-
mance in diverse applications such as image synthesis and text generation [40, 51, 53]. Such
success, however, hinges upon the availability of abundant training data.

Recent research has proposed to leverage the group-invariant structure of underlying dis-
tributions to improve the data efficiency of GANs [15, 7]. Additionally, the following related
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STATISTICAL GUARANTEES OF GROUP-INVARIANT GANS 863

work has explored other generative models: reference [28] proposes equivariant flows, while
[32] and [23] study equivariant diffusion models. Such approaches are motivated by the preva-
lence of group symmetry observed in various real-world distributions. For instance, in the case
of medical images captured without orientation alignment, the distribution should be rotation-
invariant, i.e., an image and its rotated copy are equiprobable. Furthermore, many physical,
physicochemical, and biochemical systems possess intrinsic symmetries or equivariance struc-
tures, making structured probabilistic modeling crucial [39, 37, 25, 35, 30, 36, 38]. Empirical
evidence from [28, 15, 7] shows that models designed to respect group symmetry can effec-
tively learn a group-invariant distribution even with limited data. The key idea is to introduce
structures into generative models, i.e., moving away from generic models to exploit essential
structures in physicochemical models. This shift is expected to create physics-informed gen-
erative models that are more sample-efficient and reduce computational load and complexity.
However, a clear theoretical understanding of these phenomena remains to be established.

In this paper, we provide statistical performance guarantees that explain why group-
invariant generative models, in particular, group-invariant GANs [15, 7], can effectively learn
group-invariant distributions with significantly fewer training data. Specifically, let \Sigma be
a finite group, \mu be a \Sigma -invariant target distribution supported on some compact domain
\scrX \subset \BbbR d, and \rho be an easy-to-sample (noise) source distribution. Let S\Sigma [(g\ast n,m)\sharp \rho ] be the
\Sigma -invariant generated distribution learned based on n independent and identically distributed
(i.i.d.) training samples from the target \mu and m random draws from the noise source \rho ; see
(3.15) for the exact definition. We show that, if m is sufficiently large and the network sizes
are sufficiently large, then

\BbbE 
\bigl[ 
\scrW 1(S

\Sigma [(g\ast n,m)\sharp \rho ], \mu )
\bigr] 
is controlled by

\biggl( 
1

| \Sigma | n

\biggr) 1/d

,(1.1)

where \scrW 1(P,Q) is the Wasserstein-1 distance between two distributions P and Q; see (3.2).
This reduction by a factor of | \Sigma | in the number of training samples needed to learn a \Sigma -
invariant target \mu partially explains the enhanced data efficiency and generalization guaran-
tees of GANs compared to existing generalization errors, such as those reported in [24], by
leveraging the group structure. This reduction in training sample complexity can be inter-
preted as follows: the performance of a group-invariant GAN utilizing n i.i.d. training samples
is equivalent to a vanilla GAN with | \Sigma | n i.i.d. training samples. This is crucial, especially
when the datasets available are scarce. If we further assume that \mu is supported on a smooth
d\ast -dimensional submanifold of \BbbR d, then

\BbbE 
\bigl[ 
\scrW 1(S

\Sigma [(g\ast n,m)\sharp \rho ], \mu )
\bigr] 
is controlled by

\biggl( 
1

| \Sigma | n

\biggr) 1/d\ast 

.(1.2)

This estimation suggests that the improvement in the error bound does not suffer from
the curse of dimensionality, as it depends only on the intrinsic dimension d\ast of the target's
support, which could be much smaller than the ambient dimension d. More importantly, we
demonstrate that group-invariant GANs function effectively as though the input training data
are augmented by the group actions in an i.i.d. manner (in contrast, augmented data are con-
ditionally independent but not i.i.d.) without an increase in the number of parameters and
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864 Z. CHEN, M. A. KATSOULAKIS, L. REY-BELLET, AND W. ZHU

with a reduced discriminator approximation error lower bound compared to vanilla GANs,
with fixed network architecture (see Proposition 4.3). For a visual illustration of the signifi-
cant difference between data augmentation and learning with group-invariant GANs, see the
numerical experiments in section 6 (Figures 2, 3, and 4). We remark that we only present the
dominating terms in (1.1) and (1.2), assuming m is sufficiently large and the network sizes
are sufficiently large, and their precise statement can be found in Theorems 4.9 and 5.2.

To the best of our knowledge, our work presents the first step toward theoretically under-
standing the impact of harnessing group symmetry within group-invariant generative models.
While our primary focus lies on the performance guarantees for group-invariant GANs, we
hope the analysis developed herein can be generalized in future works to study performance
guarantees for other group-invariant generative models. See, for instance, [11], discussed at
the end of section 2, and Remark 4.4.

This paper is organized as follows. In section 2, we review some related work. Section
3 provides the background and goals of our study. Theoretical results for the case when the
target distribution lies in the Euclidean space or a low-dimensional submanifold are presented
in sections 4 and 5, respectively. A numerical example is provided in section 6. We conclude
our work and discuss future directions in section 7. Some of the proofs are deferred to sections
8 and 9.

2. Related work. A burgeoning body of recent research on group-equivariant neural net-
works [12, 13, 48] has demonstrated remarkable empirical success achieved through leveraging
group symmetries in various supervised machine learning tasks. These accomplishments have,
in turn, fostered the development of group-invariant/equivariant generative models, enabling
data-efficient unsupervised learning of group-invariant distributions. Notable endeavors in
this area include equivariant normalizing flows [5, 8, 19, 28], group-equivariant GANs [15],
structure-preserving GANs [7] that rely on structure-customized divergences [6], and discrete
and continuous equivariant diffusion models [23, 32]. Despite the intuitive understanding,
the extent to which and the underlying reasons why group symmetry can enhance the data
efficiency of those group-invariant generative models remain largely unknown.

On the other hand, recent research [9, 24, 31] has made significant progress in the sample-
complexity analysis of vanilla GANs (i.e., GANs without group-symmetric generators and
discriminators) in distribution learning. These works quantify the disparity, often measured
using probability divergences, between the distribution learned by GANs with finite training
samples and the underlying data distribution. Compared to these works, our analysis fol-
lows a similar oracle inequality and bounds each term of the inequality separately. However,
the novelty of our work lies in the following: (1) we propose a version of group-invariant
generator and discriminator architectures, and (2) we treat each error term with incorpo-
rated group-invariant network architectures and utilize the fact that the target distribution
is group-invariant. While recent work [10, 44] has explored the enhanced sample complex-
ity of divergence estimation under group symmetry, it remains unclear how these findings
can be extended to the statistical estimation of group-invariant GANs aimed at learning
group-symmetric probability distributions. Moreover, the authors of [10] in particular did not
consider distributions with low-dimensional support, and their technical assumptions on the
group actions are notably restrictive. In our work, we extend the analysis of GANs to include
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STATISTICAL GUARANTEES OF GROUP-INVARIANT GANS 865

cases where distributions possess low-dimensional structure, and we adopt a more flexible
approach toward the assumptions on finite group actions compared to those in [10].

While some other generative models, such as diffusion models, have gained traction re-
cently; GANs as one-shot methods are still widely used in certain applications where computa-
tional efficiency and real-time generation are critical [33, 26, 41]. Moreover, the mathematical
formulation of GANs is essentially the minimization of variational divergences. As the objec-
tive of general generative modeling can be viewed as minimizing the discrepancy between the
generated and target distributions in terms of certain divergences, our work can shed light on
the study of other generative models by considering the performance guarantees of invariant
models evaluated by symmetry-adapted divergences. For example, in the recent work [11] we
provide performance guarantees for score-based generative models with symmetries, inspired
by the work in this paper.

3. Background and problem setup.

3.1. Integral probability metrics and GANs. Let \scrX be a measurable space, and let \scrP (\scrX )
be the set of probability measures on \scrX . Given \Gamma \subset \scrM b(\scrX ), where \scrM b(\scrX ) is the space
of bounded measurable functions on \scrX , the \Gamma -integral probability metric (\Gamma -IPM) [34, 43]
between \nu \in \scrP (\scrX ) and \mu \in \scrP (\scrX ) is defined as

d\Gamma (\nu ,\mu ) := sup
\gamma \in \Gamma 

\{ \BbbE \nu [\gamma ] - \BbbE \mu [\gamma ]\} .(3.1)

For example, if \Gamma = LipH(\scrX ), the space ofH-Lipschitz functions on \scrX , then by the Kantorovich--
Rubinstein duality, we have

\scrW 1(\nu ,\mu ) =H - 1d\Gamma (\nu ,\mu ).(3.2)

For simplicity, we omit the factor H - 1 in the following presentation. When \Gamma is a class of
neural networks, d\Gamma (\nu ,\mu ) defined by (3.1) is called the ``neural network distance"" [2].

GANs, originally proposed by Goodfellow et al. [20], learn to approximate a target data
distribution \mu by generating samples from a noise source distribution \rho (typically chosen as
uniform or Gaussian) through a two-player game. More specifically, GANs aim to solve the
minmax problem

min
g\in \scrG 

max
f\in \scrD 

\BbbE x\sim \mu [f(x)] - \BbbE z\sim \rho [f(g(z))],(3.3)

where \scrG is a class of functions called generators, and \scrD is a class of functions called discrim-
inators. This minmax problem can be equivalently formulated as

min
g\in \scrG 

d\scrD (\mu , g\sharp \rho ),

where g\sharp \rho := \rho \circ g - 1 is the push-forward measure of \rho under g. For example, if \scrD = Lip1(\scrX )
is the class of 1-Lipschitz functions, this minmax problem is the formulation of Wasserstein
GANs (W-GANs) [1].

Copyright © by SIAM and ASA. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

07
/2

5/
25

 to
 1

28
.1

19
.4

7.
3 

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



866 Z. CHEN, M. A. KATSOULAKIS, L. REY-BELLET, AND W. ZHU

Suppose we have only finite samples \{ xi\} ni=1 from the target \mu and \{ zi\} mi=1 from the source
\rho ; we define the optimal generator as the minimizer of the optimization problem [9, 24]

gn,m = argmin
g\in \scrG 

d\scrD (g\sharp \widehat \rho m, \widehat \mu n),(3.4)

where \widehat \mu n = 1
n

\sum n
i=1 \delta xi

is the empirical distribution of the target \mu , and \widehat \rho m = 1
m

\sum m
i=1 \delta zi is

the empirical distribution of the source \rho .

3.2. Group invariance and symmetrization operators. A group is a set \Sigma equipped with
a group product satisfying the properties of associativity, identity, and invertibility. Given a
group \Sigma and a set \scrX , a map \theta : \Sigma \times \scrX \rightarrow \scrX is called a group action on \scrX if \theta \sigma := \theta (\sigma , \cdot ) :\scrX \rightarrow \scrX 
is a bijection on \scrX for any \sigma \in \Sigma , and \theta \sigma 2

\circ \theta \sigma 1
= \theta \sigma 2\cdot \sigma 1

\forall \sigma 1, \sigma 2 \in \Sigma . If the context is clear, we
will abbreviate \theta (\sigma ,x) as \sigma x.

