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Abstract

In order to sample from a given target distribution (often of Gibbs type),
the Monte Carlo Markov chain method consists of constructing an ergodic
Markov process whose invariant measure is the target distribution. By sampling
the Markov process one can then compute, approximately, expectations of
observables with respect to the target distribution. Often the Markov processes
used in practice are time-reversible (i.e. they satisfy detailed balance), but our
main goal here is to assess and quantify how the addition of a non-reversible
part to the process can be used to improve the sampling properties. We focus on
the diffusion setting (overdamped Langevin equations) where the drift consists
of a gradient vector field as well as another drift which breaks the reversibility
of the process but is chosen to preserve the Gibbs measure. In this paper we use
the large deviation rate function for the empirical measure as a tool to analyze
the speed of convergence to the invariant measure. We show that the addition
of an irreversible drift leads to a larger rate function and it strictly improves
the speed of convergence of ergodic average for (generic smooth) observables.
We also deduce from this result that the asymptotic variance decreases under
the addition of the irreversible drift and we give an explicit characterization of
the observables whose variance is not reduced reduced, in terms of a nonlinear
Poisson equation. Our theoretical results are illustrated and supplemented by
numerical simulations.
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1. Introduction

In a wide range of applications it is often of interest to sample from a given high-dimensional
distribution. However, often, the target distribution, say 7(dx), is known only up to
normalizing constants and then one has to rely on approximations. In practice, one often relies
on approximations using Markov processes that have the particular target distributions as their
invariant measure, as for example in Monte Carlo Markov Chain methods. Closely related, in
steady-state simulations one is often interested in quantities of the form f £ S (x)m(dx), where
E is the state space and f is a given function. When closed-form evaluation of such integrals
is prohibitive, one considers a Markov process X, which has 7 as its invariant distribution and
under the assumption that X, is positive recurrent, the ergodic theorem gives

%/ f(Xs)ds — / fx)m(dx),a.s.ast — oo, (1.1)
0 E

for all f € L'(7). Hence, the estimator f; = % fot f(Xs)ds can be used to approximate the
expectation f = [, f(x)7 (dx).

Standard criteria to analyze the degree of efficiency of a simulation method relies on the
ergodic properties of the Markov process. The spectral gap of the semigroup in L?(rr) (or in
other functional settings), which provides a bound for the distance between the distribution of
X, and 7, as well as the asymptotic variance of f; are commonly used, see for example [1, 3,
5,6,9, 10, 15-17, 19-21, 23, 26-30, 31, 33]. A couple of years ago, in [13, 14], the theory of
large deviations, specifically the rate function for the empirical measure, has been proposed as
a comparison tool to assess Monte-Carlo methods and used to analyze the swapping algorithm.
In this paper we use this criterium as a guide to design and analyze non-reversible Markov
processes and compare them with reversible ones. We show that the rate function increases
under the addition of an irreversible drift. This is shown to improve the convergence properties
of the ergodic average f; for generic (smooth) observables. We prove as well that a fine analysis
of the large deviation rate function allows us to show that the asymptotic variance for generic
smooth observables decreases.

In this paper, we specialize to the diffusion setting: to sample the Gibbs measure 7 on the
set E with density

e—2U()

[pe 2Uodx’
one can consider the (time-reversible) Langevin equation
dX, = -VU(X,)dt +dW,, 1.2)

whose invariant measure is 7. There are however many other stochastic differential equations
with the same invariant measure, for example the family of equations

dX, = [-VU(X,) + C(X;)]dt +dW,, (1.3)
where the vector field C(x) satisfies the condition
div(Ce™2Y) = 0.

This constraint ensures that 7 remains the unique invariant measure, but then the Markov
process is time-reversible only if C = 0. There are many possible choices for the vector field
C(x). Indeed, since div(Ce™2Y) = 0 is equivalent to

div(C) = 2CVU,

we can choose for example C to be both divergence free and orthogonal to VU. In any
dimension one can for example set C = SVU where S is an (arbitrary) anti-symmetric
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matrix S. More generally, by theorem 5.3 of [4] any divergence free vector field in dimension
d can be written, locally, as the exterior (or wedge) product C = VV; A --- A VYV, _; for some
V; € C'(E). Therefore for our purpose we can pick C of the form

C=VUAVV,--- AVV,_.

for arbitrary Vs, ---, V,_; € C'(E), and this guarantees that CVU = 0 by the properties of
the exterior product.

The main result in [21] is that the absolute value of the second largest eigenvalue of the
Markov semigroup in L?(77) strictly decreases under a natural non-degeneracy condition on C
(the corresponding eigenspace should not be invariant under the action of the added drift C).
More detailed results on the spectral gap are in [7, 15] where the authors consider diffusions
on compact manifolds with U = 0 and a one-parameter families of perturbations C = §C
for 6 € R and Cy is some divergence vector field. In these papers the behavior of the spectral
gap is related to the ergodic properties of the flow generated by C (for example if the flow is
weak-mixing then the second largest eigenvalue tends to 0 as § — o0). Further, a detailed
analysis of linear diffusion processes with U (x) = %xTAx and C = J Ax for a antisymmetric
J can be found in [20, 23] where the optimal choice of J is determined.

We consider here the same class of problems but we take the large deviations rate function
as a measure of the speed of convergence to equilibrium and deduce from it results on the
asymptotic variance for a given observable. While the spectral gap measures the distance of
the distribution of X, compared to the invariant distribution, from a practical Monte-Carlo point
of view one is often more interested in the distribution of the ergodic average ¢! fot f(Xy)ds
and how likely it is that this average differs from the average [ fdz. It will be useful to
consider in a first step the empirical measure

1 t
T, = —/ 8y, ds, (1.4)
t Jo

which converges to 7w almost surely. Let us assume that we have a large deviation principle
for the family of measures 77;, which we write, symbolically as

P{m, ~ pu} < e @,

Here < denotes logarithmic equivalence (the formal definition is given in definition 2.1). Then,
the rate function /¢ (w) which is non-negative and vanishes if and only if © = 7 quantifies the
exponential rate at which the random measure 77, converges to 7. Clearly, the larger ¢ is, the
faster the convergence occurs.

