STAT 315: Mean, variance, and covariance for discrete joint RV

Luc Rey-Bellet

University of Massachusetts Amherst

luc@math.umass.edu

March 6, 2025

Expected value of function of joint random variables

If Y_1, Y_2 are joint RV and $g : \mathbb{R}^2 \to \mathbb{R}$ is a function then we can compute the expected value of $g(Y_1, Y_2)$

Expected value

For joint random variables Y_1 and Y_2 and a function $g(Y_1, Y_2)$ we have

$$E[g(Y_1, Y_2)] = \sum_{y_1, y_2} g(y_1, y_2) p(y_1, y_2)$$
 discrete RV

Linearity of expected value

Linearity

• For any constant c

E[c]=c

• For any function $g(Y_1, Y_2)$ and any constant c

 $E[cg(Y_1, Y_2)] = cE[g(Y_1, Y_2)]$

• For any functions $g(Y_1, Y_2)$ and $h(Y_1, Y_2)$

 $E[g(Y_1, Y_2) + h(Y_1, Y_2)] = E[g(Y_1, Y_2)] + E[h(Y_1, Y_2)]$

Same proof as for f(Y)!

Independence and products

Independence and products

If Y_1 and Y_2 are independent then for any functions $g(Y_1)$ and $h(Y_2)$

 $E[g(Y_1)h(Y_2)] = E[g(Y_1)]E[h(Y_2)]$

For example independence implies that have

 $E[Y_1Y_2] = E[Y_1]E[Y_2]$

Proof: Independence means $p(y_1, y_2) = p(y_1)p(y_2)$ and so

$$E[g(Y_1)h(Y_2)] = \sum_{y_1, y_2} g(y_1)h(y_2)p(y_1)p(y_2)$$

= $\sum_{y_1} g(y_1)p(y_1)\sum_{y_2} h(y_2)p(y_2)$
= $E[g(Y_1)]E[h(Y_2)]$

Covariance

Covariance of Y_1 and Y_2

If Y_1 and Y_2 are random variables with means $\mu_1 = E[Y_1]$ and $\mu_2 = E[Y_2]$ then the covariance of Y_1 and Y_2 is

$$Cov(Y_1, Y_2) = E[(Y_1 - \mu_1)(Y_2 - \mu_2)]$$

and the correlation coefficient ρ is

$$\rho = \rho(Y_1, Y_2) = \frac{\operatorname{Cov}(Y_1, Y_2)}{\sigma_1 \sigma_2}$$

We say that Y_1 and Y_2 are

- positively correlated if Cov(Y₁, Y₂) > 0
- negatively correlated if $Cov(Y_1, Y_2) < 0$
- uncorrelated if $Cov(Y_1, Y_2) = 0$

Properties of covariance

We have the formula

 $Cov(Y_1, Y_2) = E[Y_1Y_2] - E[Y_1]E[Y_2]$

2 $Cov(Y_1, Y_1) = V(Y_1)$ and so $\rho(Y_1, Y_1) = 1$

We have Cauchy-Schwartz inequality

 $|E[Z_1Z_2]| \le \sqrt{E[Z_1^2]E[Z_2^2]}$

and as a consequence the correlation coefficient satisfies

 $-1 \leq \rho \leq 1$

If Y₁ and Y₂ are independent then Cov(Y₁, Y₂) = 0 and so Y₁ and Y₂ are uncorrelated.
But the converse is not always true

Luc Rey-Bellet (UMass Amherst)

STAT 315

Example of correlation coefficients

Correlation capture the linear dependence between RV (but not non-linear dependences) (third row) The correlation reflects the noisiness and direction of a linear relationship

(top row), but not the slope of that relationship (second row) Image taken from Wikipedia

Linear combinations of random variables

For random variables Y_1 , Y_2 and Z_1 , Z_2 and constants a_1 , a_2 and b_1 , b_2 .

• Expected Value

 $E[a_1Y_1 + a_2Y_2] = a_1E[Y_1] + a_2E[Y_2]$

• Variance

 $V(a_1Y_1 + a_2Y_2) = a_1^2V(Y_1) + a_2^2V(Y_2) + 2a_1a_2\text{Cov}(Y_1, Y_2)$

• Covariance

 $Cov(a_1Y_1 + a_2Y_2, b_1Z_1 + b_2Z_2) = a_1b_1Cov(Y_1, Z_1) + a_1b_2Cov(Y_1, Z_2) + a_2b_1Cov(Y_2, Z_1) + a_2b_2Cov(Y_2, Z_2)$

Mean and Variance of sample averages

Empirical or sample average

Suppose Y_1, Y_2, \dots, Y_n are independent random variables with

$$E[Y_i] = \mu \qquad V(Y_1) = \sigma^2$$

Then

$$\mathsf{E}\left[\frac{Y_1+Y_2+\cdots Y_n}{n}\right]=\mu$$

and

$$V\left(\frac{Y_1+Y_2+\cdots Y_n}{n}\right)=\frac{\sigma^2}{n}$$

Very important!!