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We continue the study of the free energy of quantum lattice spin systems where to the
local Hamiltonian H an arbitrary mean field term is added, a polynomial function of the
arithmetic mean of some local observables X and Y that do not necessarily commute.
By slightly extending a recent paper by Hiai, Mosonyi, Ohno and Petz [10], we prove
in general that the free energy is given by a variational principle over the range of
the operators X and Y . As in [10], the result is a non-commutative extension of the
Laplace–Varadhan asymptotic formula.
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1. Introduction

1.1. Large deviations

One of the highlights in the combination of analysis and probability theory is the
asymptotic evaluation of certain integrals. We have here in mind integrals of the
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form, for some real-valued function G,
∫

dµn(x) exp{vnG(x)}, vn ↗+∞ as n↗+∞ (1.1)

for which the measures µn satisfy a law of large numbers. Such integrals can be
evaluated depending on the asymptotics of the µn. The latter is the subject of
the theory of large deviations, characterizing the rate of convergence in the law of
large numbers. In a typical scenario, the µn are the probabilities of some macro-
scopic variable, such as the average magnetization or the particle density in ever
growing volumes vn and as distributed in a given equilibrium Gibbs ensemble.
Then, depending on the case, thermodynamic potentials J make the rate function
dµn(x) ∼ dx exp{−vnJ (x)} in the sense of large deviations for Gibbs measures,
see [8, 9, 16, 22, 23]. That theory of large deviations is however broader than the
applications in equilibrium statistical mechanics. Essentially, when the rate function
for µn is given by J , then the integral (1.1) is computed as

1
vn

log
∫

dµn(x) exp{vnG(x)}−−−−−→
n↗+∞

sup
x
{G(x) − J (x)}. (1.2)

This is a typical application of Laplace’s asymptotic formula for the evaluation of
real-valued integrals. The systematic combination with the theory of large devia-
tions gives the so called Laplace–Varadhan integral lemma.

We first recall the large deviation principle (LDP). Let (M, d) be some complete
separable metric space.

Definition 1.1. The sequence of measures µn on M satisfies a LDP with rate
function J : M → R+ ∪ {+∞} and speed vn ∈ R+ if

(1) J is convex and has closed level sets, i.e.

{J−1(x), x ≤ c} (1.3)

is closed in (M, d) for all c ∈ R+;
(2) for all Borel sets U ⊂ M with interior intU and closure clU , one has

lim inf
n↗+∞

1
vn

log µn(U) ≥ − inf
u∈intU

J (u),

lim sup
n↗+∞

1
vn

log µn(U) ≤ − inf
u∈clU

J (u).

We say that the rate function J is good whenever the level sets (1.3) are compact.

For the transfer of LDP, one considers a pair (µn, νn), n↗∞ of sequences of
absolutely continuous measures on (M, d) such that

dνn

dµn
(x) = exp{vn G(x)}, µn-almost everywhere,
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for some measurable mapping G : M → R. We now state an instance of the Laplace–
Varadhan lemma.

Lemma 1.1 (Laplace–Varadhan Integral Lemma). Assume that G is bounded
and continuous and that the sequence (µn) satisfies a large deviation principle with
good rate function J and speed vn. Then (νn) satisfies a large deviation principle
with good rate function G − J and speed vn.

For more general versions and proofs we refer to the literature, see e.g. [5–7, 22,
23]; it remains an important subject of analytic probability theory to extend the
validity of the variational formulation (1.2) and to deal with its applications.

1.2. Mean-field interactions

From the point of view of equilibrium statistical mechanics, one can also think of
the formula (1.1) as giving (the exponential of) the pressure or free energy when
adding a mean field type term to a Hamiltonian which is a sum of local interactions.

The choice of the function G is then typically monomial with a power decided
by the number of particles or spins that are in direct interaction. For example, the
free energy of an Ising-like model with such an extra mean field interaction would
be given by the limit

lim
Λ↗Zd

1
|Λ| log

∑

η∈{+,−}Λ

exp

(
−βHΛ(η) + λp|Λ|

(
1
|Λ|

∑

i∈Λ
ηi

)p)
(1.4)

for p = 1, 2, . . . , where HΛ(η) is the (local) energy of the spin configuration η and
the limit takes a sequence of regularly expanding boxes Λ to cover some given lat-
tice. The case p = 1 corresponds to the addition of a magnetic field λ1; p = 2 is
most standard and adds effectively a very small but long range two-spin interac-
tion. Higher p-values are also not uncommon in the study of Ising interactions on
hypergraphs, and even very large p has been found relevant, e.g., in models of spin
glasses and in information theory [4].