Breaking detailed balance has been shown to accelerate convergence to equilibrium for
Markov chains by increasing spectral gap and/or decreasing asymptotic variance and for
diffusions by increasing spectral gap, e.g. [6, 9, 10, 15-17, 20, 21, 26-28]. The novelty
of the present paper lies in that (a): we use large deviations theory in a novel way to
characterize convergence to equilibrium, (b): we prove that asymptotic variance is also
decreased when breaking detailed balance for diffusions, and (c): we derive a Poisson equation
which characterizes when irreversible perturbations lead to strict improvement in performance.

Our first key result here is that if u(dx) = p(x)dx has a smooth density p and
satisfies the non-degeneracy condition div(pC) # 0, the large deviation rate function strictly
increases, Ic(u) > Ip(u), when one adds a non-zero appropriate drift C(x) to make the
process X; irreversible, see theorem 2.2. Moreover, specializing to perturbations of the form
C(x) = §Cy(x) for appropriate Co(x) and § € R, we find that the rate function for the empirical
measure is quadratic in § € R, see theorem 2.3.

Our second key result is that the information in /() can be used to study specific
observable: from the large deviation for the empirical measure we have a large deviation for
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principle for observables f € C(E; R),
1 -
P{;/ F(X,)ds ~ g} — elre®),
0

and we show that f rcf) > f £,0(£) unless f and £ satisfy the non degeneracy condition (in
form of a Poisson equation) given in theorem 2.4, see also remarks 2.5 and 2.6.

Moreover, one can deduce information about asymptotic variances from the large
deviations rate function, since the second derivative of the rate function / r,c(£) evaluated
at £ = f is inversely proportional to the asymptotic variance of the estimator, denoted by 0}’ c
Based on this relation, we show that the asymptotic variance strictly decreases G% c < U,%,o’
for generic observables.

The paper is organized as follows. In section 2 we recall some well-known results about
large deviations due to Donsker—Varadhan and Gartner and we present our main results. Proofs
of statements related to the rate function for the empirical measure are in section 3. In particular,
we prove theorems 2.2 and 2.3 by using a representation of the rate function 7/ (u) due to
Gartner [18]. Proofs related to the rate function for a given observable and the results for
variance reduction are in section 4. In particular, we use the results of section 3 to deduce the
results on the rate function and asymptotic variance for observables, i.e. theorems 2.4 and 2.7.
In section 5 we present a few simulation results to illustrate the theoretical findings.

2. Main results

Let us first recall the definition of the large deviations principle for a family of empirical
measures 7,. Let E be a Polish space, i.e. a complete and separable metric space. Denoting
by P(E) the space of all probability measures on E, we equip P(E) with the topology of weak
convergence, which makes P (E) metrizable and a Polish space.

Definition 2.1. Consider a sequence of random probability measures {m;}. The family {m,}
is said to satisfy a large deviations principle (LDP) with rate function (equivalently action
functional) I : P(E) — [0, oo] if the following conditions hold:

e For all open sets O C P(E), we have
1
liminf — loglP {w; € O} > — inf I(u).
t—oo f neo
e For all closed sets F C P(E), we have

1
limsup — logP{m; € F} < — inf I(u).
t HeF

t—>00

o The level sets {u : () < M} are compact in P(E) for all M < oo.

If the random measures 7; are the empirical measures of an ergodic Markov process
X, (see 1.4) with invariant distribution 7 then 7/ (u) is a nonnegative convex function with
1 () = 0 and thus 7 () controls the rate at which the random measure 7, concentrates to 7.

For convenience we will assume that the diffusion process X, which solves the SDE 1.3
takes values in a compact space and that the vector fields are sufficiently smooth. We fully
expect, though, our result to still hold in R under suitable confining assumptions on the
potential U to ensure a large deviation principle. Throughout the rest of the paper we assume
that

(H) The state space E is a connected, compact, d-dimensional smooth Riemann manifold
without boundary, and there exists an « € (0, 1) such that the potential U € C?*¥(E) and the
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vector field C € C1*¥ (E). Moreover, we assume that div(Ce™2Y) = 0 so that the measure 77
is invariant.

From the work of Gartner and Donsker—Varadhan, [11, 18], under condition (H), the
empirical measures 7, satisfy a large deviation principle which is uniform in the initial
condition, i.e. the rate function is independent of the distribution of Xy ~ . Let us denote by
L the infinitesimal generator of the Markov process X; and by D its domain of definition. The
rate function 7 () (usually referred to as the Donsker—Varadhan functional) takes the form

L
I(w)=— inf /—”du.
ue{ueD,u>0} E U

An alternative formula for 7 (1), more useful in the context of this paper, is given in terms of
the Legendre transform

1) = sup {ffdu—w)},

feC(E)

where A(f) is the maximal eigenvalue of the Feyman—Kac semigroup T,f hix) =
E,[e/o fX)d5(X,)] acting on the Banach space C(E; R). As shown in [18] for nice s this
formula can be used to derive a useful, more explicit, formula for 7 (i) which will be central
in our analysis (see theorem 3.1 below).

In the sequel and in order to emphasize the dependence on C of the rate function we will
use the notation /¢ (w). Our first two results show that adding an irreversible drift C increases
the Donsker—Varadhan rate function pointwise.

Theorem 2.2. Assume that C # 0 is as in Assumption (H). For any u € P(E) we have
Ic(n) = Ip(pn). Let u(dx) = p(x)dx be a probability measure with positive density
p € CH(E) for some o > 0 and . # 7. Then, we have

1
Ie(pn) = Io(n) + 5/ Ve (x) — VU @) * dpu(x).
E
where ¢ is the unique solution (up to a constant) of the elliptic equation

div[p (VU +C + V)] =0.