A function \gamma :\scrX \rightarrow \BbbR is said to be \Sigma -invariant if it is constant over group orbits of \scrX , i.e.,
\gamma \circ \theta \sigma = \gamma \forall \sigma \in \Sigma . Let \Gamma \subset \scrM b(\scrX ) be a set of bounded measurable functions \gamma :\scrX \rightarrow \BbbR . We
define its subset, \Gamma \Sigma \subset \Gamma , of \Sigma -invariant functions as

\Gamma \Sigma := \{ \gamma \in \Gamma : \gamma \circ \theta \sigma = \gamma \forall \sigma \in \Sigma \} .(3.5)

Likewise, a probability measure \mu \in \scrP (\scrX ) is said to be \Sigma -invariant if \mu = (\theta \sigma )\sharp \mu for all \sigma \in \Sigma .
We define the set of all \Sigma -invariant distributions on \scrX as

\scrP \Sigma (\scrX ) := \{ \mu \in \scrP (\scrX ) : \mu is \Sigma -invariant\} .(3.6)

Finally, following [7, 10], we define two symmetrization operators, S\Sigma :\scrM b(\scrX )\rightarrow \scrM b(\scrX )
and S\Sigma :\scrP (\scrX )\rightarrow \scrP (\scrX ), on functions and probability measures, respectively, as

S\Sigma [\gamma ](x) :=

\int 
\Sigma 
\gamma (\sigma x)\mu \Sigma (d\sigma ) \forall \gamma \in \scrM b(\scrX ),(3.7)

\BbbE S\Sigma [\mu ]\gamma :=\BbbE \mu S\Sigma [\gamma ] \forall \mu \in \scrP (\scrX ),\forall \gamma \in \scrM b(\scrX ),(3.8)

where \mu \Sigma is the unique Haar probability measure on a compact Hausdorff topological group
\Sigma [18]. One can easily verify that S\Sigma and S\Sigma are, respectively, projection operators onto their
corresponding invariant subsets \Gamma \Sigma \subset \Gamma and \scrP \Sigma (\scrX ) \subset \scrP (\scrX ) [7]. One of the main results of
[7] that motivates the construction of group-invariant GANs is summarized in the following
lemma.

Lemma 3.1 (paraphrased from [7]). If S\Sigma [\Gamma ]\subset \Gamma and \nu ,\mu \in \scrP (X), then

d\Gamma (S
\Sigma [\nu ], S\Sigma [\mu ]) = d\Gamma \Sigma 

(\nu ,\mu ) = sup
\gamma \in \Gamma \Sigma 

\{ \BbbE \nu [\gamma ] - \BbbE \mu [\gamma ]\} .

In particular, if \nu ,\mu \in \scrP \Sigma (\scrX ) are \Sigma -invariant, then d\Gamma (\nu ,\mu ) = d\Gamma \Sigma 
(\nu ,\mu ).

In other words, to ``tell the difference"" between two \Sigma -invariant distributions \nu ,\mu \in \scrP \Sigma (\scrX ),
one need only optimize over all \Sigma -invariant discriminators \gamma \in \Gamma \Sigma . Group-invariant GANs are
thus a type where the discriminators are all \Sigma -invariant, and the generators are parameter-
ized in such a way that the generated distributions are always \Sigma -invariant. We will further
elaborate on the exact construction of group-invariant GANs in section 3.4.

Copyright © by SIAM and ASA. Unauthorized reproduction of this article is prohibited.
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STATISTICAL GUARANTEES OF GROUP-INVARIANT GANS 867

3.3. Assumptions on the group actions. We assume \scrX \subset \BbbR d is a bounded subset of \BbbR d

equipped with the Euclidean metric \| \cdot \| 2. In addition, we make the following assumptions on
the group \Sigma and its action on \scrX .

Assumption 3.2. The group \Sigma and its action on \scrX \subset \BbbR d satisfy the following:
1. \Sigma is finite, i.e., | \Sigma | <\infty ;
2. \Sigma acts linearly on \scrX ; that is, \sigma (ax1 + bx2) = a\sigma x1 + b\sigma x2 \forall x1, x2 \in \scrX , \sigma \in \Sigma , a, b\in \BbbR ;
3. the \Sigma -actions on \scrX are isometric; that is,

\| \sigma x1  - \sigma x2\| 2 = \| x1  - x2\| 2 \forall x1, x2 \in \scrX , \sigma \in \Sigma .

Remark 3.3. In terms of the third condition, one can instead assume that the \Sigma -actions on
\scrX are 1-Lipschitz: that is, \| \sigma x1  - \sigma x2\| 2 \leq \| x1  - x2\| 2 \forall x1, x2 \in \scrX , \sigma \in \Sigma . Weyl's unitary trick
tells us that for every finite group action, there exists a basis in which the action is isometric,
such that the third condition can always be satisfied with a simple change of basis.

The \Sigma action on \scrX induces a fundamental domain \scrX 0 \subset \scrX , a terminology which we adopt
from [10].

Definition 3.4 (fundamental domain). A subset \scrX 0 \subset \scrX is called a fundamental domain of
\scrX under the \Sigma -action if for any x \in \scrX , there exists a unique x0 \in \scrX 0 such that x = \sigma x0 for
some \sigma \in \Sigma .

We remark that the choice of the fundamental domain \scrX 0 is generally not unique. Follow-
ing [10], we abuse the notation \scrX =\Sigma \times \scrX 0 to denote \scrX 0 as a fundamental domain of \scrX under
the \Sigma -action. Given a specific choice of the fundamental domain \scrX 0, we define the projection
T0 :\scrX \rightarrow \scrX 0 as

T0(x) := y \in \scrX 0 if y= \sigma x for some \sigma \in \Sigma .(3.9)

In other words, T0 maps any x \in \scrX to its unique orbit representative in \scrX 0. Given a \Sigma -
invariant distribution \mu \in \scrP \Sigma (\scrX ) on \scrX , the map T0 induces a distribution \mu \scrX 0

\in \scrP (\scrX 0) on the
fundamental domain \scrX 0 defined by

\mu \scrX 0
= (T0)\sharp \mu .(3.10)

We next introduce an important concept, the covering number, which appears in many
proofs throughout our paper.

Definition 3.5 (covering number). Let (\scrX , \tau ) be a metric space. A subset S \subset \scrX is called
an \epsilon -cover of \scrX if for any x\in \scrX there is an s\in S such that \tau (s,x)\leq \epsilon . Define the \epsilon -covering
number of \scrX as

\scrN (\scrX , \epsilon , \tau ) :=min\{ | S| : S is an \epsilon -cover of \scrX \} .

When \tau (x, y) = \| x - y\| 2 is the Euclidean metric in \BbbR d, we abbreviate as \scrN (\scrX , \epsilon , \tau ) as \scrN (\scrX , \epsilon ).

With Definitions 3.4 and 3.5, we specify below our second technical assumption on the
group action over \scrX , which is motivated by [42, 10].

Assumption 3.6. There exists some constant \epsilon \Sigma and a set-valued function A0(\epsilon ), such that
for any \epsilon \in (0, \epsilon \Sigma ), we have A0(\epsilon )\subset \scrX 0, and

Copyright © by SIAM and ASA. Unauthorized reproduction of this article is prohibited.
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Figure 1. Examples of Assumption 3.6. Left: Mirror reflection in \BbbR 2. \scrX 0 = [0,1]\times [0,1]. The group actions
are generated by \sigma (x, y) = ( - x, y). Right: Circular rotations within the unit disk in \BbbR 2. The group actions are
generated by the \pi /2-rotation with respect to the origin. \scrX 0 = (\rho cos\theta , \rho sin\theta ), \rho \in [0,1], \theta \in [0, \pi /2). A0(\epsilon ) are
colored yellow in both subfigures.

1. \| \sigma x - \sigma \prime x\prime \| 2 > 2\epsilon \forall x,x\prime \in \scrX 0\setminus A0(\epsilon ), \sigma \not = \sigma \prime \in \Sigma ;
2. \| \sigma x - \sigma x\prime \| 2 = \| x - x\prime \| 2 \forall x,x\prime \in \scrX 0\setminus A0(\epsilon ), \sigma \in \Sigma .

Moreover, for some 0\leq r\leq d, we have

limsup
\epsilon \rightarrow 0+

\scrN (A0(\epsilon ), \epsilon )

\scrN (\scrX 0, \epsilon )\epsilon r
<\infty .(3.11)

Remark 3.7. Assumption 3.6 is notably less restrictive compared to the sufficient condition
of Theorem 3 in [42], which can be viewed as a special case of Assumption 3.6 when A(\epsilon ) = \emptyset 
and r = 0. Such relaxation is crucial to accommodate symmetries such as mirror reflections
and circular rotations in the following examples.

Example 3.8 (mirror reflection in \BbbR 2). \scrX = [ - 1,1]\times [0,1]. The group actions are generated
by \sigma (x, y) = ( - x, y). In this case, we have r = 1 in Assumption 3.6. See the left subfigure in
Figure 1.

Example 3.9 (rotations in \BbbR 2). \scrX = (\rho cos\theta , \rho sin\theta ), \rho \in [0,1], \theta \in [0,2\pi ) and \scrX 0 =
(\rho cos\theta , \rho sin\theta ), \rho \in [0,1], \theta \in [0, \pi /2). The group actions are generated by the \pi /2-rotation
with respect to the origin. In this case, we also have r = 1 in Assumption 3.6. See the right
subfigure in Figure 1.

Remark 3.10. The introduction of A0 implies that group actions are effective: if x0 \in \scrX 0,
then there is an infinitesimal lower bound \epsilon between \sigma x0 and \scrX 0 for any \sigma \not = id. For example,
in Example 3.8, if x0 \in \scrX 0 is arbitrarily close to the border of \scrX 0, i.e., \{ 0\} \times [0,1], then \sigma 1x0
will be arbitrarily close to \scrX 0, where \sigma 1 is the reflection action; similarly for Example 3.9,
when x0 \in \scrX 0 is close to \theta = 0 and \sigma 1 is a counterclockwise rotation by \pi /2. Also note that
the assumptions in [42, 10] both fail to satisfy the two cases in Figure 1.

3.4. Network architecture for group-invariant GANs. In GANs, both the generator class
and the discriminator class are parameterized by neural networks. In this paper, we consider
fully connected feed-forward Rectified Linear Unit (ReLU) networks as the architecture for
both generators and discriminators.

Copyright © by SIAM and ASA. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

07
/2

5/
25

 to
 1

28
.1

19
.4

7.
3 

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



STATISTICAL GUARANTEES OF GROUP-INVARIANT GANS 869

A fully connected feed-forward ReLU neural network, \phi :\BbbR d0 \rightarrow \BbbR dL+1 , can be formulated
as

\phi (x) =WL \cdot ReLU(WL - 1 \cdot \cdot \cdot ReLU(W0x+ b0) \cdot \cdot \cdot + bL - 1) + bL,(3.12)

where Wi \in \BbbR di+1\times di and bi \in \BbbR di+1 are network weights, i = 0,1, . . . ,L, and the activation
function is given by ReLU(x) :=max\{ 0, x\} , x\in \BbbR . We call the numbers W =max\{ d1, . . . , dL\} 
and L the width and the depth of the neural network \phi , respectively. When the input and
output dimensions are clear from the context, we denote by \scrN \scrN (W,L,N,K) a ReLU network
architecture that consists of fully connected feed-forward ReLU neural networks with width
at most W , depth at most L, number of weights at most N , and magnitude of entries of Wi

and bi no more than K. We also write \scrN \scrN (W,L) or \scrN \scrN (W,L,N) when either N or K is
not specified.

Let \scrD NN and \scrG NN , respectively, denote a class of discriminators and a class of generators
realized by fully connected ReLU networks, which are generally not \Sigma -invariant. We explain
next how to construct \Sigma -invariant discriminators and generators from given \scrD NN and \scrG NN .

Since \Sigma acts linearly on \scrX (Assumption 3.2), there is a matrix representation W\sigma \in \BbbR d\times d

for any \sigma \in \Sigma such that \sigma x = W\sigma x\forall x \in \BbbR d. We can formulate \Sigma -invariant discriminators,
denoted by \scrD \Sigma 

NN , using the function symmetrization operator S\Sigma introduced in (3.7).

Definition 3.11 (\Sigma -invariant discriminators). For any class of discriminators with ReLU
network architecture \scrD NN =\scrN \scrN (W,L,N,K), its corresponding class of \Sigma -invariant discrim-
inators \scrD \Sigma 

NN is defined as

\scrD \Sigma 
NN :=

\left\{   1

| \Sigma | 

| \Sigma | \sum 
i=1

\phi (\sigma  - 1
i x) : \phi (x)\in \scrD NN

\right\}   .(3.13)

That is, \scrD \Sigma 
NN consists of neural networks of the form

\phi (x) =
1

| \Sigma | 

| \Sigma | \sum 
i=1

WL \cdot ReLU(WL - 1 \cdot \cdot \cdot ReLU(W0(W\sigma i
x) + b0) \cdot \cdot \cdot + bL - 1) + bL,(3.14)

where \{ Wi, bi : i= 0, . . . ,L\} is the same set of weights as that of \scrD NN .