The form (1.1) is easily recognized in (1.4), with

µn(x) ∼
∑

η∈{+,−}Λ,
P

i∈Λ ηi=x|Λ|

exp{−βHΛ(η)}, vn = |Λ|,

and the function G(x) = λpxp. The Laplace–Varadhan lemma applies to (1.4) since
we know that the sequence of Gibbs states with density ∼ exp{−βHΛ( · )} satisfies
a LDP with a good rate function Jcl and speed |Λ|. The result reads that (1.4) is
given by the variational formula

sup
u∈[−1,1]

{λpu
p − Jcl(u)}. (1.5)

In non-commutative versions the local Hamiltonian H and the additional mean
field term are allowed not to commute with each other. That is natural within the
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statistical mechanics of quantum spin systems and this is also the context of the
present paper.

1.3. Non-commutative extensions

Although it has proven very useful to think of integrals (1.1) within the framework
of probability and large deviation theory, it is fundamentally a problem of analysis.
However, without such a probabilistic context, the question of a non-commutative
extension of the Laplace–Varadhan Lemma 1.1 becomes ambiguous and it in fact
allows for different formulations, each possibly having a physical interpretation on
its own.

One approach is to ask for the asymptotic evaluation of the expectations

lim
Λ↗Zd

1
|Λ| logωΛ(e|Λ| G(X̄Λ)) (1.6)

under a family of quantum states ωΛ where X̄Λ would now be the arithmetic mean
of some quantum observable in volume Λ. To be specific, one can take ωΛ a quantum
Gibbs state for a Hamiltonian HΛ at inverse temperature β, with density matrix
σΛ ∼ exp{−βHΛ}, and X̄Λ = (

∑
i∈Λ Xi)/|Λ| the mean magnetization in some fixed

direction. Arguably, this formulation is closely related to the asymptotic statistics
of outcomes in von Neumann measurements of X̄Λ. Indeed, let νΛ be the measure
on [−‖X‖, ‖X‖] defined by

νΛ(f) := ωΛ(f(X̄Λ)) for f ∈ C([−‖X‖, ‖X‖]). (1.7)

Then, (1.6) can be evaluated with the help of Lemma 1.1 (the commutative Laplace–
Varadhan integral lemma) if the family νΛ satisfies a LDP with speed |Λ|. In recent
years, this LDP has been established for σΛ ∼ exp{−βHΛ} in the regime of small
β (high temperature) or d = 1, see [11, 13–15].

A more general class of possible extensions is obtained by considering the
limits of

1
|Λ| log TrΛ(σ

1
K
Λ e

|Λ|
K G(X̄Λ))K , Λ↗Zd (1.8)

for different K > 0, where σΛ is the density matrix of a quantum state in box Λ.
For the canonical form σΛ = exp(−βHΛ)/Zβ

Λ with local Hamiltonian HΛ at inverse
temperature β, (1.8) becomes

1
|Λ| log

1
Zβ
Λ

TrΛ(e−
β
K HΛ e

|Λ|
K G(X̄Λ))K , Λ↗Zd. (1.9)

There is no a priori reason to exclude any particular value of K from consideration.
Two standard options are: K = 1, which corresponds to the expression (1.6) above,
and K ↗+∞, which, by the Trotter product formula, boils down to

1
|Λ| log

1
Zβ
Λ

TrΛ(e−βHΛ+|Λ|G(X̄Λ)), Λ↗Zd (1.10)
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which is the free energy of a corresponding quantum spin model, cf. (1.4). In the
present paper, we study the case K ↗+∞ (without touching the question of inter-
changeability of both limits).

