STAT 315: Functions of Random Variables II: MGF Method

Luc Rey-Bellet

University of Massachusetts Amherst

luc@math.umass.edu

April 21, 2025

Moment generating functions $m_X(t) = E[e^t X]$

Binomial RV $m(t) = ((1 - p) + pe^{t})^{n}$ $m(t) = \frac{pe^t}{1 - (1 - p)e^t}$ Geometric RV $m(t) = e^{\lambda(e^t - 1)}$ Poisson RV $m(t) = \frac{1}{1 - \beta t}$ • Exponential RV $m(t) = e^{\mu t + \frac{\sigma^2}{2}t^2}$ Normal RV $m(t) = \frac{1}{(1-\beta t)^{\alpha}}$ Gamma RV

Theorem (hard to prove)

If $m_X(t) = m_Y(t)$ then X and Y have the same PDF.

Example: MGF of the gamma random variable with parameters α and β .

$$PDF \quad f(y) = \frac{y^{\alpha - 1}e^{-y/\beta}}{\beta^{\alpha}\Gamma(\alpha)} \qquad \Gamma(\alpha) = \int_0^{\infty} y^{\alpha - 1}e^{-y} dy$$

$$MGF \quad m(y) = E[e^{tY}] = \int_0^\infty e^{ty} \frac{y^{\alpha-1}e^{-\frac{y}{\beta}}}{\beta^{\alpha}\Gamma(\alpha)} = \int_0^\infty \frac{y^{\alpha-1}e^{-y(\frac{1}{\beta}-t)}}{\beta^{\alpha}\Gamma(\alpha)}$$
$$= \frac{(\frac{1}{\beta}-t)^{-\alpha}}{\beta^{\alpha}} \underbrace{\int_0^\infty \frac{y^{\alpha-1}e^{-\frac{y}{(\frac{1}{\beta}-t)^{-1}}}}{(\frac{1}{\beta}-t)^{-\alpha}\Gamma(\alpha)}}_{=1}$$
$$= \frac{(\frac{1}{\beta}-t)^{-\alpha}}{\beta^{\alpha}} = (1-\beta t)^{-\alpha}$$

Normal and χ^2 (again..)

Suppose Z is standard normal so the PDF is $f_Z(z) = \frac{1}{\sqrt{2\pi}}e^{-\frac{z^2}{2}}$ and consider $Y = Z^2$.

$$E[e^{tY}] = E[e^{tZ^2}] = \int_{-\infty}^{\infty} e^{tz^2} \frac{1}{\sqrt{2\pi}} e^{-\frac{z^2}{2}} dz = \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{z^2}{2}(1-2t)} dz$$
$$= (1-2t)^{-1/2} \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}(1-2t)^{-1/2}} e^{-\frac{z^2}{2(1-2t)^{-1}}} dz$$
$$= (1-2t)^{-1/2} \quad \text{since} \quad \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{z^2}{2\sigma^2}} dz = 1$$

So $Y = Z^2$ has the MGF of a Gamma random variable with $\alpha = 1/2$ and $\beta = 2$. This is also called a χ^2 random variable.

Properties of MGF

Properties of MGF

• If Y = aX + b then

$$m_Y(t) = e^{bt} m_X(at)$$

• If Y_1 and Y_2 are independent RV then

 $m_{Y_1+Y_2}(t) = m_{Y_1}(t)m_{Y_2}(t)$

$$\begin{split} m_{Y}(t) &= E[e^{t(aX+b)}] = E[e^{taX}e^{tb}] = e^{tb}E[e^{taX}] = e^{tb}m_{X}(at) \\ m_{Y_{1}+Y_{2}}(t) &= E[e^{t(Y_{1}+Y_{2})}] = E[e^{tY_{1}}e^{tY_{2}}] \underbrace{=}_{\text{indep.}} E[e^{tY_{1}}]E[e^{tY_{2}}] \\ &= m_{Y_{1}}(t)m_{Y_{2}}(t) \end{split}$$

Exponential and Gamma

Example 1: Suppose X is a Gamma RV with parameters α and β . What is Y = aX?