Moreover, we have Ic(u) = Iy(n) if and only if the positive density p(x) satisfies
div (p(x)C(x)) = 0. Equivalently such p have the form p(x) = e*°™ where G is such
that G + U is an invariant for the vector field C (i.e. CV(G + U) = 0).

To obtain a slightly more quantitative result let us consider a one-parameter family
C(x) = 8Cy(X) where § € R and Cy. We show that for any fixed measure w the functional
Isc, () is quadratic in 8 € R.

Theorem 2.3. Assume that C = 6Cy # 0 is as in Assumption (H) and consider the measure
w(dx) = p(x)dx with positive density p € C*** (E) for some o > 0. Then we have

Isc, (1) = Io() + 87K (w),

where the functional K (i) is strictly positive if and only if div (p(x)Co(x)) # 0. Moreover,
the functional K () takes the explicit form

1
K =3 / IVEI” du(x),
E
where & is the unique solution (up to a constant) of the elliptic equation

div[p (Co + VE)] = 0.
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For f € C(E) the contraction principle implies that the ergodic average % fot f(X,)ds
satisfies a large deviation principle with the rate function

Irc(@) = inf {Ic(u): (f,p) =€}.
fc0) ot {Ic(w) = (fin) =4}

Note that £,c(£) can also be expressed in terms of a Legendre transform

Iyc(®) = sup (Bt — (B},

BeR
where
1 ¢
MBS = lim —logE [efo /(X0 ],
t—oo t

The eigenvalue A(Bf) is a smooth strictly convex function of B so that if £ belongs to the range

of f we have

. ~ o d_
Irc(@) = BL—A(Bf), withpgivenby{ = @A(,Bf).

In fact, if f € C@(E), then by proposition 4.1 there is ug(dx) = pc(x)dx, with pc(x) > 0

and pc € C**(E) such that I7¢(£) = I¢(uuf). Then, theorem 2.2 and proposition 4.1 give

theorem 2.4. Theorem 2.4 shows that the rate function for observables increases pointwise

under a non-degeneracy condition.

Theorem 2.4. Assume that C # 0 is as in Assumption (H). Consider f € C®(E) and
¢ € (min, f(x), max, f(x)) with€ # [ fd7x. Then we have

Irc(@) = Iro(0).

Moreover if there exists £y such that for the vector field C, i r.cly) = I r.0(£o) then we must
have

—~ 1 1 1
Blo) f = EA(G+U)+§|VG|2—§|VU|2, (2.1)
where G is such that G + U is invariant under the particular vector field C.

The following remarks are of interest.

Remark 2.5. Letting £ denote the infinitesimal generator of the reversible process X; defined
in (1.2), we get that (2.1) can be rewritten as a nonlinear Poisson equation of the form

Blo) f = H(G +U),

where
1 1 1
H(G +U) = e G eV = 5A(G +U) + E|VG|2 - §|VU|2.

Recalling theorem 2.2 (see the proof of theorem 2.4), an alternative condition that gives
Irc(ly) = Ifo(£p) is as follows. By proposition 4.1 there is ug.(dx; £o) = pc(x; £o)dx,
with pc > 0 and pc € C**¥(E) such that I7c(£) = Ic(uk(-; £o)). Then, the condition
div(pc (x; £o)C(x)) = 0, implies that 17 (£y) = I1.0(Lo).

Remark 2.6. In is interesting to note here that the Poisson equation (2.1) is reminiscent of
Poisson equations that have appeared in the literature in the analysis of MCMC algorithms,
see for example chapter 17 of [25]. In this paper, we see that the particular Poisson equation
can be also used to characterize when irreversible perturbations do actually strictly improve
convergence to equilibrium.
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A standard measure of efficiency of a sampling method for an observable f is to use the
asymptotic variance. Under our assumptions the central limit theorem holds for the ergodic
average f; and we have

2 G/ f(XX)ds—/fdﬁ) = N(0,07¢). (2.2)
0

where the asymptotic variance U%C is given in terms of the integrated autocorrelation function,
see e.g. proposition 4.1.3 in [2],

s =2 [ E[(rt - ) (ren = )] an

This is a convenient quantity from a practical point of view since there exists easily
implementable estimators for 0]%’ ¢~ On the other hand the asymptotic variance U]%,c is related

to the curvature of the rate function /¢ (£) around the mean £ = f (e. g. see [8]): we have

i‘// ( fT) _ L
e - 2
207¢
From theorem 2.4 it follows immediately that U,%,c < a},o but in fact the addition of an
appropriate irreversible drift strictly decreases the asymptotic variance.

Theorem 2.7. Assume that C # 0 is a vector field as in assumption (H) and let f € C(E)
such that for some € > Qand £ € (f —€, f+€)\ {f} we have 15c(£) > I70(£). Then we
have

2 2
O'f,C < Uf.O'

Remark 2.8. Anexamination of the proof of theorem 2.7 shows that a less restrictive condition
is needed for the strict decrease in variance to hold. In particular, it is enough to assume that

. (0
div (”g—f)n_ fcm) 0,

where pc(x) = pc(x; £) is the strictly positive invariant density of u7.(dx) = g (dx; £) such
that If,c(ﬁ) =1 (/L’E)

Let us conclude this section with an example demonstrating that adding irreversibility in
the dynamics does not always result in a increase of the spectral gap, even though the variance of
the estimator decreases. The key point is that the imaginary part of complex eigenvalues of the
generator for irreversible processes creates oscillations in the autocorrelation function which
can dramatically reduce the value of its integral. A related discussion regarding comparison
of convergence criteria can be also found in [14]. Related computations for the asymptotic
behavior of the mean-square displacement of tracers can be found in [24]. The purpose of this
example is to demonstrate that spectral gap as a criterium of convergence may not be tight
enough to assess improvement in performance when breaking irreversibility. On the other
hand, the large deviations rate function and the asymptotic variance both reflect the improved
convergence properties due to the irreversible perturbation.