One of our results, Theorem 3.1 with Y = ȲΛ = 0, is of the form

lim
Λ↗Zd

1
|Λ| log TrΛ(e−βHΛ+|Λ|G(X̄Λ)) = sup

−‖X‖≤u≤‖X‖
{G(u) − J (u)}. (1.11)

Note that we omitted the normalization factor 1/Zβ
Λ since it merely adds a constant

(independent of G) to (1.10). In the usual context of the theory of large deviations,
formula (1.11) arises as a change of rate function. However, while our result (1.11)
very much looks like Varadhan’s formula in Lemma 1.1, there is a big difference in
interpretation: The function J is not as such the rate function of large deviations
for X̄Λ. Instead, it is given as the Legendre transform

J (u) = sup
t∈R

{tu − q(t)}, u ∈ R (1.12)

of a function q( · ) which is the pressure corresponding to a linearized interaction, i.e.

q(t) = lim
Λ↗Zd

1
|Λ| log TrΛ(e−βHΛ+t|Λ|X̄Λ)). (1.13)

1.4. Several non-commuting observables: Towards joint
large deviations?

In the previous Sec. 1.3, we made the tacit assumption that there is a single observ-
able X̄Λ corresponding to some Hermitian operator on Hilbert space. However, in
formula (1.4), the observable 1

|Λ|
∑

i∈Λ ηi could equally well represent a vector-
valued magnetization which, upon quantization, would correspond to several non-
commuting observables X̄Λ, ȲΛ, say, the magnetization along the x-axis and y-axis,
respectively. In the commutative theory, this case does not require special attention;
the framework of large deviations applies equally regardless of whether the observ-
able takes values in R or R2. Obviously, this is not true in the non-commutative
setting and in fact, we do not even know a natural analogue of the generating func-
tion (1.6), since we do not dispose of a simultaneous Von Neumann measurement
of X̄Λ and ȲΛ. One can take the point of view that this is inevitable in quantum
mechanics, and insisting is pointless. Yet, as Λ↗Zd, the commutator

[X̄Λ, ȲΛ] = O

(
1
|Λ|

)
(1.14)

vanishes and hence the joint measurability of X̄Λ, ȲΛ is restored on the macroscopic
scale. We refer the reader to [19] where this issue is discussed and studied in more
depth.

The advantage of the approach via the Laplace–Varadhan Lemma is that one
can set aside these conceptual questions and study joint large deviations of X̄Λ and
ȲΛ by choosing G to be a joint function of X̄Λ and ȲΛ, for example a symmetrized
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monomial

G(X̄Λ, ȲΛ) = (X̄Λ)k(ȲΛ)l + (ȲΛ)l(X̄Λ)k, for some k, l ∈ N, (1.15)

and check whether the formula (1.11) remains valid with some obvious adjustments.
This turns out to be the case and it is our main result: Theorem 3.1.

1.5. Comparison with previous results

The asymptotics of the expression (1.10) was first studied and the result (1.11) was
first obtained by Petz et al. [17], in the case where the Hamiltonian HΛ is made
solely from a one-body interaction. The corresponding equilibrium state is then a
product state. In [10], Hiai et al. generalized this result to the case of locally interact-
ing spins but the lattice dimension was restricted to d = 1. However, the authors
of [10] argue that the restriction to d = 1 can be lifted in the high-temperature
regime. The main reason is that their work relies heavily on an asymptotic decou-
pling condition which is proven in that regime, [1]. One should observe here that
this asymptotic decoupling condition in fact implies a large deviation principle for
X̄Λ, as follows from the work of Pfister [18]. Hence, in the language of Sec. 1.3, [10]
evaluates (1.10) (the case K = ∞) in those regimes where (1.6) (the case K = 1)
can be evaluated as well.

The present paper elaborates on the result of [10] in two ways. First, we remark
that, in our setup, the decoupling condition is actually not necessary for (1.11)
to hold, and therefore one can do away with the restriction to d = 1 or high
temperature. Hence, again referring to Sec. 1.3, the case K = ∞ can be controlled
even when we know little about the case K = 1. To drop the decoupling condition,
it is absolutely essential that we start from finite-volume Gibbs states, and not from
finite-volume restrictions of infinite-volume Gibbs states, as it is done in [10].