Answer: $m_Y(t) = m_{aX}(t) = E[e^{taX}] = m_X(at) = (1 - a\beta t)^{-\alpha}$ so Y = aX is gamma with parameters α and $a\beta$

Example 2: Suppose Y_1 and Y_2 are independent and Gamma random variable with parameters α_1 and β and α_2 and β respectively. What is $Y_1 + Y_2$?

Answer:

 $m_{Y_1+Y_2}(t) = m_{Y_1}(t)m_{Y_2} = (1-\beta t)^{-\alpha_1}(1-\beta t)^{-\alpha_2} = (1-\beta t)^{-(\alpha_1+\alpha_2)}$ so $Y_1 + Y_2$ is Gamma with parameters $\alpha_1 + \alpha_2$.

Example 3: Suppose Y_1, Y_2, \dots, Y_n are independent exponential random variable with parameters β . Then the sample average $\frac{Y_1 + \dots + Y_n}{n}$ is a Gamma random variable with parameters n and $\frac{\beta}{n}$. (Combine example 1 and example 2). Mean is $n\frac{\beta}{n} = \beta$ and variance is $n\left(\frac{\beta}{n}\right)^2 = \frac{\beta^2}{n}$

Normal random variables

We proved earlier than the MGF of a normal RV with mean μ and variance σ^2 is $m(t) = e^{\mu t + \frac{\sigma^2}{2}t^2}$.

Example 1: If Y_1 and Y_2 are independent and are normal with mean μ_1 and μ_2 and variance σ_1 and σ_2 then

$$Z = a_1 Y_1 + a_2 Y_2 \text{ is normal with} \begin{cases} \text{mean } a_1 \mu_1 + a_2 \mu_2 \\ \text{variance } a_1^2 \sigma_1^2 + a_2^2 \sigma_2^2 \end{cases}$$

Indeed we have

$$m_{a_1Y_1+a_2Y_2}(t) = m_{a_1Y_1}(t)m_{a_2Y_2}(t) = m_{Y_1}(a_1t)m_{Y_2}(a_2t)$$

$$= e^{a_1\mu_1t + \frac{\sigma_1^2}{2}a_1^2t^2}e^{a_2\mu_2t + \frac{\sigma_2^2}{2}a_2^2t^2}$$

$$= e^{(a_1\mu_1+a_2\mu_2)t + \frac{a_1^2\sigma_1^2+a_2^2\sigma_2^2}{2}t^2}$$

Sum of binomial RV or Poisson RV

- p = probability of success in any trial.
- X_1 = number of success in n_1 independent trials.
- X_2 = number of success in n_2 independent trials.

If X_1 and X_2 are independent then $X_1 + X_2$ is the number of success in $n_1 + n_2$ independent trials and so should be binomial

$$\begin{split} m_{X_1+X_2}(t) &= m_{X_1}(t)m_{X_2}(t) \\ &= ((1-p)+pe^t)^{n_1} ((1-p)+pe^t)^{n_2} \\ &= ((1-p)+pe^t)^{n_1+n_2} \end{split}$$

 $X_1 + X_2$ is binomial with parameters $n_1 + n_2$ and p

Remark: This works in the same way for sum of independent Poisson RV.

Normal random variables and χ^2 again

Suppose Z_1, Z_2, \cdots, Z_n are independent standard normal then

$$Y = Z_1^2 + Z_2^2 + \dots + Z_n^2$$

is a sum of n independent gamma RV with parameters $\alpha=\frac{1}{2}$ and $\beta=2$ and thus

$$Y = Z_1^2 + Z_2^2 + \dots + Z_n^2$$
 is gamma with $\alpha = \frac{n}{2}$ and $\beta = 2$

This is also called a χ^2 RV with *n* degrees of freedom.