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Independent Identically Distributed (=IID) Random
Variables
Operational Meaning: Repeat an experiment n times, each time under
the exactly same conditions, each time independently of the other
experiments. The outcome of each experiment is a measurement Yi ,
i = 1, 2, · · · , n (a random variable).

IID RV and sample mean

Y 1, · · · ,Yn are n independent RV.

Y 1, · · · ,Yn are identically distributed: The PDF of each Yi is f (yi )
with the same f .

The joint PDF is f (y1, · · · , yn) = f (y1) · · · f (yn).

The mean E [Yi ] = µ and the variance V [Yi ] = σ2 do no depend of i .

The sample mean is

Y =
Y1 + · · ·+ Yn

n
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The Law of Large Numbers
Remember

Mean and Variance

If Y1, · · ·Yn IID with E [Yi ] = µ and V [Yi ] = σ2 then

E [Y ] = E

[
Y1 + · · ·Yn

n

]
= µ V [Y ] = V

[
Y1 + · · ·Yn

n

]
=
σ2

n

So by Chebyshev Inequality

Law of Large Numbers

If Y1, · · ·Yn IID with E [Y1] = µ and V [Y1] = σ2 then

P
{
|Y − µ| > ε

}
≤ V [Y ]

ε2
=

σ2

nε2
→︸︷︷︸

as n→∞

0
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Interpretation of the Law of Large Numbers: Concentration

of the sample mean Y around the true mean µ
The variance of Y decreases with n so the PDF of Y is more and more
concentrated around the mean µ.
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Figure: If Yi is exponential with parameter 1 then Y1+···+Yn

n is gamma with α = 1
and β = 1

n see previous slides.
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Using the Law of Large numbers to estimate an unknown µ

Operational meaning: You can perform an experiment resulting a
measurement Y but you do not know the PDF of Y neither do you know
the mean µ? The Law of large numbers tells you to perform n independent

experiment Y1,Y2, · · · ,Yn and use the approximation

Y1 + · · ·+ Yn

n
≈ µ

Chebyshev Theorem tells you what this is a good approximation with high
probability as n grows.

−→ Can we figure out how good this approximation really is? The
central limit theorem provides one answer: all sample mean looks like
normal random variables for large n.
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The Monte-Carlo method
Put the law of large numbers to work: Imagine µ is some quantity you
try to evaluate.

Find a random variable X with E [X ] = µ.

Simulate X1,X2, · · · ,Xn on a computer.

Get the estimate µ = X1+···+Xn
n

Example: Estimate the number π using random numbers

Let U and V be two random numbers. If U2 + V 2 ≤ 1 set Y = 1,
otherwise set X = 0. Then

P(Y = 1) = P(U2 + V 2 ≤ 1) =
π

4

and E [Y ] = π
4 .

Taking IID copies Y1,X2, ,Yn we have

4
Y1 + · · ·+ Yn

n
≈ 4E [Y ]
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PDF of the sample mean Y
Except in special cases it is very difficult to compute the PDF of Y .

Example: Take n = 3 and toll three dice. Yi =number on dice i .

Y =
Y1 + Y2 + Y3

3
.

Since Y1 + Y2 + Y3 takes (integer) values between 3 and 18 the sample
average Y takes value in{

1,
4

3
,

5

3
,

6

3
, · · · , 18

3
= 6

}
.

P(Y = 1) = p(1, 1, 1) =
1

216

P(Y = 4/3) = p(1, 1, 2) + p(1, 2, 1) + p(2, 1, 1) =
3

216
P(Y = 5/3) = p(1, 1, 3) + p(1, 3, 1) + p(3, 1, 1)

+p(2, 2, 1) + p(1, 2, 2) + p(2, 1, 2) =
6

216
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Sample mean for normal random variables

For normal random variables everything can be computed explicitly so let
us start here. The Central limit theorem will tell us that everything is
normal..

Use the fact that if Y1 is normal with mean µ1 and variance σ21 and Y2 is
normal with mean µ2 and variance σ22 then

a1Y1 + a2Y2 is normal with mean a1µ1 + a2µ2 and variance a21σ
2
1 + a22σ

2
2

So if s Yi normal with mean µ and variance σ2:

Y =
Y1 + · · ·Yn

n
is normal with mean µ and variance σ2/n
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Example: estimating an unknown µ.

A bottling machine fills bottles with a normal distribution unknown(!)
mean and a standard deviation of σ = 1 fl. oz.
If you fill 9 bottles what is the probability that the mean µ is within .3
fl.oz of the sample mean Y ?

Standardize with the variance σ2

n .

P(|Y − µ| ≤ 0.3} = P(−0.3 ≤ Y − µ ≤ 0.3)

= P

(
−0.3

σ/
√
n
≤ Y − µ
σ/
√
n
≤ 0.3

σ/
√
n

)
= P

(
−0.3

1/
√

9
≤ Z ≤ 0.3

1/
√

9

)
Z standard normal

= P(−.9 ≤ Z ≤ .9) = .6318 Use z-score table

Say if we observe 9 bottles with an average of 19.5 fl. oz then the true
mean µs is in the interval [19.2, 19.8] with probability .6318?