By Definition 3.11, it is straightforward to verify that S\Sigma [\scrD \Sigma 
NN ] =\scrD \Sigma 

NN .

Remark 3.12. Definition 3.11 requires | \Sigma | passes through the network; however, in numer-
ous practical scenarios of generative modeling, particularly in medical imaging, the foremost
limitation is typically the scarcity of sufficient data rather than computational resources. Con-
sequently, while Definition 3.11 increases computational demands, it represents a necessary
trade-off to effectively address this significant challenge in sample-constrained applications.

Similarly, the \Sigma -invariant generators can be defined using the distribution symmetrization
operator S\Sigma introduced in (3.8).
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870 Z. CHEN, M. A. KATSOULAKIS, L. REY-BELLET, AND W. ZHU

Definition 3.13 (\Sigma -invariant generators). For any class of generators with ReLU network
architecture \scrG NN = \scrN \scrN (W,L,N,K), its corresponding class of \Sigma -invariant generators \scrG \Sigma 

NN

is defined as

g\Sigma \in \scrG \Sigma 
NN \Leftarrow \Rightarrow \exists g(x)\in \scrG NN s.t. g\Sigma (\rho ) = S\Sigma [g\sharp \rho ] \forall noise source distribution \rho .

In other words, we add a \Sigma -symmetrization layer S\Sigma that draws a random \sigma according to
the Haar measure \mu \Sigma and transforms the output g(x) of \scrG NN to \sigma g(x) the output of \scrG \Sigma 

NN .
In this paper, we consider learning a \Sigma -invariant target data distribution \mu \in \scrP \Sigma (\scrX ) using

\Sigma -invariant GANs whose generators and discriminators are both \Sigma -invariant and where the
noise source probability measure \rho is absolutely continuous on \BbbR (with respect to the Lebesgue
measure). More specifically, in contrast to (3.4), we denote

g\ast n,m = argmin
g\in \scrG NN

d\scrD \Sigma 
NN

(S\Sigma [g\sharp \widehat \rho m], \widehat \mu n).(3.15)

Note that \{ S\Sigma [g\sharp \rho ] : g \in \scrG NN\} is a set of \Sigma -invariant distributions in \scrX for any easy-to-sample
source distribution \rho on \BbbR .

Remark 3.14. Our results also hold if \rho is an absolutely continuous probability measure
on \BbbR k, since any such \rho can be projected to an absolutely continuous probability measure on
\BbbR by a linear mapping, as was shown in Remark 7 of [24].

Remark 3.15. In [9, 24], the generator g\ast n = argming\in \scrG NN
d\scrD \Sigma 

NN
(S\Sigma [g\sharp \rho ], \widehat \mu n) is also consid-

ered. We will not provide the details for g\ast n since, in practice, GANs are trained with finite
samples from \rho . Moreover, the bound in our main result, Theorem 4.9, directly applies to the
case for g\ast n.

3.5. Notation. We write A \lesssim B if A \leq CB for some constant C > 0, and if both A \lesssim B
and B \gtrsim A hold, then we write A\simeq B. We also write A\lesssim s B if the factor C depends on some
quantity s. Given a subset \scrX \subset \BbbR d of \BbbR d, its diameter is denoted as diam(\scrX ) := supx,y\in \scrX \| x - 
y\| 2. For two functions f(n) and g(n), we write f(n) = o (g(n)) when limn\rightarrow \infty f(n)/g(n) = 0.

4. Learning distributions in Euclidean spaces. In this section, we quantify the error
between the generated distribution S\Sigma [(g\ast n,m)\sharp \rho ] and the target data distribution \mu \in \scrP \Sigma (\scrX )

in terms of the Wasserstein-1 metric; that is, \Gamma = LipH(\scrX ) and we estimate d\Gamma (S
\Sigma [(g\ast n,m)\sharp \rho ], \mu ).

All of the proofs can be found in the appendix. Since the value of the \Gamma -IPM does not change
if we replace \Gamma by \Gamma + c for any c \in \BbbR , by Lemma 2 in [10], it is equivalent to replace \Gamma by
\Gamma = \{ f : f \in LipH(\scrX ),\| f\| \infty \leq M\} if \scrX is bounded, where M =H \cdot diam(\scrX 0).

The proof of Theorem 4.9 hinges upon the following error decomposition based on the
proof of Lemma 9 in [24] and Lemma 3.1. Compared to [24], our analysis makes use of the
group-invariant architectures of the generator and discriminator as well as the fact that the
target distribution has group-invariant structure so that each error term will reveal the gain
or no extra cost of group invariance.
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STATISTICAL GUARANTEES OF GROUP-INVARIANT GANS 871

Lemma 4.1 (error decomposition). Suppose g\ast n,m is the optimal GAN generator from (3.15);

then for any function class \Gamma defined on \scrX \subset \BbbR d, we have

d\Gamma (S
\Sigma [(g\ast n,m)\sharp \rho ], \mu )\leq 2 sup

f\in \Gamma \Sigma 

inf
f\omega \in \scrD \Sigma 

NN

\| f  - f\omega \| \infty \underbrace{}  \underbrace{}  
Invariant discriminator approximation error:\Delta 1

+ inf
g\in \scrG NN

d\scrD \Sigma 
NN

(S\Sigma [g\sharp \rho ], \widehat \mu n)\underbrace{}  \underbrace{}  
Invariant generator approximation error:\Delta 2

+ d\Gamma \Sigma 
(\widehat \mu n, \mu )\underbrace{}  \underbrace{}  

Statistical error from target:\Delta 3

+ 2d\scrD \Sigma 
NN\circ \scrG NN

(\rho , \widehat \rho m)\underbrace{}  \underbrace{}  
Statistical error from source:\Delta 4

.

We provide lemmas that bound each of the \Delta i's.

Lemma 4.2 (\Sigma -invariant discriminator approximation error). Let

\Gamma = \{ f : f \in LipH(\scrX ),\| f\| \infty \leq H \cdot diam(\scrX 0)\} .

For any \epsilon \in (0,1), there exists a class of \Sigma -invariant discriminators

\scrD \Sigma 
NN = S\Sigma [\scrN \scrN (W1,L1,N1,K1)]

with L1 \lesssim log(1/\epsilon ), N1 \lesssim \epsilon  - d log(1/\epsilon ) and K1 depends on H, supx\in \scrX \| x\| \infty and diam(\scrX 0), such
that

sup
f\in \Gamma \Sigma 

inf
f\omega \in \scrD \Sigma 

NN

\| f  - f\omega \| \infty \leq \epsilon .

In addition to Lemma 4.2, we take a closer look at each individual approximation to
illustrate the importance of using \Sigma -invariant discriminators in the next proposition, whose
proof can be found in subsection 8.2.

Proposition 4.3. Suppose f is a \Sigma -invariant function and f\omega is not necessarily \Sigma -invariant.
Assuming \Sigma has unitary matrix representations, i.e., the Jacobian of each \theta \sigma is a unitary
matrix, we have

\| f  - f\omega \| \infty \geq 

\sqrt{} 
1

vol(\scrX )

\Bigl( 
\| f  - S\Sigma [f\omega ]\| 2L2(\scrX ) + \| f\omega  - S\Sigma [f\omega ]\| 2L2(\scrX )

\Bigr) 
\geq 

\sqrt{} 
1

vol(\scrX )
\| f\omega  - S\Sigma [f\omega ]\| L2(\scrX ) .

Remark 4.4 (deviation from invariance). The right-hand side of Proposition 4.3 can be
viewed as a measurement of the noninvariance of f\omega and can be large if f\omega is ``far from""
being \Sigma -invariant. This lower bound vanishes whenever f\omega is \Sigma -invariant, which suggests that
we use \Sigma -invariant discriminators \scrD \Sigma 

NN instead of \scrD NN to achieve a smaller discriminator
approximation error. See also Figure 4 for numerical illustrations. This measurement for the
deviation from invariance seems general in generative models with symmetries. For example,
[11] uses a similar notion to measure the nonequivariance of a vector field in the context of
score-based generative models for score-matching approximations.
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872 Z. CHEN, M. A. KATSOULAKIS, L. REY-BELLET, AND W. ZHU

Lemma 4.5 (\Sigma -invariant generator approximation error). Suppose W2 \geq 7d+ 1,L2 \geq 2. Let
\rho be an absolutely continuous probability measure on \BbbR . If n\leq W2 - d - 1

2 \lfloor W2 - d - 1
6d \rfloor \lfloor L2

2 \rfloor + 2, we
have infg\in \scrG NN

d\scrD \Sigma 
NN

(S\Sigma [g\sharp \rho ], \widehat \mu n) = 0, where \scrG NN =\scrN \scrN (W2,L2).

Remark 4.6. We also refer the reader to Theorem 4.6 in [7] for the necessity of using
\Sigma -invariant generators in the following case: Suppose the discriminator architecture is \Sigma -
invariant. Since d\scrD \Sigma 

NN
(g\sharp \rho , \widehat \mu n) = d\scrD NN

(S\Sigma [g\sharp \rho ], S
\Sigma [\widehat \mu n]), the generator may only learn to

generate distributions whose symmetrization is the target distribution, thus causing ``mode
collapse."" That is, d\scrD \Sigma 

NN
is a probability metric on \scrP \Sigma (\scrX ) rather than \scrP (\scrX ). We also refer

the reader to the qualitative numerical examples of this phenomenon in [7].

Lemma 4.7 (statistical error from the target). Let \scrX =\Sigma \times \scrX 0 be a subset of \BbbR d satisfying
the conditions in Assumptions 3.2 and 3.6. Let \Gamma = \{ f : f \in LipH(\scrX ),\| f\| \infty \leq M\} . Suppose \mu 
is a \Sigma -invariant probability measure on \scrX . Then we have the following:

(1) If d\geq 2, then for any s > 0 and n sufficiently large, we have

\BbbE [d\Gamma \Sigma 
(\widehat \mu n, \mu )]\leq C\scrX ,H,d,s

\biggl( 
1

| \Sigma | n

\biggr) 1

d+s

+ o

\Biggl( \biggl( 
1

n

\biggr) 1

d+s

\Biggr) 
,

where the coefficient C\scrX ,H,d,s of the dominating term does not depend on \Sigma or n;
(2) If d= 1 and \scrX 0 is an interval, then for n sufficiently large, we have

\BbbE [d\Gamma \Sigma 
(\widehat \mu n, \mu )]\leq 

cH \cdot diam(\scrX 0)\surd 
n

+ o

\biggl( 
1

n

\biggr) 
,

where c > 0 is an absolute constant independent of \scrX and \scrX 0.

Lemma 4.8 (statistical error from the source). Suppose L1 \lesssim logn, N1 \lesssim n logn, W 2
2L2 \lesssim n;

then we have d\scrD \Sigma 
NN\circ \scrG NN

(\rho , \widehat \rho m) \lesssim 
\sqrt{} 

n2 \mathrm{l}\mathrm{o}\mathrm{g}2 n \mathrm{l}\mathrm{o}\mathrm{g}m
m . In particular, if m \gtrsim n2+2/d log3 n, we have

\BbbE [d\scrD \Sigma 
NN\circ \scrG NN

(\rho , \widehat \rho m)]\lesssim n - 1/d.

With those lemmas, we now state and prove the main theorem.

