STAT 315: Continuous Random Variables

Luc Rey-Bellet

University of Massachusetts Amherst

luc@math.umass.edu

March 8, 2025

Continuous Random Variables

- Discrete random variables can take a discrete set of possible values like $1, 2, 3, \dots, 20$ or all integers from $-\infty$ to ∞ and so on....
- Continuous random variables takes a continuous set of possible values like the interval [0, 1] or all positive numbers [0,∞), and so on...

The pdf of a continuous RV

The probability distribution function of a continuous random variable Y is a function f(y) defined for $y \in (-\infty, \infty)$ such that

•
$$f(y) \ge 0$$

• $\int_{-\infty}^{\infty} f(y) dy = 1$

We compute probabilities by the rule

$$P(a \le Y \le b) = \int_a^b f(y) dy$$

Example

Figure: Left: the PDF of Y, area in blue is equal to 1. Right: Area in red is $P(.3 \le Y \le .8)$.

PDF and CDFs

The cumulative distribution function

If Y is a random variable the cumulative distribution function of a random variable Y is given by

 $F(x) = P(Y \le x)$

• Continuous random variables: $F(x) = \int_{-\infty}^{x} f(y) dy$

• Discrete random variables $F(x) = \sum_{y:y \le x} p(y)$

Computing probabilities with the CDF

$$P(a < Y \leq b) = F(b) - F(a)$$

Example

Figure: The CDF of a RV Y with density f(y) = 2y

$$F(x) = \begin{cases} 0 & x \le 0\\ x^2 & 0 \le x \le 1\\ 1 & x \ge 1 \end{cases} \quad P(.3 \le Y \le .8) = F(.8) - F(.3) = .64 - .09$$

Examples

- Suppose Y is discrete with P(0) = .2, P(1) = .4 and P(2) = .3, P(4) = .1. What is the CDF of Y? Draw a graph.
- Suppose f(x) = kx(1-x) $0 \le xl \le 1$ is the PDF of a continuous random variable.
 - What is the value of k?
 - Find $P(.2 \le Y \le .4)$
 - ▶ Find *P*(.2 < *Y* < .4)
 - Find $P(Y \le .4 | Y \ge .2)$
- Suppose $f(t) = 2e^{-2t}$ for $t \ge 0$ and f(t) = 0 otherwise.
 - Check that f(t) is a PDF from some random variable Y.
 - ▶ Compute P(1 ≤ Y ≤ 2).
 - Compute the CDF F(y) for Y.
 - Compute P(Y > 5|Y > 3)

Properties of the CDF

Properties of F(y)

The CDF F(y) has the following property

- $F(y) \geq 0$
- *F*(*y*) is increasing
- $\lim_{y\to-\infty} F(y) = 0$ and $\lim_{y\to\infty} F(y) = 1$

PDF vs CDF for continuous random variable

By using the fundamental theorem of calculus for continuous RV we have

$$F(x) = \int_{-\infty}^{x} f(y) dy \quad \iff \quad F'(x) = f(x)$$

Median and percentiles for continuous random variables

Median and p^{th} quantile

The median of Y is the value m such that

 $F(m) = P(Y \le m) = 1/2$

The p^{th} quantile of Y is value ϕ_p such that

 $F(\phi_p) = P(Y \le \phi_p) = p$

That is we can compute quantiles by inverting the CDF and computing the inverse function F^{-1}

Example: The median and 90 percentile for PDF and CDF

Example: Pareto (power-law) distributions

The Pareto principle (the 80-20 rule) tells us that "20% of the population controls 80% of the total wealth. A reasonable model for this is the following PDF/CDF

$${f F}(t)=\left\{egin{array}{ccc} 1-rac{1}{t^lpha} &t\geq 1\ 0 &else \end{array}
ight. f(t)={f F}'(t)=\left\{egin{array}{ccc} rac{lpha}{t^{lpha+1}} &t\geq 1\ 0 &else \end{array}
ight.$$

For example take $\alpha=1.2=\frac{6}{5}$ then we have

top10%
$$P(Y > t) = \frac{1}{t^{\frac{6}{5}}} = \frac{1}{10}$$
 $t_{.9} = 10^{\frac{5}{6}} = 6....$
top1% $P(Y > t) = \frac{1}{t^{\frac{6}{5}}} = \frac{1}{100}$ $t_{.99} = 100^{\frac{5}{6}} = 46....$
top0.1% $P(Y > t) = \frac{1}{t^{\frac{6}{5}}} = \frac{1}{1000}$ $t_{.999} = 1000^{\frac{5}{6}} = 316....$
top0.01% $P(Y > t) = \frac{1}{t^{\frac{6}{5}}} = \frac{1}{10000}$ $t_{.9999} = 10000^{\frac{5}{6}} = 2154....$

Expected values of continuous RV

Expected value of continuous RV

For a continuous RV Y with pdf f(y) the expected value of Y is

$$E[Y] = \int_{-\infty}^{\infty} yf(y) \, dy$$

For a function g(Y) of the RV Y we have

$$E[g(Y)] = \int_{-\infty}^{\infty} g(y)f(y) \, dy$$

Expected values of continuous RV, cont'd

Properties of expected value

Properties

$$E[cg(Y)] = cE[g(Y)]$$

$$E[g_1(Y) + g_2(Y)] = E[g_1(Y)] + E[g_2(Y)]$$

The variance

The variance of a continuous random variable Y with pdf f(y) is given by

$$\begin{split} \mathcal{I}[Y] &= E\left[(Y - E[Y])^2\right] \\ &= E[Y^2] - E[Y]^2 \\ &= \int_{-\infty}^{\infty} y^2 f(y) dy - \left(\int_{-\infty}^{\infty} y f(y) dy\right)^2 \end{split}$$

Example

• Suppose Y has the CDF

$$F(y) = \begin{cases} 0 & y \leq 0\\ \frac{1}{2}y^3 + \frac{1}{2}y^2 & 0 \leq y \leq 1\\ 1 & y \geq 1 \end{cases}$$

Compute the mean and the variance of Y.

• Suppose the random variable Y has pdf

$$f(y) = \left\{ egin{array}{cc} y & 0 \leq y \leq 1 \ 2-y & 1 \leq y \leq 2 \ 0 & ext{else} \end{array}
ight.$$

Find F(y).

• Compute mean and variance E[Y] and V(Y).