Example 2.9. Let us consider the family of diffusions
dX, = édr +dW,
on the circle S' with generator

Ls = A+6V.
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For any 8 € R the Lebesgue measure on S' is invariant, but L; is self-adjoint on L?(dx) and
thus X, is reversible if and only if 5 = 0. A simple computation (using for example lemma 3.2)
shows that for a measure . (dx) that has positive and sufficiently smooth density p(x) we have

12 2
I(u)zlf PO o+ 822 [1— 11 }
8 Jsi | p(x) 2 fS‘ p(l)dx
and in this case I(w) strictly increases unless (dx) = dx. The eigenvalues of Ls are
Ay = —n®+ins, n € Z with eigenfunction €™ and thus the spectral gap is —1 for any

8 € R. However for any real-valued function f the asymptotic variance decreases: for f with
fsl fdx = 0 with Fourier coefficients c, we have

o0 . |Cn 2|cn
a;<a>=/0 L@ fOhandr = Y S Zn2+5z

neZ,n#0

In this example, even though the spectral gap does not increase at all, the variance not only
decreases, but it can be made as small as we want by increasing 8. The latter is in agreement
with both theorems 2.3 and 2.7 and illustrates how irreversibility improves sampling.

3. The Donsker-Varadhan functional

A standard trick in the theory of large deviations, when computing the probability of an unlikely
event, is to perform a change of measure to make the unlikely event typical. In the context of
SDE’s, this takes of the form of changing the drift of the SDE’s itself. This is the idea behind
the proof of the following result due to Gartner, [18].

Theorem 3.1 (Theorem 3.2 in [18]). Consider the SDE
dX, = b(X,)dr +dW,

on E with b € CU1*%(E) and with generator
L=A+bV.

Let u € P(E), where u(dx) = p(x)dx is a measure with positive density p € C(2+°‘)(E)f0r
some o > 0. The Donsker—Varadhan rate function I (1) takes the form

I(u) = %/EIV¢(X)I2dM(X), 3.1
where ¢ is the unique ( up to constant) solution of the equation

Ad+— (VP, Vo) = ; ps (3.2
and L* = A —Vbis theformal adjoint of L in L*(dx).

In the special case where b = —VU is a gradient, then up to an additive constant
P(x) = %10g p(x) +U(X), and we get

1w =2 [1EYPD L Gua 2cm(x) (3.3)
2Jel2 p) ’ '

which is the usual explicit formula for the rate function in the reversible case.
It will be useful to rewrite I (w) in a different form.
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Lemma 3.2. Under the conditions of theorem 3.1, we have
1 Vp(x)
rw=g [
8 Je| p(x)
where r is the unique (up to constant) solution of the elliptic equation

div[p (b + V)] = 0.

: 1 5 1 [ bVp
du(x)+—f Vo)l du(x)——/ PVP g,

Proof. Motivated by the solution in gradient case, let us write ¢ (x) = % log p(x) + ¥ (x). By
plugging ¢ (x) = % log p(x) + ¥ (x) in (3.1), we get

1 1 Vp(x) 2
I(M)—E/E 3oV du)
1 v 2 1 1 [ VYV
=—/ Px) du(X)+—/ IVlﬁ(x)Izdu(XH—/ YVP 4x)
8Je| px) 2 Jg 2

Vp(x)
p(x)

E
1 2 1 1 [ bV
_ |2 / du(x) + 2 / IV (OP dux) — = / PVP 4p)
8 JE 2 Je 2Jg p
+l/ [(b+VY)Vpldx
2/,

=T, ) +1(w,2).

We claim that 7 (1, 2) = 0. Indeed, using ¢ (x) = % log p(x) + ¥ (x), the constraint (3.2) gives
the following chain of equalities

1 1
Ap+—(Vp, V)= —L'p=
p P

A \v/ 2 \v4 2 1 A 1
_p_| 14 +A1ﬂ+| 14 +_(Vp’vl/,):_p——div(bp)=>
2p  2p? 2p2 p 2 p

Ay + l (Vp,Vy) = —ldiv(bp) =
p p

pPAY + (Vp, Vi) +div(bp) =0 =
V-[p(b+Vy)]=0.

The weak formulation of the latter statement reads as follows
/ (b(x) + Vi (x)) Vg(x)p(x)dx =0, Vg € C'(E).
E

Choosing g = log p, we obtain

/ (b(x)+ Vi (x)) Vp(x)dx =0,
E
which is precisely the statement / (i, 2) = 0. So we have indeed proven the claim. ]

With the representation of /¢ (w) we can now prove theorem 2.2.
Proof of theorem 2.2: since b(x) = —VU (x) + C(x), using lemma 3.2, I () becomes

1 [|Vpx) 1 s
Ic(p) = —/ d,u(X)+—/ Ve ()" dp(x)
8 Jel p(x) 2 Jg
1 VU (x)Vp(x) 1/C(x)Vp(x)
-] ————d — =] ———=d , 34
2/5 () m(x) 5 200) m(x) (3.4
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where V¢ is the unique (up to constant) solution of the equation
div[p (=VU +C + V)] =0.

The proof of lemma 3.2 shows that /¢ (x) = ¢ (x) — % log p(x) where ¢ is the unique solution
(up to constants) of the equation (3.2) with £ = Ly + CV.
Using the explicit formula 3.3 for the reversible case we obtain for the difference

Je(u) = Ic(p) — Io(w)
1
Jew) = Ie(w) = lo(w) = 3 / [IVyc))? = IVU @) ] dp(x)
E
_l/' C(x)Vp(x)d
2 JE px)

The condition div (C(x)e™2Y®)) = 0 can be rewritten as

divC(x) =2C(x)VU (x).

Integration by parts gives for the last term in J¢ (1)

/ C(x)Vp(x)
E p(x)

n(x).

du(x) = / C(x)Vp(x)dx = —/ divC(x) p(x)dx = —/ divC (x)du(x)
E E E

= —/ 2C(x)VU (x)dp(x).