Theorem 4.9 (main theorem). Let \scrX = \Sigma \times \scrX 0 be a compact subset of \BbbR d(d \geq 2) sat-
isfying Assumptions 3.2 and 3.6, and let \Gamma = LipH(\scrX ). Suppose the target distribution
\mu is \Sigma -invariant on \scrX , and the noise source distribution \rho is absolutely continuous on \BbbR .
Then there exists \Sigma -invariant discriminator architecture \scrD \Sigma 

NN = S\Sigma [\scrD NN ], where \scrD NN =
\scrN \scrN (W1,L1,N1) as defined in (3.14) with N1 \lesssim n logn and L1 \lesssim logn, and \Sigma -invariant
generator architecture \scrG \Sigma 

NN , where \scrG NN = \scrN \scrN (W2,L2), with W 2
2L2 \lesssim n, such that if m \gtrsim 

n2+2/d log3 n, we have

\BbbE 
\bigl[ 
d\Gamma (S

\Sigma [(g\ast n,m)\sharp \rho ], \mu )
\bigr] 
\leq C\scrX ,H,d,s

\biggl( 
1

| \Sigma | n

\biggr) 1

d+s

+ o

\Biggl( \biggl( 
1

n

\biggr) 1

d+s

\Biggr) 
,(4.1)

for any s > 0, where the coefficient C\scrX ,H,d,s of the dominating term does not depend on \Sigma or
n. See (8.5) in the appendix for details.
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STATISTICAL GUARANTEES OF GROUP-INVARIANT GANS 873

Proof. We can choose \epsilon \simeq n - 1/d in Lemma 4.2 with L1 \lesssim logn1/d \simeq logn and N1 \lesssim 
n logn, so that supf\in \Gamma \Sigma 

inff\omega \in \scrD \Sigma 
NN

\| f  - f\omega \| \infty \lesssim n - 1/d. On the other hand, we can make

infg\in \scrG NN
d\scrD \Sigma 

NN
(S\Sigma [g\sharp \rho ], \widehat \mu n) = 0 with W 2

2L2 \lesssim n by Lemma 4.5. Finally, \BbbE [d\Gamma \Sigma 
(\widehat \mu n, \mu )] \lesssim s

(| \Sigma | n) - 1/(d+s) and \BbbE [d\scrD \Sigma 
NN\circ \scrG NN

(\rho , \widehat \rho m)]\lesssim n - 1/d by Lemmas 4.7 and 4.8 respectively.

The statement of the theorem in the case of d= 1 can be found in the appendix.

Remark 4.10 (data efficiency). This improved training sample complexity can be inter-
preted as follows: For vanilla GANs without built-in group symmetry, the group size is 1,
representing the baseline sample complexity. However, for a group-invariant GAN with non-
trivial group | \Sigma | > 1, its performance when utilizing n i.i.d. training samples is equivalent to
a vanilla GAN with | \Sigma | n i.i.d. training samples.

Remark 4.11 (optimality of the rate). The rate obtained in Theorem 4.9 is less sharp than
\lesssim n - 1/d\vee n - 1/2 logn provided in [24] since in [24] it is assumed that \scrX =\scrX 0 = [0,1]d, but here
we do not assume the fundamental domain is connected. If we assume that \scrX 0 is connected,
then the rate can be improved to \lesssim (| \Sigma | n) - 1/d for d \geq 3 and \lesssim s (| \Sigma | n) - 1/2 logn for d = 2
since Lemma 8.5 in the proof can be replaced by a sharper covering number bound in [29].

5. Target distributions with low-dimensional structure. While Theorem 4.9 explains the
improved data efficiency of group-invariant GANs, the error bound increases as the ambient
dimension d increases. However, empirical evidence suggests that numerous probability dis-
tributions found in nature are concentrated on submanifolds of low intrinsic dimensions. In
light of this, we present an enhanced analysis of sample complexity for group-invariant GANs,
specifically when learning distributions of low intrinsic dimension under group symmetry.
Suppose the target distribution \mu is supported on some compact d\ast -dimensional smooth sub-
manifold of \BbbR d. We first prove the following bound for the covering number of a compact
smooth submanifold of \BbbR d, which reflects the intrinsic dimension of the submanifold.

Lemma 5.1. Let \scrM be a compact d\ast -dimensional smooth submanifold of \BbbR d; then for small
\epsilon > 0, we have

\scrN (\scrM , \epsilon )\leq C\scrM 

\biggl( 
1

\epsilon 

\biggr) d\ast 

,

where the metric in the covering number is the Euclidean metric on \BbbR d, and the constant C\scrM 
depends on \scrM .

Proof. For any point x \in \scrM , there exists a chart (Ux,\varphi x), where Ux \subset \BbbR d is an open set
containing x, and \varphi x :Ux\cap \scrM \rightarrow \varphi x(Ux\cap \scrM )\subset \BbbR d\ast 

is a diffeomorphism such that \varphi x(Ux\cap \scrM ) is
an open set of \BbbR d\ast 

. Without loss of generality, we can assume \varphi x(x) = 0\in \BbbR d\ast 
. In addition, we

can assume that \varphi x(Ux \cap \scrM ) =Bd\ast (0,Rx) for some Rx > 0, and
\bigm\| \bigm\| D\varphi  - 1

x

\bigm\| \bigm\| 
2
\leq cx on Bd\ast (0,Rx)

for some constant cx, whereD\varphi  - 1
x is the Jacobian matrix of \varphi  - 1

x . (This is possible since \varphi x(Ux)
is open; we can pick some r > 0 such that Bd\ast (0, r)\subset \varphi x(Ux), so that Bd\ast (0, r/2) is compact,
and

\bigm\| \bigm\| D\varphi  - 1
x

\bigm\| \bigm\| 
2
is bounded on Bd\ast (0, r/2). Then we can set Ux \cap \scrM =\varphi  - 1

x (Bd\ast (0, r/4)).)

Let \epsilon x \leq Rx

3 ; then any open ball in \BbbR d\ast 
that intersects Bd\ast (0, \epsilon x) must lie within Bd\ast (0,Rx).

For any small \epsilon \in (0,1), we know that Bd\ast (0, \epsilon x) can be covered by (\epsilon x+\epsilon /2)d
\ast 

(\epsilon /2)d\ast balls with radius \epsilon 

in \BbbR d\ast 
(cf. Proposition 4.2.12 in [47]). Moreover, since

\bigm\| \bigm\| D\varphi  - 1
x

\bigm\| \bigm\| 
2
\leq cx, \varphi 

 - 1
x maps each of these
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874 Z. CHEN, M. A. KATSOULAKIS, L. REY-BELLET, AND W. ZHU

\epsilon -balls to some open subset of Ux whose diameter is no more than cx\epsilon and hence contained in

some open ball of radius 2cx\epsilon in \BbbR d. Therefore, \varphi  - 1
x (Bd\ast (0, \epsilon x)) can be covered by (\epsilon x+\epsilon /2)d

\ast 

(\epsilon /2)d\ast 

balls with radius 2cx\epsilon in \BbbR d. By a rescaling, \varphi  - 1
x (Bd\ast (0, \epsilon x)) can be covered by (\epsilon x+\epsilon /4cx)d

\ast 

(\epsilon /4cx)d
\ast balls

with radius \epsilon in \BbbR d. Also note that \cup x\in \scrM [\varphi  - 1
x (Bd\ast (0, \epsilon x))] forms an open cover of \scrM , so there

exist finitely many x1, . . . , xn such that \scrM =\cup n
i=1[\varphi 

 - 1
xi

(Bd\ast (0, \epsilon xi
))], since \scrM is compact. Thus

\scrM can be covered by
\sum n

i=1
(\epsilon xi

+\epsilon /4cxi
)d

\ast 

(\epsilon /4cxi
)d\ast =

\sum n
i=1(

4cxi
\epsilon xi

\epsilon +1)d
\ast \leq 

\sum n
i=1(

4cxi
\epsilon xi

+1
\epsilon )d

\ast \leq C\scrM 
\epsilon d\ast balls

with radius \epsilon in \BbbR d, where C\scrM = n \cdot maxi\{ (4cxi
\epsilon xi

+ 1)d
\ast \} . That is, \scrN (\scrM , \epsilon )\leq C\scrM (1\epsilon )

d\ast 
.

Theorem 5.2. Let \scrX = \Sigma \times \scrX 0 \subset \BbbR d, and let \scrX 0 be a compact d\ast -dimensional smooth
submanifold of \BbbR d(d\ast \geq 2) satisfying Assumption 3.6 with some 0\leq r \leq d\ast and \Gamma = LipH(\scrX ).
Suppose the target distribution \mu is \Sigma -invariant on \scrX and the noise source distribution \rho is
absolutely continuous on \BbbR . Then there exists \Sigma -invariant discriminator architecture \scrD \Sigma 

NN =
S\Sigma [\scrD NN ], where \scrD NN =\scrN \scrN (W1,L1,N1) as defined in (3.14) with N1 \lesssim n logn and L1 \lesssim logn,
and \Sigma -invariant generator architecture \scrG \Sigma 

NN , where \scrG NN =\scrN \scrN (W2,L2), with W 2
2L2 \lesssim n, such

that if m\gtrsim n2+2/d\ast 
log3 n, we have

\BbbE 
\bigl[ 
d\Gamma (S

\Sigma [(g\ast n,m)\sharp \rho ], \mu )
\bigr] 
\leq C\scrX ,H,d\ast ,s

\biggl( 
1

| \Sigma | n

\biggr) 1

d\ast +s

+ o

\Biggl( \biggl( 
1

n

\biggr) 1

d\ast +s

\Biggr) 
,

for any s > 0, where the coefficient C\scrX ,H,d\ast ,s of the dominating term does not depend on \Sigma or n.

Proof. Following the notation in the proof of Lemma 4.7, we have, by Lemma 8.5,

log\scrN (\scrF 0, \epsilon , \| \cdot \| \infty )\leq \scrN 
\Bigl( 
\scrX 0,

c2\epsilon 

H

\Bigr) 
log

\biggl( 
c1M

\epsilon 

\biggr) 
,

where \scrF 0 = \{ \gamma \in LipH(\scrX 0) : \| \gamma \| \infty \leq M\} . By Assumption 3.6 and Lemma 5.1, we have

\scrN 
\Bigl( 
\scrX 0,

c2\epsilon 

H

\Bigr) 
log

\biggl( 
c1M

\epsilon 

\biggr) 
\leq \scrN 

\Bigl( 
\scrX 0\setminus A0

\Bigl( c2\epsilon 
H

\Bigr) 
,
c2\epsilon 

H

\Bigr) 
log

\biggl( 
c1M

\epsilon 

\biggr) 
+\scrN 

\Bigl( 
A0

\Bigl( c2\epsilon 
H

\Bigr) 
,
c2\epsilon 

H

\Bigr) 
log

\biggl( 
c1M

\epsilon 

\biggr) 
\leq 

\scrN 
\bigl( 
\scrX , c2\epsilon H

\bigr) 
| \Sigma | 

log

\biggl( 
c1M

\epsilon 

\biggr) 
+ \=c\epsilon r\scrN 

\Bigl( 
\scrX ,

c2\epsilon 

H

\Bigr) 
log

\biggl( 
c1M

\epsilon 

\biggr) 
\leq C\scrX H

d\ast 

| \Sigma | cd\ast 

2 \epsilon d\ast log

\biggl( 
c1M

\epsilon 

\biggr) 
+

\=cC\scrX H
d\ast 

cd
\ast 

2 \epsilon d\ast  - r
log

\biggl( 
c1M

\epsilon 

\biggr) 
when c2\epsilon \ast 

H \leq \epsilon \Sigma . Therefore, we have the statistical error from the target \Delta 3 as

\BbbE [d\Gamma \Sigma 
(\widehat \mu n, \mu )]\leq C\scrX ,H,d\ast ,s

\biggl( 
1

| \Sigma | n

\biggr) 1

d\ast +s

+ o

\Biggl( \biggl( 
1

n

\biggr) 1

d\ast +s

\Biggr) 
.

The rest of the prooffollows that of Theorem 4.9.

Remark 5.3. The statement of the theorem for 1-dimensional submanifolds can be found
in the appendix.
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STATISTICAL GUARANTEES OF GROUP-INVARIANT GANS 875

Remark 5.4. The condition in Theorem 5.2 can be relaxed to be C1-submanifolds, as the
proof of Lemma 5.1 only requires a C1 condition.

Remark 5.5. If the target distribution does not lie on a manifold, such as on fractals, we
can introduce the Minkowski dimension, whose definition itself involves the covering number,
so that we can derive the bound similarly as in Theorem 5.2.