Second, we show that by the same formalism, one can treat the case of sev-
eral noncommuting observables, as explained in Sec. 1.4. The most serious step in
this generalization is actually an extension of the result of [17] to noncommuting
observables. This extension is stated in Lemma 6.1 and proven in Sec. 7.

Note. While we were finishing this paper, we learnt of a similar project by J.-B. Bru
and W. de Siqueira Pedra. Their result [3] is nothing less than a full-fledged theory
of equilibrium states with mean-field terms in the Hamiltonian, describing not only
the mean-field free energy (as we do here), but also the states themselves. Also,
their results hold for fermions, while ours are restricted to spin systems, and they
provide interesting examples. Yet, the focus of our paper differs from theirs and our
main result is not contained in their paper.

1.6. Outline

In Sec. 2, we sketch the setup. We introduce spin systems on the lattice, non-
commutative polynomials and ergodic states. Section 3 describes the result of the
paper. The remaining Secs. 4–7 contain the proofs.
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2. Setup

2.1. Hamiltonian and observables

We consider a quantum spin system on the regular lattice Zd, d = 1, 2, . . . . We
briefly introduce the essential setup below, and we refer to [12, 20] for more
expanded, standard introductions.

The single site Hilbert space H is finite-dimensional (isomorphic to Cn) and for
any finite volume Λ ⊂ Zd, we set HΛ = ⊗ΛH. The C∗-algebra of bounded operators
on HΛ is denoted by BΛ ≡ B(HΛ). The standard embedding BΛ ⊂ BΛ′ for Λ ⊂ Λ′

is assumed throughout. The quasi-local algebra U is defined as the norm closure of
the finite-volume algebras

U :=
⋃

Λfinite

BΛ. (2.1)

Denote by τi, i ∈ Zd, the translation which shifts all observables over a lattice
vector i, i.e. τi is a homomorphism from BΛ onto Bi+Λ.

We introduce an interaction potential Φ, that is a collection (ΦA) of Hermitian
elements of BA, labeled by finite subsets A ⊂ Zd. We assume translation invariance
(i) and a finite range (ii):

(i) τi(ΦA) = Φi+A for all finite A ⊂ Zd;
(ii) there is a dmax < ∞ such that, if diam(A) > dmax, then ΦA = 0.

In estimates, we will frequently use the number

r(Φ) :=
∑

A)0

‖ΦA‖ < ∞. (2.2)

The local Hamiltonian in a finite volume Λ is

HΛ ≡ HΦ
Λ =

∑

A⊂Λ

ΦA (2.3)

which corresponds to free or open boundary conditions. Boundary conditions will
however turn out to be irrelevant for our results. We will drop the superscript Φ
since we will keep the interaction potential fixed.

Let X, Y, . . . denote local observables on the lattice, located at the origin, i.e.
SuppX (which is defined as the smallest set A such that X ∈ BA) is a finite set
which includes 0 ∈ Zd.

We write

XΛ :=
∑

j∈Zd,Supp τjX⊂Λ

τjX (2.4)

and

X̄Λ :=
1
|Λ|XΛ (2.5)

for the corresponding intensive observable (the “empirical average” of X).
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All of these operators are naturally embedded into the quasi-local algebra U. At
some point, we will also require the intensive infinite volume observable

X̄ ∼ X̄Λ↗∞.

Some care is required in dealing with X̄ since it does not belong to the quasi-local
algebra U. We will further comment on this in Sec. 2.3.

2.2. Non-commutative polynomials

We will perturb the Hamiltonian HΦ
Λ by a mean field term of the form |Λ|G(X̄Λ, ȲΛ)

where G is a “non-commutative polynomial” of the operators X̄Λ, ȲΛ, e.g., as
in (1.15).