Hence, we obtain ’

Je(u) = % /E [IVYc@))> = VU@ +2C(x) VU (x) ] dpa(x).
Using the constraint in its weak form
/ [Vye(x) — VU (x) + C(x)] Vg(x)du(x) =0, forevery g € C1(E) (3.5)
wz can pick freely g € C'(E). If we first choose g = ¢ + U, then, (3.5) gives

/ [IVYc@P? = VU@’ du) = — / C @) (Ve (x) + VU (1) dpe(x)
and thus " ’

Je(u) = % /E C(x) (VU (x) = Ve (x)) du(x). (3.6)
Choosing g = ¢ — U and we get from (3.5)

/E Ve (x) — VU P du(x) = /E C) (VU ) — Ve (x) da(x).

Plugging this in (3.6) we obtain

1
Je(w) = Ewawc(x) _ VU P du).

Clearly Je(u) = 0. If p possesses a strictly positive density, it is clear that Jo () = 0 if and
only if div (pC) = 0. In other words, Jc () > 0 if and only if div (pC) # 0.

Finally let us write the positive density as p(x) = e*¢™, since we have div(Ce™2Y) =0
and div(Ce?®) = 0 we have

divC = —2CVU =2CVG
and thus CV(G + U) = 0, i.e. (G + U) is a conserved quantity under the flow ‘é—f =Ckx). O
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We now consider the one-parameter family C(x) = §Cy(x) and prove theorem 2.3.
Proof of theorem 2.3: for notational convenience let us write Js (1) instead of Js¢, (1) and
let us set ¢5(x) = ¥sc,(x) — U(x). From theorem 2.2 we have

50 =3 [ Ve auc), 3.7)
where ¢ is the unique (up to constant) solution of the equation

/E(SCo(x) + Vs(x)) Vg(x)u(dx) =0, Vg eC'(E). (3.8)
Let us define £5(x) = § 's(x). Then,

30 =55 [ 16 dnt)
and because § # 0, &; is the unique (up to constant) solution of the equation

| €0+ V80 Venian =0, ve (e,

The last equation makes it clear that, modulo an additive constant, &;(x) is in fact independent
of §. Thus, there exists a functional K () > 0 such that

Js(w) = 82K ().
Clearly, if u(dx) = p(x)dx with div(pCp) = 0 then K (n) = 0, otherwise K (i) > O. O

4, Large deviation for observables and the asymptotic variance

Let us consider a function f € C(E) with mean f = fE f(x)dm(x). Let us set

1 t
f=(fm) = / FEOdr(x) = f F(X,)ds.
E tJo

By the contraction principle f; satisfies a large deviation principle with action functional
given by

lre@® = inf {c(u): (f.u) =10, @.1)

where £ € Rand I¢ (1) is the Donsker—Varadhan action functional for the empirical measure 7;.
In subsection 4.1 we prove theorem 2.4, whereas in subsection 4.2 we prove theorem 2.7.

4.1. Large deviation for observables

Theorem 2.4 is a fairly immediate consequence of theorem 2.2 and proposition 4.1.

Proposition 4.1. Let f € C%(E), and £ € (min, f(x), max, f(x)). Then there exists
w*(dx) = p(x)dx with p(x) > 0 and p(x) € C**(E) such that

Irc(0) = Ic(u).

Proof. As discussed in Gartner [18], the semigroup T;4(x) = E, [h(X,)] is strong-Feller and
the strong-Feller property is inherited by the Feynman—Kac semigroup

T/ h(x) = By [l /(x|

if f € C(E). Moreover the semigroups T,f are quasi-compact on the Banach space C(E) and
by a Perron—Frobenius argument the semigroup T,f has a dominant simple positive eigenvalue
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e*" with a corresponding strictly positive eigenvector u(f) = e*¥). We write A(f) and
u(f) instead of A, u in order to emphasize their dependence on the observable f.

For any f, g € C(E), T,f 78 is a bounded perturbation of th . By analytic perturbation
theory (see for example chapter 8 of [22]) and the simplicity of the eigenvalue A ( f) this implies
that the maps y — A(f +yg) and y — u(f + yg) are real-analytic functions. If we require,
in addition, that f € C(E), then the bounded linear operator (L¢ + f) that maps C‘**%) (E)
to C® (E) is invertible with compact inverse. Hence, the relation

(Lc+ Hulf) =r(HHulf).
implies that A(f) = lim,,» + logE [eﬁ; f (Xf)dx] is a simple eigenvalue of the operator (Lc+ f)
in C'® (E) and that the solution u( f) is in C?*®(E) (see [12]). This implies

Vo (f) = Viogu(f) € C*(E).

The rate function /(@) can be written as

Ic(w) = sup {u(f) —A(H)}.

feC@) (E)

If we pick p(dx) = p(x)dx with p(x) > 0 and p € C**(E) then it is shown in [18] that
the supremum is attained when f is chosen such that u is the invariant measure for the SDE
with infinitesimal generator

Lc+Vo(fIV = Leivg.

Turning now to the rate function for observables we note first that if ¢ €
(min, f(x), max, f(x)) then I;c(€) is finite. Indeed simply pick any measure p with a
CHI(E) strictly positive density such that f fdu = ¢, then I c(£) < Ic(u) which is finite
by theorem 3.1. Besides the representation 4.1 we can also represent the rate function / f,c as
the Legendre transform of the moment generating function of f,

Tre(0) =sup{e- B —r(Bf)}

BeR

where
1 . ‘
A(Bf) = lim ~logE [efo #f (xgds] '
t—o00
Due to the relation

(Le+BHuBf) = 1BHuBS), (4.2)

A(Bf) is a simple eigenvalue of Lc + Bf in C®(E) and as mentioned before u(Bf) is in
C®*)(E). We can then compute /¢ (¢) by calculus and the sup is attained if 8 is chosen such

that £ = %A(ﬁ ). With u(Bf) = e?®"), the eigenvalue equation (4.2) can be equivalently
written as