6. Numerical experiments. We provide a synthetic example to illustrate efficient learning
by incorporating group symmetry into the generator and discriminator networks. Specifically,
the target is a mixture of four 2-dimensional Gaussian distributions centered at [\pm 10,\pm 10],
each with a standard deviation of 5, resulting in a target distribution with C4 symmetry.

We train three different GANs based on the vanilla GAN that has three hidden fully
connected layers with 64, 32, and 16 nodes in sequence with ReLU activations for both the
generator and the discriminator. The discriminators and generators of C2 and C4 GANs are
defined as in Definitions 3.11 and 3.13 with C2 and C4 groups, respectively. We applied a
gradient penalty as described in [22] with a (soft) Lipschitz constant of 1 and penalty of 10
(see Theorem 31 in [6] for a theoretical justification). The noise source is selected to be a
10-dimensional Gaussian.

Figure 2 displays 5000 samples generated by the trained generator of each GAN, where we
use 100 training samples, incorporating C1 (no invariance, or vanilla), C2, and C4 symmetries.
The GAN with C4 symmetry (third row) achieves the best result, and the one with no invari-
ance (top row) performs the worst. Additionally, the vanilla GAN without symmetry, even
with full data augmentation, i.e., augmenting all the training data using group actions in C4

and thus giving us 400 non-i.i.d. training samples (bottom row), performed only slightly bet-
ter than the GAN without symmetry. This highlights the stark contrast between structured
distribution learning with group-invariant GANs and using data augmentation.

Figure 2. Heat map of 5000 GAN generated samples learned from a 2D Gaussian mixture. Top row: GAN
with no symmetry; second row: GAN with C2 (partial) symmetry; third row: GAN with C4 (full) symmetry;
bottom row: GAN with no symmetry but with C4 augmentation on the training data. Yellow parts refer to
higher density.
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876 Z. CHEN, M. A. KATSOULAKIS, L. REY-BELLET, AND W. ZHU

Figure 3. Heat map of 5000 GAN generated samples learned from a 2D Gaussian mixture embedded in a
higher-dimensional ambient space \BbbR 12. The figure shows the 2D projection of the generated samples onto the
intrinsic support plane (d\ast = 2) of the distribution. Top row: GAN with no symmetry; second row: GAN with
C2 (partial) symmetry; third row: GAN with C4 (full) symmetry; bottom row: GAN with no symmetry but
with C4 augmentation on the training data. Compared to Figure 2, this result qualitatively suggests that the
convergence depends only on the intrinsic dimension, as discussed in Theorem 5.2.

Figure 4. Wasserstein-1 distance between 10,000 samples drawn from the generated and target distributions
with different GAN implementations over 20 runs. Left: 2D example. Right: 12D example. C4 GAN achieves
the best performance in both cases.

Moreover, Figure 3 presents similar results with the same (hyper)parameters, except that
the 2D Gaussian mixture is linearly embedded into a higher-dimensional ambient space \BbbR 12.

In Figure 4, we quantitatively evaluate the performance of methods by calculating the
Wasserstein-1 distance between 10,000 samples drawn from the generated distributions by
the trained GANs for 10,000 epochs and the target distribution of the Gaussian mixture,
respectively. We apply the linear program in [16, 17] for the calculation of the Wasserstein-1
distance, and we set the maximal number of iterations to 106, and no cases reaching this limit
were reported. For each training data size, we perform 20 independent runs for each method.
We observe that the C4 GAN consistently achieves the best performance in both examples.
This is because the C4 GAN not only has a smaller statistical error \Delta 3 but also provides a
smaller invariant discriminator approximation error \Delta 1, which becomes the dominant error in

Copyright © by SIAM and ASA. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

07
/2

5/
25

 to
 1

28
.1

19
.4

7.
3 

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



STATISTICAL GUARANTEES OF GROUP-INVARIANT GANS 877

Lemma 4.1 when the number of training samples is large. (See Proposition 4.3 and Remark 4.4
for the reduced \Delta 1 error by the invariant architecture.) We keep the same network architecture
and hyperparameters in our numerical experiments to ensure consistency of performance across
different methods.

7. Conclusion and future work. In this work, we quantitatively established the improved
generalization guarantees of group-invariant GANs. Our results indicate that when learning
group-invariant target distributions, potentially supported on a manifold with small intrinsic
dimension, the required number of samples for group-invariant GANs is reduced by a factor
of the group size. In essence, group-invariant GANs function effectively as though the input
data were augmented in the statistical sense, without an increase in the number of parameters,
compared to vanilla GANs. This becomes crucial when we face data scarcity. On the other
hand, however, the overall improved bound cannot simply be derived from data augmentation
since invariant GANs have a reduced discriminator approximation error, and our numerical
results further support this distinction. Our findings present several potential avenues for
further exploration. First, it is essential to explore how the dimension of the support of
the noise source \rho influences the performance of GANs. A recent experimental study [54]
suggests that the dimension of the source should not be significantly smaller than the intrinsic
dimension of the target distribution's support. Second, exploring the case of unbounded
support for the target distribution, particularly when heavy-tailed distributions are involved,
holds promise for further investigation. To the best of our knowledge, the theoretical study
of how the dimension of the support and the distribution characteristics of the noise source
\rho influence the performance of GANs is still open. Third, it will also be worthwhile to study
the statistical estimation and expressive power of group-invariant GANs constructed from
equivariant convolutional neural networks (CNNs), based on the universality result of CNNs
(cf. [52]). Lastly, our work assumes the group is finite, which is crucial for defining our group-
invariant generators and discriminators. Extending the analysis to compact Lie groups should
also be explored. While the statistical error from the target \Delta 3 has been studied in [10, 44] for
continuous groups, it remains an open problem for a novel design of invariant discriminator
architecture and its universality for infinite groups.

8. Proofs of results related to Theorem 4.9.

8.1. Proof of Lemma 4.1.

Proof. Based on the definition of d\Gamma in (3.1), we have

d\Gamma (S
\Sigma [(g\ast n,m)\sharp \rho ], \mu ) = d\Gamma \Sigma 

(S\Sigma [(g\ast n,m)\sharp \rho ], \mu )

\leq d\Gamma \Sigma 
(S\Sigma [(g\ast n,m)\sharp \rho ], \widehat \mu n) + d\Gamma \Sigma 

(\widehat \mu n, \mu )

\leq d\scrD \Sigma 
NN

(S\Sigma [(g\ast n,m)\sharp \rho ], \widehat \mu n) + 2 sup
f\in \Gamma \Sigma 

inf
f\omega \in \scrD \Sigma 

NN

\| f  - f\omega \| \infty + d\Gamma \Sigma 
(\widehat \mu n, \mu )

\leq d\scrD \Sigma 
NN

(S\Sigma [(g\ast n,m)\sharp \rho ], S
\Sigma [(g\ast n,m)\sharp \widehat \rho m]) + d\scrD \Sigma 

NN
(S\Sigma [(g\ast n,m)\sharp \widehat \rho m], \widehat \mu n)

+ 2 sup
f\in \Gamma \Sigma 

inf
f\omega \in \scrD \Sigma 

NN

\| f  - f\omega \| \infty + d\Gamma \Sigma 
(\widehat \mu n, \mu ),

where the first equality is due to Lemma 3.1, the first inequality is given by the triangle
inequality, the second inequality is due to Lemma 24 in [24], and the last inequality is also
given by the triangle inequality.
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878 Z. CHEN, M. A. KATSOULAKIS, L. REY-BELLET, AND W. ZHU

Therefore we have two different terms to bound: d\scrD \Sigma 
NN

(S\Sigma [(g\ast n,m)\sharp \rho ], S
\Sigma [(g\ast n,m)\sharp \widehat \rho m]) and

d\scrD \Sigma 
NN

(S\Sigma [(g\ast n,m)\sharp \widehat \rho m], \widehat \mu n). For the first term, we have

d\scrD \Sigma 
NN

(S\Sigma [(g\ast n,m)\sharp \rho ], S
\Sigma [(g\ast n,m)\sharp \widehat \rho m]) = d\scrD \Sigma 

NN
((g\ast n,m)\sharp \rho , (g

\ast 
n,m)\sharp \widehat \rho m)

due to Lemma 3.1 and the fact that S\Sigma [\scrD \Sigma 
NN ] =\scrD \Sigma 

NN . Hence we have

d\scrD \Sigma 
NN

((g\ast n,m)\sharp \rho , (g
\ast 
n,m)\sharp \widehat \rho m) = sup

h\in \scrD \Sigma 
NN

\Bigl\{ 
E(g\ast 

n,m)\sharp \rho [h] - E(g\ast 
n,m)\sharp \widehat \rho m

[h]
\Bigr\} 

= sup
h\in \scrD \Sigma 

NN

\bigl\{ 
E\rho [h \circ g\ast n,m] - E\widehat \rho m

[h \circ g\ast n,m]
\bigr\} 

\leq d\scrD \Sigma 
NN\circ \scrG NN

(\rho , \widehat \rho m).

For the second term, by the definition in (3.15), we have, for any g \in \scrG NN ,

d\scrD \Sigma 
NN

(S\Sigma [(g\ast n,m)\sharp \widehat \rho m], \widehat \mu n)\leq d\scrD \Sigma 
NN

(S\Sigma [g\sharp \widehat \rho m], \widehat \mu n)

\leq d\scrD \Sigma 
NN

(S\Sigma [g\sharp \widehat \rho m], S\Sigma [g\sharp \rho ]) + d\scrD \Sigma 
NN

(S\Sigma [g\sharp \rho ], \widehat \mu n)

\leq d\scrD \Sigma 
NN\circ \scrG NN

(\rho , \widehat \rho m) + d\scrD \Sigma 
NN

(S\Sigma [g\sharp \rho ], \widehat \mu n).

Taking the infimum over g \in \scrG NN , we have

d\scrD \Sigma 
NN

(S\Sigma [(g\ast n,m)\sharp \widehat \rho m], \widehat \mu n)\leq d\scrD \Sigma 
NN\circ \scrG NN

(\rho , \widehat \rho m) + inf
g\in \scrG NN

d\scrD \Sigma 
NN

(S\Sigma [g\sharp \rho ], \widehat \mu n).

Therefore,

d\Gamma (S
\Sigma [(g\ast n,m)\sharp \rho ], \mu )\leq inf

g\in \scrG NN

d\scrD \Sigma 
NN

(S\Sigma [g\sharp \rho ], \widehat \mu n) + 2 sup
f\in \Gamma \Sigma 

inf
f\omega \in \scrD \Sigma 

NN

\| f  - f\omega \| \infty 

+ d\Gamma \Sigma 
(\widehat \mu n, \mu ) + 2d\scrD \Sigma 

NN\circ \scrG NN
(\rho , \widehat \rho m).

This completes the proof of Lemma 4.1.

8.2. Bound for \bfDelta \bfone . We first cite the following network universal approximation result
from [50].

Lemma 8.1 (universal approximation of Lipschitz functions; Theorem 1 in [50]). Let \scrX be a
compact domain in \BbbR d, and let supx\in \scrX \| x\| \infty \leq F . Given any \epsilon \in (0,1), there exists a ReLU
network architecture \scrN \scrN (W,L,N) such that, for any f \in LipH(\scrX ) and \| f\| \infty \leq M , with

appropriately chosen network weights, the network provides a function \^f such that
\bigm\| \bigm\| \bigm\| f  - \^f

\bigm\| \bigm\| \bigm\| 
\infty 

\leq 
\epsilon . Such a network has no more than c1(log

1
\epsilon +1) layers and at most c2\epsilon 

 - d(log 1
\epsilon +1) neurons

and weight parameters, where the constants c1 and c2 depend on d,H,F , and M .