In this section, we introduce these non-commutative polynomials G as quanti-
zations of polynomial functions g. First, we define

Ran(X, Y ) := [−‖X‖, ‖X‖]× [−‖Y ‖, ‖Y ‖]. (2.6)

This definition is motivated by the fact that (“sp” stands for spectrum)

sp X̄Λ × sp ȲΛ ⊂ Ran(X, Y ), for all Λ. (2.7)

Let g be a real polynomial function on the rectangular set Ran(X, Y ). Using
the symbol I for the collection of all finite sequences from the binary set {1, 2},
any map G̃ : I → C is called a quantization of g whenever

N∑

n=0

∑

α=(α(1),...,α(n))∈I

G̃(α)xα(1) · · ·xα(n) = g(x1, x2) (2.8)

for all (x1, x2) ∈ Ran(X, Y ) and for some N ∈ N. A quantization G̃ is called
symmetric whenever

G̃(α(1), . . . , α(n)) = G̃(α(n), . . . , α(1)). (2.9)

Any such symmetric quantization G̃ defines a self-adjoint operator

G(X, Y ) =
N∑

n=0

∑

α=(α(1),...,α(n))∈I

G̃(α)Xα(1) · · ·Xα(n) (2.10)

taking X1 ≡ X and X2 ≡ Y .
In the thermodynamic limit, one expects different quantizations of g to be

equivalent:

Lemma 2.1. Let G̃ and G̃′ be any two quantizations of g : Ran(X, Y ) → R. Then

‖G(X̄Λ, ȲΛ) − G′(X̄Λ, ȲΛ)‖ ≤ Cg(X, Y )
|Λ| (2.11)

for some Cg(X, Y ) < ∞, and for all finite volumes Λ.
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Proof. This is a simple consequence of the fact that the commutator of macro-
scopic observables vanishes in the thermodynamic limit, more precisely,

‖[X̄Λ, ȲΛ]‖ ≤ 1
|Λ| ‖X‖|SuppX | × ‖Y ‖|SuppY |. (2.12)

Indeed, our results, Theorems 3.1 and 3.2, do not depend on the choice of
quantization. This can also be checked a priori using the above lemma and the
log-trace inequality in (3.11).

2.3. Infinite-volume states

A state ωΛ is a positive linear functional on BΛ, normalized by ‖ωΛ‖ = ωΛ(1) = 1.
An example is the tracial state, ωΛ( · ) ∼ TrΛ( · ). In general we consider states ωΛ
as characterized by their density matrix σΛ, ωΛ( · ) = TrΛ(σΛ ·).

An infinite volume state ω is a positive normalized function on the C∗-algebra
U (the quasi-local algebra). It is translation invariant when ω(A) = ω(τjA) for all
j ∈ Zd and A ∈ U. A translation-invariant state ω is ergodic whenever it is an
extremal point in the convex set of translation invariant states. A state is called
symmetric whenever it is invariant under a permutation of the lattice sites, that is,
for any sequence of one-site observables A1, . . . , An ∈ B{0} ⊂ U and i1, . . . , in ∈ Zd

ω(τi1 (A1)τi2 (A2) · · · τin(An)) = ω(τiπ(1)(A1)τiπ(2) (A2) · · · τiπ(n)(An)) (2.13)

for any permutation π of the set {1, . . . , n}. The set of ergodic/symmetric states
on U is denoted by Serg,Ssym, respectively.

At some point we will need the theorem by Størmer [21] that states that any
ω ∈ Ssym can be decomposed as

ω =
∫

prod.
dνω(φ)φ (2.14)

for some regular probability measure νω whose support consists of product states.
Of course, the set of product states can be identified with the (finite-dimensional)
set of states on the one-site algebra B{0} = B(H).

For a finite-volume state ωΛ on BΛ, we consider the entropy functional

S(ωΛ) ≡ SΛ(ωΛ) = −TrσΛ log σΛ. (2.15)

The mean entropy of a translation-invariant infinite-volume state ω is defined as

s(ω) := lim
Λ↗Zd

1
|Λ|S(ωΛ), with ωΛ := ω

∣∣
BΛ

(restriction to Λ). (2.16)

In this formula and in the rest of the paper, the limit limΛ↗Zd is meant in the
sense of Van Hove, see, e.g., [12, 20]. Standard properties of the functional s are its
affinity and upper semicontinuity (with respect to the weak∗-topology on states).
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In Sec. 2.1, we mentioned the observables at infinity’ X̄ and Ȳ , postponing
their definition to the present section. Expressions like ω(X̄ lȲ k) (for some positive
numbers l, k) can be defined as

ω(X̄ lȲ k) := lim
Λ,Λ′↗Zd

ω(X̄ l
ΛȲ k

Λ′), (2.17)

provided that the limit exists. We use the following standard result that can be
viewed as a non-commutative law of large numbers