Luc Rey-Bellet (UMass Amherst) STAT 315 April 24, 2025 10 / 18



Example: estimating an unknown µ, continued
How many bottles should you fill for Y to be no more than .3 ounces from
µ with probability .95?
Use that for Z a standard normal we have

P(−.1.96 ≤ Z ≤ 1.96) = .95Use z-score table.

P
(
|Y − µ| ≤ .3

)
= P

(
−0.3

σ/
√
n
≤ Y − µ
σ/
√
n
≤ 0.3

σ/
√
n

)
= P

(
−0.3

1/
√
n
≤ Z ≤ 0.3

1/
√
n

)
= P

(
−0.3

√
n ≤ Z ≤ 0.3

√
n
)

And thus

.3
√
n = 1.96⇔ n =

(
1.96

.3

)2

= 42.68

We need 43 bottles for a 95% confidence interval of .3 fl. oz
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Sample Variance: what if we don’t know σ2.

If µ is unknown we can estimate µ using sample averages Ȳ

How can we estimate σ2 from the sample Y1,Y2, · · · ,Yn?

First attempt: µ is known and we want σ2. (Not realistic but...)
We use that

V [Y ] = E [(Y − µ)2] = E [Z ] with Z = (Y − µ)2

The sample mean for Z is

Z =
Z1 + Z2 + · · ·Zn

n
=

(Y1 − µ)2 + · · · (Yn − µ)2

n
≈ E [Z ] = σ2

by the Law of Large Numbers applied to Zi = (Yi − µ)2
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Sample Variance, continued

If we do not know µ we replace µ by the sample mean Y .

Sample Variance

The sample variance is defined by

S2 =
1

n − 1

n∑
i=1

(Yi − Y )2 =
(Y1 − Y )2 + · · · (Yn − Y )2

n − 1

Note the factor n − 1 in the denominator. We have

P(|S2 − σ2| ≥ ε)→ 0 as n→∞

and thus S2 ≈ σ2 for large n with high probability and

E [S2] = σ2

for any n, i.e S2 is an unbiased estimator.
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Why the factor n − 1?

If n is large using 1/n or 1/(n − 1) does not matter much in practice

The factor 1/(n − 1) ensures that E [S2] = σ2 (unbiased estimator)
This can be shown by a somewhat long computation....
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Sample variance for normal random variables
Recall some facts about normal and gamma (and χ2) RV.

If Z standard normal then Z 2 is gamma with α = 1/2 and β = 2
(also called χ2).

X1 gamma with α1 and β and X2 gamma with α2 and β then
X1 + X2 is gamma with α1 + α2 and β then

If X is gamma with α and β then Y = aX gamma with α and aβ
then

So if Yi are independent normal with mean µ and variance σ2 then(
Yi − µ
σ

)2

is a χ2, aka gamma with α = 1/2, β = 2

n∑
i=1

(
Yi − µ
σ

)2

is a χ2
n, or gamma with α = n/2, β = 2

1

n

n∑
i=1

(
Yi − µ
σ

)2

is gamma with α = n/2, β = 2/na
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Confidence interval for chi2 RV
Example: Find a 95% confidence interval for

∑6
i=1

(
Yi−µ
σ

)2
.

Since Zi = Yi−µ
σ are IID standard normal RV then

∑6
i=1 Z

2
i is gamma with

α = 3 and β = 2. So in particular E [Y ] = 6.
To find a confidence interval we need to find

b such that P(Y ≥ b) = .025

a such that P(Y ≤ a) = .025

Use for example the online calculator
https://homepage.divms.uiowa.edu/~mbognar/

one finds b = 14.44 and a = 1.23

P

(
1.23 ≤

6∑
i=1

(
Yi − µ
σ

)2

≤ 14.44

)
= .95
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Sample Variance for normal

If we replace µ by Y one can show (more long computations) that

Sample variance for normal random variable

Suppose Yi are independent normal with mean µ and variance σ2. Then

n∑
i=1

(
Yi − Y

σ

)2

is χ2
n−1 or gamma with α = (n − 1)/2, β = 2

and the n − 1 factor is here again!
Therefore

S2

σ2
=

1

n − 1

n∑
i=1

(
Yi − Y

σ

)2

is gamma with α = (n − 1)/2, β = 2/n − 1

Luc Rey-Bellet (UMass Amherst) STAT 315 April 24, 2025 17 / 18



95% confidence interval for the variance
.
Example: Coming back to our machine bottling example with now
unknown µ and σ2.

Suppose we fill 50 bottles and measure the values Y1 = 19.5 Y2 = 19.7 ...
Y50 = 20.1 which gives a value

S2 =
1

n − 1

n∑
i=1

(Yi − Y )2 = .28

We know that S2

σ2 is gamma with α = 50−1
2 = 24.5 and β = 2

50−1 = 1
24.5

and so using the online calculator we find

P

(
.64 ≤ S2

σ2
≤ 1.43

)
= .95

and with our experimental value S2 = .28

P

(
S2

1.23
≤ σ2 ≤ S2

.64

)
= P

(
.19 ≤ σ2 ≤ .43

)
= .95
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