Remark 8.2. Though the original Theorem 1 in [49] assumes \scrX is a cube in \BbbR d, it also
holds when \scrX is some compact domain, since we can extend any f \in LipH(\scrX ) to some cube
containing \scrX while preserving the Lipschitz constant, by the Kirszbraun theorem [27].
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STATISTICAL GUARANTEES OF GROUP-INVARIANT GANS 879

Proof of Lemma 4.2. By Lemma 8.1, for any \epsilon \in (0,1), there exists a ReLU network
architecture \scrN \scrN (W1,L1,N1,K1) such that

sup
f\in \Gamma \Sigma 

inf
\phi \in \scrN \scrN (W1,L1,N1,K1)

\| f(x) - \phi (x)\| \infty \leq \epsilon ,

where W1,L1,N1 are given by Lemma 8.1, and K1 depends on H, supx\in \scrX \| x\| \infty and M . Hence
for any f \in \Gamma \Sigma and \delta > 0, there exists \phi \in \scrN \scrN (W1,L1,N1,K1) such that\bigm\| \bigm\| f(x) - \phi (\sigma  - 1x)

\bigm\| \bigm\| 
\infty =

\bigm\| \bigm\| f(\sigma  - 1x) - \phi (\sigma  - 1x)
\bigm\| \bigm\| 
\infty 

= \| f(x) - \phi (x)\| \infty 
\leq \epsilon + \delta 

for any \sigma \in \Sigma . Therefore,\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| f(x) - 1

| \Sigma | 

| \Sigma | \sum 
i=1

\phi (\sigma  - 1
i x)

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
\infty 

=

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 1

| \Sigma | 

| \Sigma | \sum 
i=1

f(x) - 1

| \Sigma | 

| \Sigma | \sum 
i=1

\phi (\sigma  - 1
i x)

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
\infty 

\leq 1

| \Sigma | 

| \Sigma | \sum 
i=1

\bigm\| \bigm\| f(x) - \phi (\sigma  - 1
i x)

\bigm\| \bigm\| 
\infty 

\leq \epsilon + \delta .

Note that 1
| \Sigma | 
\sum | \Sigma | 

i=1 \phi (\sigma 
 - 1
i x)\in \scrD \Sigma 

NN , and \delta can be arbitrarily small, and hence we have

inf
f\omega \in \scrD \Sigma 

NN

\| f(x) - f\omega (x)\| \infty \leq \epsilon .

Since f can be any function in \Gamma \Sigma , we have

sup
f\in \Gamma \Sigma 

inf
f\omega \in \scrD \Sigma 

NN

\| f  - f\omega \| \infty \leq \epsilon .

This completes the proof of Lemma 4.2.

Since the weight of the \Sigma -symmetrization layer W\Sigma is determined by \Sigma , and the ReLU
function is 1-Lipschitz, combined with the uniform bound for the weights by K1, the Lipschitz
constant of each layer has a uniform bound. Therefore, we have supf\omega \in \scrD \Sigma 

NN
\| f\| \mathrm{L}\mathrm{i}\mathrm{p} \leq \~H for

some \~H > 0 that depends on \Sigma ,W1,L1, and K1, where \| f\| \mathrm{L}\mathrm{i}\mathrm{p} stands for the Lipschitz constant
of the function f . This observation is useful to prove the bound for \Delta 2 in subsection 8.3
following.

Proof of Proposition 4.3. We have\int 
\scrX 
| f  - f\omega | 2 dx\leq vol(\scrX )\| f  - f\omega \| 2\infty .

For the left-hand side, we claim that\int 
\scrX 
| f  - f\omega | 2 dx=

\int 
\scrX 
| f  - S\Sigma [f\omega ]| 2 dx+

\int 
\scrX 
| f\omega  - S\Sigma [f\omega ]| 2 dx.
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880 Z. CHEN, M. A. KATSOULAKIS, L. REY-BELLET, AND W. ZHU

To prove the above equality, it is sufficient to show that\int 
\scrX 
ff\omega dx=

\int 
\scrX 

\bigl( 
S\Sigma [f\omega ]f  - (S\Sigma [f\omega ])

2 + S\Sigma [f\omega ]f\omega 
\bigr) 
dx.(8.1)

We show
\int 
(S\Sigma [f\omega ])

2 dx=
\int 
S\Sigma [f\omega ]f\omega dx and

\int 
ff\omega dx=

\int 
S\Sigma [f\omega ]f dx. First, we have\int 

\scrX 
(S\Sigma [f\omega ])

2 dx=

\int 
\scrX 

1

| \Sigma | 
1

| \Sigma | 

| \Sigma | \sum 
i=1

| \Sigma | \sum 
j=1

f\omega (\sigma 
 - 1
i x)f\omega (\sigma 

 - 1
j x)dx

=
1

| \Sigma | 

| \Sigma | \sum 
i=1

\int 
\scrX 

1

| \Sigma | 

| \Sigma | \sum 
j=1

f\omega (x)f\omega (\sigma 
 - 1
j \sigma ix)dx

=
1

| \Sigma | 

| \Sigma | \sum 
i=1

\int 
\scrX 

1

| \Sigma | 

| \Sigma | \sum 
k=1

f\omega (x)f\omega (\sigma 
 - 1
k x)dx

=
1

| \Sigma | 

| \Sigma | \sum 
i=1

\int 
\scrX 
f\omega (x)S\Sigma [f\omega (x)] dx

=

\int 
\scrX 
S\Sigma [f\omega (x)]f\omega (x)dx.

On the other hand, we have\int 
\scrX 
S\Sigma [f\omega (x)]f dx=

1

| \Sigma | 

| \Sigma | \sum 
i=1

\int 
\scrX 
f\omega (\sigma 

 - 1
i x)f(x)dx

=
1

| \Sigma | 

| \Sigma | \sum 
i=1

\int 
\scrX 
f\omega (x)f(\sigma ix)dx

=
1

| \Sigma | 

| \Sigma | \sum 
i=1

\int 
\scrX 
f\omega (x)f(x)dx

=

\int 
\scrX 
f\omega (x)f(x)dx,

where the second-to-last equality is due to f being \Sigma -invariant.

8.3. Bound for \bfDelta \bftwo . Before we bound the generator approximation error, we cite a few
useful results. We denote by \scrS d(z0, . . . , zN+1) the set of all continuous piecewise linear func-
tions f :\BbbR \rightarrow \BbbR d which have breakpoints at z0 < z1 < \cdot \cdot \cdot < zN+1 and are constant on ( - \infty , z0)
and (zN+1,\infty ). The following lemma from [49] extends the 1-dimensional approximation
result in [14] to higher dimensions.

Lemma 8.3 (Lemma 3.1 in [49]). Suppose W \geq 7d + 1,L \geq 2, and n \leq (W  - d  - 
1)\lfloor W - d - 1

6d \rfloor \lfloor L2 \rfloor . Then for any z0 < z1 < \cdot \cdot \cdot < zn+1, we have \scrS d(z0, . . . , zn+1)\subset \scrN \scrN (W,L).

We next provide the proof of the generator approximation error bound from Lemma 4.5.
The construction in the first step of the proof follows that of Lemma 3.2 in [49], and we add
the group symmetrization in the second step of the proof.
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STATISTICAL GUARANTEES OF GROUP-INVARIANT GANS 881

Proof of Lemma 4.5. First, by Lemma 3.1, we have

d\scrD \Sigma 
NN

(S\Sigma [g\sharp \rho ], \widehat \mu n) = d\scrD \Sigma 
NN

(S\Sigma [g\sharp \rho ], S
\Sigma [\widehat \mu n])

due to S\Sigma [\scrD \Sigma 
NN ] =\scrD \Sigma 

NN .
Step 1. Without loss of generality, we assume that m := n - 1 \geq 1 and \widehat \mu n = 1

n

\sum m
i=0 \delta xi

.
Let \epsilon be sufficiently small such that 0< \epsilon < m

n \| xi  - xi - 1\| 2 for all i= 1, . . . ,m. By the absolute
continuity of \rho , we can choose 2m points on \BbbR ,z1/2 < z1 < z3/2 < \cdot \cdot \cdot < zm - 1/2 < zm, such that

\rho (( - \infty , z1/2)) =
1

n
,

\rho ((zi - 1/2, zi)) =
\epsilon 

m\| xi  - xi - 1\| 2
, 1\leq i\leq m,

\rho ((zi, zi+1/2)) =
1

n
 - \epsilon 

m\| xi  - xi - 1\| 2
, 1\leq i\leq m - 1,

\rho ((zm,\infty )) =
1

n
 - \epsilon 

m\| xm  - xm - 1\| 2
.

We define the continuous piecewise linear function \phi :\BbbR \rightarrow \BbbR d by

\phi (z) :=

\left\{             

x0, z \in ( - \infty , z1/2),
zi  - z

zi  - zi - 1/2
xi - 1 +

z  - zi - 1/2

zi  - zi - 1/2
xi, z \in [zi - 1/2, zi),

xi, z \in [zi, zi+1/2),

xm, z \in [zm,\infty ).

Since \phi \in \scrS d(z1/2, . . . , zm) has 2m = 2n  - 2 \leq (W2  - d  - 1)\lfloor W2 - d - 1
6d \rfloor \lfloor L2

2 \rfloor + 2 breakpoints,
by Lemma 8.3, \phi \in \scrN \scrN (W2,L2). We denote the line segment joining xi - 1 and xi by \scrL i :=
\{ (1 - t)xi - 1 + txi \in \BbbR d : 0< t\leq 1\} .

Step 2. Note that \sigma \scrL i is the line segment joining \sigma xi - 1 and \sigma xi for any \sigma \in \Sigma since

the group action is linear. Then S\Sigma [\phi \sharp \rho ] is supported on
\bigcup | \Sigma | 

j=1 (\cup m
i=1\sigma j\scrL i \cup \{ \sigma jx0\} ), and

S\Sigma [\phi \sharp \rho ](\{ \sigma jx0\} ) = 1
n| \Sigma | , S\Sigma [\phi \sharp \rho ](\{ \sigma jxi\} ) = 1

n| \Sigma |  - 
\epsilon 

m| \Sigma | \| xi - xi - 1\| 2

, S\Sigma [\phi \sharp \rho ](\sigma j\scrL i) = 1
n| \Sigma | for

i= 1, . . . ,m and j = 1, . . . , | \Sigma | . We define the sum of product measures

\gamma =

| \Sigma | \sum 
j=1

S\Sigma [\phi \sharp \rho ]| \{ \sigma jx0\} \times \delta \sigma jx0
+

| \Sigma | \sum 
j=1

m\sum 
i=1

S\Sigma [\phi \sharp \rho ]| \sigma j\scrL i
\times \delta \sigma jxi

.

It is easy to verify \gamma is a coupling of S\Sigma [\phi \sharp \rho ] and S\Sigma [\widehat \mu n]. Thus we have

\scrW 1(S
\Sigma [g\sharp \rho ], S

\Sigma [\widehat \mu n])\leq 
\int 
\BbbR d\times \BbbR d

\| x - y\| 2 d\gamma (x, y)

=

| \Sigma | \sum 
j=1

m\sum 
i=1

\int 
\sigma j\scrL i\setminus \{ \sigma jxi\} 

\| \sigma jxi  - y\| 2 dS
\Sigma [\phi \sharp \rho ](y)
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882 Z. CHEN, M. A. KATSOULAKIS, L. REY-BELLET, AND W. ZHU

\leq 
| \Sigma | \sum 
j=1

m\sum 
i=1

\| \sigma jxi  - \sigma jxi - 1\| 2 S
\Sigma [\phi \sharp \rho ](\sigma j\scrL i\setminus \{ \sigma jxi\} )

\leq 
| \Sigma | \sum 
j=1

m\sum 
i=1

\| xi  - xi - 1\| 2
\epsilon 

m | \Sigma | \| xi  - xi - 1\| 2
= \epsilon ,

where the last inequality is due to \Sigma -actions being 1-Lipschitz. Since functions in \scrD \Sigma 
NN are

\~H-Lipschitz, we have

d\scrD \Sigma 
NN

(S\Sigma [g\sharp \rho ], S
\Sigma [\widehat \mu n])\leq \~H \cdot \scrW 1(S

\Sigma [g\sharp \rho ], S
\Sigma [\widehat \mu n])\leq \~H\epsilon .

Since \epsilon can be arbitrarily small, we have d\scrD \Sigma 
NN

(S\Sigma [g\sharp \rho ], S
\Sigma [\widehat \mu n]) = 0.