1
LeopBf)+ 3 Vo (B> = L(Bf) — BS- (4.3)
Differentiating 4.3 with respect to 8 and setting ¥ (8f) = % (Bf) we see that Y (Bf) satisfies

the equation

d
Lcy B+ (Vo (B VY (BS)) = @Mﬁf) - f

or equivalently

d
Leswvepn¥ = ﬁk(ﬁf) - f
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Thus, the constraint (f, u) = £, implies that in order to have £ = %A(,@ f) for some
,3, wj should be the invariant measure for the process with generator L, g, Y Since
V¢ € C'*(E) the corresponding invariant measure u 4 is strictly positive and has a density
p(x) € C*(E). A A

To conclude the proof of the proposition, by [18] we have IC(M,;}) = uBf) —ABf).
But since wu(f) = £ this is also equal to I7,c(£). O

Completion of the proof of theorem 2.4: let £ be such that £ # f fdm. By proposition 4.1,
there exists measures 5 and g, both with strictly positive densities po, pc € C 2+ (E) such

that 17 c(€) = Ic(ug) and I7o(€) = Io(up)-

Let us first assume that div(pcC) # 0. Since Ic(n) > Ip(w) for any p with strictly
positive densities p € C?*® such that div(pC) # 0, this implies that I r0(f) < i r.c(@).

By contradiction let us now assume that

Io@) = I1c(O).

Let us first assume that u§ # ug. Since div(pcC) # 0, we have
Io(ug) = Ic(ue) > lo(ue)-

which contradicts 7 1r0(8) = Io(ug). Now if ug = g then we have
To(ue) = Io(ug) = Ic(ug).

However, this contradicts the fact that we always have Ic(ug) > Io(ug) for ui(dx) =

pc(x)dx such that div(pcC) # 0. This proves that 17(£) < I1.c(£).
If div(pcC) = 0 then with p = ¢?¢ we must have CV(G + U) = 0. As in the proof of
proposition 4.1, the density p¢ is an invariant measure for the SDE with added drift ¢c, i.e.

£2+V¢c Pc = 0.
but since div(pcC) = 0 we have in fact
['*Vqﬁc pPc = 0.

Also Ly, is the generator of a reversible ergodic Markov process and thus pc = e2¢~Y) from
which we see that

¢p=G+U.

On the other hand e? is the solution of the eigenvalue equation
(Le+Be? = (e

Since CV(G +U) = 0, we have that CVe? = CVeS*Y = 0. Thus, the last display reduces to
(Lo+Bfre? = r(f)e’.

We also note that changing f into f + ¢ leaves ¢ unchanged but changes A(f) to A(f) + Ec.
So, for some constant ¢, we must have

~ 1 1
Bf =e UL 4o = FAG+U)+ E|VG|2 — |IVG|* +c. O
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4.2. Asymptotic variance

In this subsection, we prove that adding irreversibility results in reducing the asymptotic

variance of the estimator. The existence of the central limit theorem, see (2.2), of the second

derivative [ }’ (f) and of the relation 0} = —L_ implies that it is enough to prove that for

20
C#0and f € CYE)
I{ o (f) = T}o() > 0.
We recall that by (3),

1
Je(u) = Ic(pu) — Ip(n) = E/ Ve (x) — VU (x)]* dpu(x).
E

By proposition 4.1, it is enough to consider measures that have a strictly positive density in
C**(E). We start by computing the first and second order Gateaux directional derivatives
of Je(u) for u(dx) = p(x)dx with p(x) € C** (E). For notational convenience we shall
often write Jc(p) instead of Jo(u). Let y € R and let us define

Je(vip.q) = Je(p+vyq), forp,qeCH(E). (4.4)

In subsubsection 4.2.1 we compute first order Gateaux directional derivative, whereas in
subsubsection 4.2.1 we compute second order Giteaux directional derivative. Then, in
subsection 4.3 we put things together proving theorem 2.7.

4.2.1. First order Gateaux directional derivative Let p(x), gq(x) € C***)(E) and notice that

1
" [Jep+vq) — Jc(p)]

11 +
= ?[5/5 VY710 = VU@ (p() + yg(x)) dx

1 » 2
—§/E|Vwc(x)—VU(x)| p(x)dx}

1 . ) )
=2, [/E (VY& (@) = VYE@) (VU™ () + Vg (x) = 2VU (v))

x p(x)dx +y f VYL (x) = VU ()| q(x)dx:|
E

1 [ / Ve () = Viix) (
2 E Y

VYL (x) + VYL (x) — 2VU (x)) p(x)dx

+/ VYL (x) — VU(x)|2q(x)dx:|.
E

NA 7RI 4 74©9)
14

For every g € C'(E), we notice that satisfies

I .
0= / [(-VU ) + Cx) + VY27 ()) Ve (o) (p(x) + yq(x)
E

— (—VU(x) +C(x)+ Vl//g(x)) Vg(x)p(x)] dx
B / VYL (x) — Vil (x)
Je 14

Vg(x)p(x)dx

+/ (=VU @)+ C(x) + VY& (x)) Vg (x)g (x)dx.
E
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Since p, g € C*¥(E), it follows (as in section 3 of [18]) that there is a I/Afé”’ e C*O(E)
such that

YT X)) = YL +y it () +o1(y),
where [|01(¥)|l(24o) — 0 as y — 0. Then Vg € C'(E), V{29 (x) satisfies

/E [Vl/}g’q(x)p(x) +(=VU @) + C(x) + Vi (x)) q(x)] Vg(x)dx = 0. 4.5)

Let us then denote
Je(p+vq) — Jc(p)
14

dJec(p: g) = lim
y10

‘We obtain

dJe(p; q) = / VYL (x) (VL (x) — VU (x)) p(x)dx
E

1 » 2
+§/E|Vwc(x)—VU(x)| g(x)dx.