8.4. Bound for \bfDelta \bfthree . We first cite some useful lemmas before establishing the bound for
\Delta 3. First, we need the following bound of the Rademacher complexity by Dudley's entropy
integral.

Lemma 8.4. Suppose \scrF is a family of functions mapping \scrX to [ - M,M ] for some M > 0.
Also assume that 0 \in \scrF and \scrF =  - \scrF . Let \xi = \{ \xi 1, . . . , \xi n\} be a set of independent random
variables that take values on \{  - 1,1\} with equal probabilities, i = 1, . . . , n. x1, x2, . . . , xn \in \scrX .
Then we have

\BbbE \xi sup
f\in \scrF 

\bigm| \bigm| \bigm| \bigm| \bigm| 1n
n\sum 

i=1

\xi if(xi)

\bigm| \bigm| \bigm| \bigm| \bigm| \leq inf
\alpha >0

4\alpha +
12\surd 
n

\int M

\alpha 

\sqrt{} 
log\scrN (\scrF , \epsilon ,\| \cdot \| \infty )d\epsilon ,

and therefore, if \mu is a distribution on \scrX and \widehat \mu n is its empirical distribution, we have

\BbbE [d\scrF (\widehat \mu n, \mu )]\leq inf
\alpha >0

8\alpha +
24\surd 
n

\int M

\alpha 

\sqrt{} 
log\scrN (\scrF , \epsilon ,\| \cdot \| \infty )d\epsilon .

The proof of Lemma 8.4 is standard using the dyadic path., e.g., see the proof of Lemma
A.5. in [3], which is modified in Lemma 3 in [10].

The following lemma is a direct consequence of Lemma 6 in [21].

Lemma 8.5. Let \scrF be the family of H-Lipschitz functions mapping the metric space (\scrX ,\| \cdot \| 2)
to [ - M,M ] for some M > 0. Then we have

\scrN (\scrF , \epsilon , \| \cdot \| \infty )\leq 
\biggl( 
c1M

\epsilon 

\biggr) \scrN (\scrX ,
c2\epsilon 

H
)

,

where c1 \geq 1 and c2 \leq 1 are some absolute constants independent of \scrX , M , and \epsilon .

Lemma 8.6 (Theorem 3 in [42]). Assume that \scrX =\Sigma \times \scrX 0. If for some \epsilon > 0 we have
(1) \| \sigma (x) - \sigma \prime (x\prime )\| 2 > 2\epsilon , \forall x,x\prime \in \scrX 0, \sigma \not = \sigma \prime \in \Sigma ; and
(2) \| \sigma (x) - \sigma (x\prime )\| 2 \geq \| x - x\prime \| 2, \forall x,x\prime \in \scrX 0, \sigma \in \Sigma ,

\scrN (\scrX 0, \epsilon )

\scrN (\scrX , \epsilon )
\leq 1

| \Sigma | 
.

then we have
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STATISTICAL GUARANTEES OF GROUP-INVARIANT GANS 883

Lemma 8.7 (Lemma 6 in [10]). Let \scrX be a subset of \BbbR d, and let \=\epsilon > 0. Then there exists a
constant Cd,\=\epsilon that depends on d and \=\epsilon such that for \epsilon \in (0,1) we have

\scrN (\scrX , \epsilon )\leq Cd,\=\epsilon \cdot 
\scrN (\scrX ,\=\epsilon )

\epsilon d
.

Following the statistical analysis in [10], we can bound the statistical error d\Gamma \Sigma 
(\widehat \mu n, \mu ) as

follows.

Proof of Lemma 4.7. By the definition of the probability metric d\Gamma (3.1), we have

d\Gamma \Sigma 
(\widehat \mu n, \mu ) = | d\Gamma \Sigma 

(\widehat \mu n, \mu )| 

=

\bigm| \bigm| \bigm| \bigm| \bigm| sup\gamma \in \Gamma \Sigma 

\Biggl\{ 
1

n

n\sum 
i=1

\gamma (xi) - \BbbE \mu [\gamma ]

\Biggr\} \bigm| \bigm| \bigm| \bigm| \bigm| 
\leq sup

\gamma \in \Gamma \Sigma 

\bigm| \bigm| \bigm| \bigm| \bigm| \BbbE \mu [\gamma ] - 
1

n

n\sum 
i=1

\gamma (xi)

\bigm| \bigm| \bigm| \bigm| \bigm| 
= sup

\gamma \in \Gamma \Sigma 

\bigm| \bigm| \bigm| \bigm| \bigm| \BbbE \mu [\gamma ] - 
1

n

n\sum 
i=1

\gamma (T0(xi))

\bigm| \bigm| \bigm| \bigm| \bigm| 
(a)

\leq sup
\gamma \in \mathrm{L}\mathrm{i}\mathrm{p}H(\scrX 0)

\bigm| \bigm| \bigm| \bigm| \bigm| \BbbE \mu \scrX 0
[\gamma ] - 1

n

n\sum 
i=1

\gamma (T0(xi))

\bigm| \bigm| \bigm| \bigm| \bigm| ,(8.2)

where inequality (a) is due to the fact that \BbbE \mu [\gamma ] = \BbbE \mu \scrX 0
[\gamma | \scrX 0

], since \mu is \Sigma -invariant and
\gamma \in \Gamma \Sigma , and the fact that if \gamma \in \Gamma \Sigma , then \gamma | \scrX 0

\in LipH(\scrX 0), where \gamma | \scrX 0
is the restriction of \gamma 

on \scrX 0.
Denote by X \prime = \{ x\prime 1, x\prime 2, . . . , x\prime n\} i.i.d. samples drawn from \mu \scrX 0

. Also note that

T0(x1), . . . , T0(xn)

can be viewed as i.i.d. samples on \scrX 0 drawn from \mu \scrX 0
. Therefore, the expectation

\BbbE X sup
\gamma \in \mathrm{L}\mathrm{i}\mathrm{p}H(\scrX 0)

\bigm| \bigm| \bigm| \bigm| \bigm| E\mu \scrX 0
[\gamma ] - 1

n

n\sum 
i=1

\gamma (T0(xi))

\bigm| \bigm| \bigm| \bigm| \bigm| 
can be replaced by the equivalent quantity

\BbbE X sup
\gamma \in \mathrm{L}\mathrm{i}\mathrm{p}H(\scrX 0)

\bigm| \bigm| \bigm| \bigm| \bigm| E\mu \scrX 0
[\gamma ] - 1

n

n\sum 
i=1

\gamma (xi)

\bigm| \bigm| \bigm| \bigm| \bigm| ,
where X = \{ x1, x2, . . . , xm\} are i.i.d. samples on \scrX 0 drawn from \mu \scrX 0

. Then we have

\BbbE X sup
\gamma \in \mathrm{L}\mathrm{i}\mathrm{p}H(\scrX 0)

\bigm| \bigm| \bigm| \bigm| \bigm| E\mu \scrX 0
[\gamma ] - 1

n

n\sum 
i=1

\gamma (xi)

\bigm| \bigm| \bigm| \bigm| \bigm| =\BbbE X sup
\gamma \in \mathrm{L}\mathrm{i}\mathrm{p}H(\scrX 0)

\bigm| \bigm| \bigm| \bigm| \bigm| EX\prime 

\Biggl( 
1

n

n\sum 
i=1

\gamma (x\prime i)

\Biggr) 
 - 1

n

n\sum 
i=1

\gamma (xi)

\bigm| \bigm| \bigm| \bigm| \bigm| 
\leq \BbbE X,X\prime sup

\gamma \in \mathrm{L}\mathrm{i}\mathrm{p}H(\scrX 0)

\bigm| \bigm| \bigm| \bigm| \bigm| 1n
n\sum 

i=1

\gamma (x\prime i) - 
1

n

n\sum 
i=1

\gamma (xi)

\bigm| \bigm| \bigm| \bigm| \bigm| 
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884 Z. CHEN, M. A. KATSOULAKIS, L. REY-BELLET, AND W. ZHU

=\BbbE X,X\prime ,\xi sup
\gamma \in \mathrm{L}\mathrm{i}\mathrm{p}H(\scrX 0)

\bigm| \bigm| \bigm| \bigm| \bigm| 1n
n\sum 

i=1

\xi i
\bigl( 
\gamma (x\prime i) - \gamma (xi)

\bigr) \bigm| \bigm| \bigm| \bigm| \bigm| 
\leq 2\BbbE X,\xi sup

\gamma \in \mathrm{L}\mathrm{i}\mathrm{p}H(\scrX 0)

\bigm| \bigm| \bigm| \bigm| \bigm| 1n
n\sum 

i=1

\xi i\gamma (x
\prime 
i)

\bigm| \bigm| \bigm| \bigm| \bigm| 
= inf

\alpha >0
8\alpha +

24\surd 
n

\int M

\alpha 

\sqrt{} 
log\scrN (\scrF 0, \epsilon , \| \cdot \| \infty )d\epsilon ,

where \scrF 0 = \{ \gamma \in LipH(\scrX 0) : \| \gamma \| \infty \leq M\} .
For d \geq 2, from Lemma 8.5, we have log\scrN (\scrF 0, \epsilon , \| \cdot \| \infty ) \leq \scrN (\scrX 0,

c2\epsilon 
H ) log( c1M\epsilon ). We fix

an \=\epsilon > 0 such that \scrN (\scrX , c2\=\epsilon H ) = 1 and select \epsilon \ast such that c2\epsilon \ast 

H \leq 1 and c2\epsilon \ast 

H \leq \epsilon \Sigma ; that is,

\epsilon \ast \leq min
\Bigl( 
H
c2
, H\epsilon \Sigma 

c2

\Bigr) 
, so that by Assumption 3.6, Lemma 8.6, and Lemma 8.7, we have

\scrN 
\Bigl( 
\scrX 0,

c2\epsilon 

H

\Bigr) 
log

\biggl( 
c1M

\epsilon 

\biggr) 
\leq \scrN 

\Bigl( 
\scrX 0\setminus A0

\Bigl( c2\epsilon 
H

\Bigr) 
,
c2\epsilon 

H

\Bigr) 
log

\biggl( 
c1M

\epsilon 

\biggr) 
+\scrN 

\Bigl( 
A0

\Bigl( c2\epsilon 
H

\Bigr) 
,
c2\epsilon 

H

\Bigr) 
log

\biggl( 
c1M

\epsilon 

\biggr) 
\leq 

\scrN 
\bigl( 
\scrX , c2\epsilon H

\bigr) 
| \Sigma | 

log

\biggl( 
c1M

\epsilon 

\biggr) 
+ \=c\epsilon r\scrN 

\Bigl( 
\scrX ,

c2\epsilon 

H

\Bigr) 
log

\biggl( 
c1M

\epsilon 

\biggr) 
\leq 

Cd,\=\epsilon H
d

| \Sigma | cd2\epsilon d
log

\biggl( 
c1M

\epsilon 

\biggr) 
+

\=cCd,\=\epsilon H
d

cd2\epsilon 
d - r

log

\biggl( 
c1M

\epsilon 

\biggr) 
when \epsilon < \epsilon \ast , where \=c > 0 is some constant implied by Assumption 3.6. Therefore, for suffi-
ciently small \alpha , we have\int M

\alpha 

\sqrt{} 
log\scrN (\scrF 0, \epsilon , \| \cdot \| \infty )d\epsilon 

=

\int \epsilon \ast 

\alpha 

\sqrt{} 
log\scrN (\scrF 0, \epsilon , \| \cdot \| \infty )d\epsilon +

\int M

\epsilon \ast 

\sqrt{} 
log\scrN (\scrF 0, \epsilon , \| \cdot \| \infty )d\epsilon 

\leq 
\int \epsilon \ast 

\alpha 

\sqrt{} 
Cd,\=\epsilon Hd

| \Sigma | cd2\epsilon d
log

\biggl( 
c1M

\epsilon 

\biggr) 
d\epsilon +

\int \epsilon \ast 

\alpha 

\sqrt{} 
\=cCd,\=\epsilon Hd

| \Sigma | cd2\epsilon d - r
log

\biggl( 
c1M

\epsilon 

\biggr) 
d\epsilon (8.3)

+

\int M

\epsilon \ast 

\sqrt{} 
log\scrN (\scrF 0, \epsilon , \| \cdot \| \infty )d\epsilon .

For any s > 0, we can choose \epsilon \ast to be sufficiently small, such that log( c1M\epsilon )\leq 1
\epsilon s when \epsilon \leq \epsilon \ast .

Therefore, if we let D\scrX ,H =
\sqrt{} 

Cd,\=\epsilon Hd

cd2
, then for the first term in (8.3), we have\int \epsilon \ast 

\alpha 

\sqrt{} 
Cd,\=\epsilon Hd

| \Sigma | cd2\epsilon d
log

\biggl( 
c1M

\epsilon 

\biggr) 
d\epsilon \leq D\scrX ,H

\int \epsilon \ast 

\alpha 

\sqrt{} 
1

| \Sigma | \epsilon d+s
d\epsilon 

\leq D\scrX ,H

\int \infty 

\epsilon 

\sqrt{} 
1

| \Sigma | \epsilon d+s
d\epsilon 

=
D\scrX ,H\sqrt{} 

| \Sigma | 
\cdot \alpha 

1 - d+s

2

d+s
2  - 1

.
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STATISTICAL GUARANTEES OF GROUP-INVARIANT GANS 885

Notice that the third integral in (8.3) is bounded, while the first integral diverges as \alpha tends to

zero; the second integral is either bounded (if d - r < 2 and s is small) or of order \simeq \alpha 1 - d - r+s

2

(if d - r\geq 2), so we can optimize the majorizing terms

8\alpha +
24\surd 
n
\cdot 
D\scrX ,H\sqrt{} 

| \Sigma | 
\cdot \alpha 

1 - d+s

2

d+s
2  - 1

,

with respect to \alpha , to obtain

\alpha =

\biggl( 
9

n

\biggr) 1

d+s

\cdot 

\Biggl( 
D2

\scrX ,H

| \Sigma | 

\Biggr) 1

d+s

,

so that

inf
\alpha >0

8\alpha +
24\surd 
n

\int M

\alpha 

\sqrt{} 
log\scrN (\scrF 0, \epsilon , \| \cdot \| \infty )d\epsilon 

\leq 8

\biggl( 
9

n

\biggr) 1

d+s

\cdot 

\Biggl( 
D2

\scrX ,H

| \Sigma | 

\Biggr) 1

d+s

+
24

(d+s
2  - 1)

\biggl( 
9

n

\biggr) 1

d+s

\cdot 

\Biggl( 
D2

\scrX ,H

| \Sigma | 

\Biggr) 1

d+s

+ o

\biggl( 
1

n
1

d+s

\biggr) 
.(8.4)

Therefore, for sufficiently large n, we have

\BbbE X sup
\gamma \in \mathrm{L}\mathrm{i}\mathrm{p}H(\scrX 0)

\bigm| \bigm| \bigm| \bigm| \bigm| E\mu \scrX 0
[\gamma ] - 1

n

n\sum 
i=1

\gamma (xi)

\bigm| \bigm| \bigm| \bigm| \bigm| \leq 
\Biggl( 
8 +

24

(d+s
2  - 1)

\Biggr) \Biggl( 
9D2

\scrX ,H

| \Sigma | n

\Biggr) 1

d+s

+ o

\biggl( 
1

n
1

d+s

\biggr) 

:=C\scrX ,H,d,s

\biggl( 
1

| \Sigma | n

\biggr) 1

d+s

+ o

\Biggl( \biggl( 
1

n

\biggr) 1

d+s

\Biggr) 
.(8.5)

For d= 1, the first integral in (8.3) does not have a singularity at \alpha = 0 if 1 + s < 2. On
the other hand, replacing the interval [0,1] by an interval of length diam(\scrX 0) in Lemma 5.16
in [46], there exists a constant c > 0 such that

\scrN (\scrF 0, \epsilon , \| \cdot \| \infty )\leq e
cH\cdot \mathrm{d}\mathrm{i}\mathrm{a}\mathrm{m}(\scrX 0)

\epsilon for \epsilon <M.

Therefore, we have

8\alpha +
24\surd 
n

\int M

\alpha 

\sqrt{} 
log\scrN (\scrF 0, \epsilon , \| \cdot \| \infty )d\epsilon \leq 8\alpha +

24\surd 
n

\int M

\alpha 

\sqrt{} 
cH \cdot diam(\scrX 0)

\epsilon 
d\epsilon ,

whose minimum is achieved at \alpha = 9cH\cdot \mathrm{d}\mathrm{i}\mathrm{a}\mathrm{m}(\scrX 0)
n . This implies that

inf
\alpha >0

8\alpha +
24\surd 
n

\int M

\alpha 

\sqrt{} 
log\scrN (\scrF 0, \epsilon , \| \cdot \| \infty )d\epsilon 

\leq 72cH \cdot diam(\scrX 0)

n
+

48H
\surd 
c \cdot diam(\scrX 0)\surd 

n
 - 144cH \cdot diam(\scrX 0)

n

=
48H

\surd 
c \cdot diam(\scrX 0)\surd 

n
 - 72cH \cdot diam(\scrX 0)

n
.
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886 Z. CHEN, M. A. KATSOULAKIS, L. REY-BELLET, AND W. ZHU

Hence we have

\BbbE X sup
\gamma \in \mathrm{L}\mathrm{i}\mathrm{p}H(\scrX 0)

\bigm| \bigm| \bigm| \bigm| \bigm| \BbbE \mu \scrX 0
[\gamma ] - 1

n

n\sum 
i=1

\gamma (xi)

\bigm| \bigm| \bigm| \bigm| \bigm| \leq 48H
\surd 
c \cdot diam(\scrX 0)\surd 

n
 - 72cH \cdot diam(\scrX 0)

n
.

This completes the proof.

8.5. Bound for \bfDelta \bffour . To prove the bound for \BbbE [d\scrD \Sigma 
NN\circ \scrG NN

(\rho , \widehat \rho m)], we introduce the notion
of pseudodimension from [4], which is another measure of complexity for a class of functions.

Definition 8.8 (pseudodimension). Let \scrF be a class of functions that map \scrX to \BbbR . The
pseudodimension of \scrF , denoted by Pdim(\scrF ), is the largest integer n for which there exists
(x1, . . . , xn, y1, . . . , yn) \in \scrX n \times \BbbR n such that for any (b1, . . . , bn) \in \{ 0,1\} n, there exists f \in \scrF 
such that

\forall i : f(xi)> yi iff bi = 1.

Proof of Lemma 4.8. First, we show that supf\in \scrD \Sigma 
NN\circ \scrG NN

\| f\| \infty is bounded. This is straight-

forward since we can add an additional clipping layer to the output of \scrD \Sigma 
NN so that its output

lies within, for example, [ - 2M,2M ]. Note that such a clipping does not impact the invariant
discriminator approximation error if we require \epsilon \leq M

2 in Lemma 4.2. By Corollary 35 in [24],
we have

d\scrD \Sigma 
NN\circ \scrG NN

(\rho , \widehat \rho m)\lesssim 

\sqrt{} 
Pdim(\scrD \Sigma 

NN \circ \scrG NN ) logm

m
.

By Theorem 7 in [4], we have Pdim(\scrN \scrN (W,L,N)) \lesssim NL logN . Note that we can rewrite
\scrD \Sigma 

NN defined in (3.14) as a ReLU network with a larger width (increased by a factor of the
group size) and the same depth L1 as \scrD NN , despite the first layer, where we multiply input
x by the W\sigma i

's and the last averaging layer. Importantly, the number of free parameters N1

remains exactly the same as \scrD NN . Hence, we have

\BbbE [d\scrD \Sigma 
NN\circ \scrG NN

(\rho , \widehat \rho m)]\lesssim 

\sqrt{} 
(N1 +W 2

2L2)(L1 +L2) log(N1 +W 2
2L2) logm

m
,

where we use the trivial bound N2 \simeq W 2
2L2. By Lemmas 4.2 and 4.5, we have N1 \lesssim n logn

and W 2
2L2 \lesssim n, so we have

\BbbE [d\scrD \Sigma 
NN\circ \scrG NN

(\rho , \widehat \rho m)]\lesssim 

\sqrt{} 
(n logn+ n)(logn+ n) log(n logn+ n) logm

m

\lesssim 

\sqrt{} 
n2 log2 n logm

m
.

Thus if m\gtrsim n2+2/d log3 n, we have \BbbE [d\scrD \Sigma 
NN\circ \scrG NN

(\rho , \widehat \rho m)]\lesssim n - 1/d.
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8.6. Theorem 4.9 for \bfitd = \bfone .

Theorem 8.9 (main theorem (d= 1)). Let \scrX = \Sigma \times \scrX 0 be a subset of \BbbR , let \Gamma = LipH(\scrX ),
and let \scrX 0 be an interval of finite length. Suppose the target distribution \mu is \Sigma -invariant
on \scrX , and the noise source distribution \rho is absolutely continuous on \BbbR . Then there exists
\Sigma -invariant discriminator architecture \scrD \Sigma 

NN = S\Sigma [\scrD NN ], where \scrD NN = \scrN \scrN (W1,L1,N1) as
defined in (3.14) with N1 \lesssim n logn and L1 \lesssim logn, and \Sigma -invariant generator architecture
\scrG \Sigma 
NN , where \scrG NN =\scrN \scrN (W2,L2), with W 2

2L2 \lesssim n, such that if m\gtrsim n4 log3 n, we have

\BbbE 
\bigl[ 
d\Gamma (S

\Sigma [(g\ast n,m)\sharp \rho ], \mu )
\bigr] 
\lesssim 

diam(\scrX 0)\surd 
n

.

Proof. It suffices to choose \epsilon \simeq n - 1 in Lemma 4.2 with L1 \lesssim logn and N1 \lesssim n logn, so
that supf\in \Gamma \Sigma 

inff\omega \in \scrD \Sigma 
NN

\| f  - f\omega \| \infty \lesssim n - 1. On the other hand, we can construct

inf
g\in \scrG NN

d\scrD \Sigma 
NN

(S\Sigma [g\sharp \rho ], \widehat \mu n) = 0

withW 2
2L2 \lesssim n by Lemma 4.5. Finally, \BbbE [d\Gamma \Sigma 

(\widehat \mu n, \mu )]\lesssim 
\mathrm{d}\mathrm{i}\mathrm{a}\mathrm{m}(\scrX 0)\surd 

n
and \BbbE [d\scrD \Sigma 

NN\circ \scrG NN
(\rho , \widehat \rho m)]\lesssim n - 1

by Lemmas 4.7 and 4.8, respectively.

9. Proof of Theorem 5.2 when \bfitd = \bfone .

Theorem 9.1 (1-dimensional submanifolds). Let \scrX = \Sigma \times \scrX 0 \subset \BbbR d and \Gamma = LipH(\scrX ).
Suppose \scrX 0 is diffeomorphic to some interval of finite length, the target distribution \mu is \Sigma -
invariant on \scrX , and the noise source distribution \rho is absolutely continuous on \BbbR . Then there
exists \Sigma -invariant discriminator architecture \scrD \Sigma 

NN = S\Sigma [\scrD NN ], where \scrD NN =\scrN \scrN (W1,L1,N1)
as defined in (3.14) with N1 \lesssim n logn and L1 \lesssim logn, and \Sigma -invariant generator architecture
\scrG \Sigma 
NN , where \scrG NN =\scrN \scrN (W2,L2), with W 2

2L2 \lesssim n, such that if m\gtrsim n4 log3 n, we have

\BbbE 
\bigl[ 
d\Gamma (S

\Sigma [(g\ast n,m)\sharp \rho ], \mu )
\bigr] 
\lesssim 

peri(\scrX 0)\surd 
n

,

where peri(\scrX 0) denotes the perimeter of \scrX 0 in \BbbR d.

Proof. It suffices to show that \Delta 3 \lesssim 
\mathrm{p}\mathrm{e}\mathrm{r}\mathrm{i}(\scrX 0)\surd 

n
, which directly follows the proof of Theorem

XIV in [45].
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