It is clear that if the measure u is the invariant measure, i.e. p(dx) = 7 (dx), then denoting
by p the density of 7 (dx) = p(x)dx, we have that Vl/fg (x) = VU (x). The latter implies that
for any direction g, we get

dJe(p:q) =0,
which is of course expected to be true.

4.2.2. Second order Gateaux directional derivative Next we compute the second order
Gateaux directional derivative. For p(x), g(x), h(x) € C®*(E), we get

I
” [dJc(p +vh; q) — dJc(p; )]
1 2 p+yh +yh
= f Ve (x) (wfé’ "(x) — vv(x)) (p(x) + yh(x))dx
E
1 )
- / VYt (x) (Vid(x) — VU (x)) p(x)dx
E
L [/ ‘vwg*y”(x) - VU(x)‘zq(x)dx —/ |Vl (x) — VU(x)|2q(x)dxi|
2y E E

— / VLT () (vwg*y’“(x) _ VU(x)) h(x)dx
E

p+yh _ p
+ / v YVe O = Vel g,
E
S p+yh, 7D,
+/ VgL q(X)y— Ve (x) (VY2(x) — VU (X)) p(x)dx
E
p+vh _ P
+%/ Ve (x;/ Ve (x) (ngﬂ/h(x) " Vl//g(x) _ ZVU(x))q(x)dx.
E

As it was done for the computation of the first order directional derivative, we next notice that
VYL @)~V ()
Y

0 / VLT (x) — VL (x)
B E 14

. / vyl (x) — wgmq
E

for every g € C'(E), satisfies

p(x) + V&é’”h*‘f(x)hu)} Vg (x)dx

(x)Vg(x)dx.
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A DPsq.h
As in section 3 of [18], it follows then that there isa ¥/ (x) € C1**)(E) such that

? p+vhig 2 Pq 5 Pa:h
C x) = C (x)+)/1/fc x) +o02(y),

A Ppq:h
where [|02(¥) |l (140) — 0 as y — 0. Then, for every g € CUE), V¢ (x) satisfies

~p.q.h R R
fE [W?Zq () p(x) + V&t (x)h(x) + Wé"h(x)q(x)] Vg(x)dx = 0. (4.6)

Let us then denote
dJc(p+yh;q)—dJc(p; q)
14

d*Je(p; g, h) = lim
ol ) m
We get

&Je(piq, ) = /E (VL4 (x) — VU (x)) VI (x)h(x)dx
+ / VLI () V" (x) p(x)dx
E
N
+ /E Vie ) (VYlx) — VU X)) p(x)dx
+/Ev1}g’h(x) (VY (x) — VU (x)) g(x)dx
:/E(wfg(x)—VU(x))

~ p.q,h

x (V@f’"f(x)h(x)+V1/7"’h(x)q<x>+V&M (x)p(x)) dx

+/ VP4 (x) VP! (x) p(x)dx. 4.7
E
Using the constraint (4.6) with the test function g(x) = 1//5 (x) — U(x), we then obtain
d*Je(piq. h) = / VP (x) VP! (x) p(x)da.
E

Recall that for every g € CUE), VlZf”*q (x) satisfies (4.5) and similarly for VlZf”*h (x). Thus,
selecting i (x) = g(x), we get

N 2
Eretpia = [ Vi@ pe “8)

Relation (4.8) implies that pointwise in p and for non-zero directions ¢ (x) the second order
directional derivative of I-(p) increases when adding an appropriately non-zero irreversible
drift C, i.e.

d*Je(p; q,q) = 0.

Of course, this is expected to be true due to convexity. Let us next investigate what happens at
the law of large numbers limit & = 7. So, letus choose (dx) to be the invariant measure 7 (d.x)
and let us denote its density by p(x). Then, we notice that in this case leé' (x) = VU (x).
So, (4.8) becomes

n 2
Eretpia. = [ [Vitsw] wwn >0 (4.9)
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where, Vg € C'(E), V{74 (x) satisfies
f [v«ﬁg’"’(x)p(x) + C(x)q(x)] Ve(x)dx = 0. (4.10)
E

In fact, we get for ¢, C such that div(gC) # 0 that V{72 (x) # 0. Then, by (4.10) and (4.9)
we have

d*Je(pi g, q) > 0. (4.11)
In addition, (4.10) shows that if C = 0, or if ¢, C are such that div(qC) = 0, then

d*Jo(p; q,q) = 0.

4.3. Completion of the proof of theorem 2.7

Let C # 0and f € C“(E) be such that I.c(£) > I70(£) for every £ # f. Then, we want to
prove

I e () = Tfo(f) > 0.

We know by proposition 4.1 that there exist measures, say ¢ (dx; £) and po(dx; £), that have
a strictly positive densities in C?*® (E) such that

Irc(®) =Ic(uc( 0),  and  T7o(6) = Io(uo(:; )
By convexity and the definitions of wc(dx; £) = pc¢(x)dx and po(dx; £) = po(x)dx, we
have that for all £ € (min, f(x), max, f(x))
2

- - d
Tf e = Ifo0) = =55 Ueue(: 0) = lo(uo(: )]

2
= [Uc (e 0) — Io (ue (-5 0)) + Ho(ue (5 6) — Io(uo (- £)))]
82
> Y7 [c(pc (5 0) — Io(uc(; £)]
32
= @Jc(uc('; 0)).

Then, (4.9) implies that when evaluated at the law of large numbers £ = f,

0 2 | =

Sdetpe g = [ [VOET)| 7 (@), “.12)
E

such that (4.10) holds with g(x) = g(x) = %pc(x; Olo=y, e Vl/A/’}’q(x) satisfies

/ [w}gﬁ(x)ﬁ(x) + C(x)(j(x)] Ve(x)dx =0, Vg e C'(E). (4.13)
E

Then, (4.11) implies
82
wfc(}?c.z)hzf‘ > 0,

as long as div (gC) # 0. This concludes the proof of theorem 2.7. g
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Table 1. Estimated variance values for different pairs (6, 7).

st 25 100 160 220 295
0 022 0.08 0.038 0.029 0.011
10 0.19 0.01 0.007 0.005 0.002

100 0.09 0.001 3¢e—04 28¢—04 13¢—04

95% Confidence bounds when observable is f(x,y)=x+y?

—— delta=0, solid line is estimate, dashed lines are 95% confidence bounds
—— delta=10, solid line is estimate, dashed lines are 95% confidence bounds
— delta=100, solid line is estimate, dashed lines are 95% confidence bounds

2.2
|

2.0

Estimate and Confidence bounds
1.4

1.2

1.0

Time

Figure 1. Convergence of ]A;l (1) to f.

5. Simulations

In this section we present some numerical results to illustrate the theoretical findings. We
study numerically the effect that adding irreversibility has on the speed of convergence to the
equilibrium. Consider the SDE in 2 dimensions

dZ, = [=VU(Z,) + C(Z)]dt +V2DdW,, Zy =0

where D = 0.1 and, for z = (x, y), C(x, y) = 6Cy(x, y) with Co(x,y) = JVU (x, y). Here,
6 € R, I is the 2 x 2 identity matrix and J is the standard 2 x 2 antisymmetric matrix, i.e.
.]12 = 1, J21 = —1 and J]] = J22 =0.

Clearly, in the case § = 0 we have reversible dynamics, whereas for § # 0 the dynamics
is irreversible. Notice that for any § € R, the invariant measure is

_ Uy
e D
w(dxdy) = —————dxdy
g€ P dxdy
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95% Confidence bounds when observable is f(x,y)=x2+y?

delta=0, estimate (middle line) and 95% confidence bounds
? delta=10, estimate (middle line) and 95% confidence bounds
© _|
(2]
el
c
3
Q -
el
j
]
Q
T
£
@
W«
e |

Figure 2. Estimate and 95% Confidence bounds when U (x, y) = (x* — )+ 13y +
x2—=1)2and f(x,y) = x>+ y%

Table 2. Estimated variance values for different pairs (6, ).

8|t 100 200 300 400 500 600 700

0 0.01 0.006 0.002 0.002 0.002 0.003 0.002
10 0.003  0.0007 0.0002 0.0001 7e—05 6e—05 6e—05

Let us suppose that we are given an observable f (x, y) and we want to compute
f= / f (. y) 7 (dxdy).
R

It is known that an estimator for f is given by

N 1 t
f(t):—/ f(anYs)ds
t—vJ,

where v is some burn-in period that is used with the hope that the bias has been significantly
reduced by time v. This estimate is based on simulating a very long trajectory Z, = (X§, Ys).

For illustration purposes, we present in table 1, variance estimates for different values of
8 and time horizons ¢ in the set-up of figure 1. It is noteworthy that the variance reduction for
this particular example is about two orders of magnitude.
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Figure 3. Phase portrait of U(x,y) = 1[(x* — DX((y* =22+ 1) +2y* — y/8] +

_’y2_ay2
eSx 4y'

In the second example we pick again a bimodal potential U (x, y) = (x2 — 1)% + %(3)} +
x? — 1)? and the observable f(x,y) = x> + y2. In figure 2 we see 95% confidence bounds

for f(¢). In table 2, we present numerical data for the variance estimates that are illustrated in
figure 2. Again, we see variance reduction and it is at the order of about two magnitudes.
In the third example we pick the potential

Ux,y) = 41_‘ [(2 = 1D2((? =22+ 1) +2y> — y/8] +e 84",

Due to the somewhat complex form of U (x, y), we have also plotted in figure 3 its phase
portrait. We see that it has two local minima at (£1.00051, 0.125314), two saddle points at
(0, —1.00711) and at (0, 1.08849) and a local maximum at (0, —0.0139).

We consider again the observable f(x, y) = x? + y2. In figure 4 we see 95% confidence

bounds for f(¢). In table 3, we present numerical data for the variance estimates that are
illustrated in figure 4. Again, we see variance reduction and it is at the order of about one
magnitude when the irreversible parameter is 6 = 10.

We conclude this section with a remark on the optimal choice of irreversibility.
Theorem 2.3 suggests that in the generic situation, perturbations of the form C(-) = §Cy(-)
yield better results as the parameter § increases. However, in practice the higher the § is,
the smaller the discretization step in the simulation algorithm should be, i.e. there is a trade-
off to consider here. Thus it makes sense to look for the optimal perturbation C(x) and
this could be formulated as a solution to a variational problem that involves minimizing the
asymptotic variance of the estimator. Since, the asymptotic variance is inversely proportional
to the second derivative of the rate function of the observable evaluated at f , the variational
problem to consider is basically maximization over vector fields C that satisfy condition (H)
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95% Confidence bounds when observable is f(x,y)=x2+y?

1.7

delta=0, estimate (middle line) and 95% confidence bounds
delta=10, estimate (middle line) and 95% confidence bounds

1.5

Estimate and bounds
1.4

1.2

Time

Figure 4. Estimate and 95% Confidence bounds when U(x,y) =
2 2
P62 =DHG? =22+ D +2y* — y/8] + e " and f(x,y) = x7 + 2.

Table 3. Estimated variance values for different pairs (6, 7).

8|t 100 200 300 400 500 600 700

0 0.004  0.002 0.002 0.001 0.001 0.001 0.001
10 0.001  0.0003 0.0002 0.0001 0.0001 0.0001 0.0001

of the quantity (4.12) under the constraint (4.13). We plan to investigate this question in a
future work.

6. Conclusions

In this article we have considered the problem of estimating the expected value of a functional of
interest using as estimator the long time average of a process that has as its invariant distribution
the target measure. We have argued using large deviations theory, both theoretically and
numerically, that adding an appropriate drift to the dynamics of a reversible Langevin equation,
results in smaller asymptotic variance for the time average estimator. We characterize when
observables do not see their variance reduced in terms of a precise non-linear Poisson equation.
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