Lemma 2.2. For ω ∈ Serg, the limit (2.17) exists and

ω(X̄ lȲ k) = [ω(X)]l[ω(Y )]k. (2.18)

Note that ω(X) = ω(X̄) and ω(Y ) = ω(Ȳ ) by translation invariance. An imme-
diate corollary is that for a non-commutative polynomial G which is a quantization
of g (see Sec. 2.2), and ω ∈ Serg:

ω(G(X̄, Ȳ )) = g(ω(X), ω(Y )). (2.19)

For the convenience of the reader, we sketch the proof of Lemma 2.2 in the
Appendix.

Finally, we note that Lemma 2.2 does not require the state ω to be trivial at
infinity. Triviality at infinity is a stronger notion which is not used in the present
paper. In particular, the state µ̄ constructed in Sec. 4 is ergodic, but not trivial at
infinity, since it fails to be ergodic with respect to a subgroup of lattice translations.

3. Result

Choose X, Y to be local operators and let HΦ
Λ be the Hamiltonian corresponding

to a finite-range, translation invariant interaction Φ, as in Sec. 2.1. Let G̃ be a sym-
metric quantization of a polynomial g on the rectangle Ran(X, Y ) and G( ·, · ) the
corresponding self-adjoint operator, as defined in Sec. 2.2. We define the “G-mean
field partition function”

ZG
Λ (Φ) := TrΛ(e−HΛ+|Λ|G(X̄Λ,ȲΛ)) (3.1)

with X̄Λ, ȲΛ empirical averages of X, Y . The following theorem is our main result:

Theorem 3.1. Define the pressure

p(u, v) = lim
Λ↗Zd

1
|Λ| log TrΛ e−HΦ

Λ+uXΛ+vYΛ (3.2)

and its Legendre transform

I(x, y) = sup
(u,v)∈R2

(ux + vy − p(u, v)). (3.3)

Then

lim
Λ↗Zd

1
|Λ| log ZG

Λ (Φ) = sup
(x,y)∈R2

(g(x, y) − I(x, y)) (3.4)
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where the limit Λ↗Zd is in the sense of Van Hove, as in (3.2). In particular, the
left-hand side of (3.4) does not depend on the particular form of quantization taken.

As discussed in Sec. 1, our result expresses the pressure of the mean field Hamil-
tonian through a variational principle. To derive this result, it is helpful to represent
this pressure first as a variational problem on a larger space, namely that of ergodic
states, as in Theorem 3.2. Theorem 3.1 follows then by parametrizing these states
by their values on X and Y .

We also need the “local energy operator” associated to the interaction Φ as

EΦ :=
∑

A)0

1
|A|ΦA. (3.5)

Theorem 3.2 (Mean-Field Variational Principle). Let s( · ) be the mean
entropy functional, as in Sec. 2.3. Then

lim
Λ↗Zd

1
|Λ| log ZG

Λ (Φ) = sup
ω∈Serg

(g(ω(X), ω(Y )) + s(ω) − ω(EΦ)). (3.6)

To understand how the first term on the right-hand side of (3.6) originates from
(3.1), we recall the equality (2.19) for ergodic states ω.

The proof of Theorem 3.2 is postponed to Secs. 5 and 6. Here we prove that
Theorem 3.1 is a rather immediate consequence of Theorem 3.2.

Proof of Theorem 3.1. We write the right-hand side of (3.6) in the form

sup
(x,y)∈R2

(g(x, y) − Ĩ(x, y)) (3.7)

where

Ĩ(x, y) = inf
ω∈Serg

ω(X)=x,ω(Y )=y

(−s(ω) + ω(EΦ)) (3.8)

is a convex function on R2, infinite on the complement of Ran(X, Y ). To establish
that Ĩ(x, y) is lower semi-continuous (l.s.c.), we proceed as in the proof of the
contraction principle in large deviation theory, see, e.g., [5]: The function ω 0→
(−s(ω) + ω(EΦ)) is l.s.c. and the set {ω ∈ Serg, ω(X) = x, ω(Y ) = y} is compact
by the continuity of ω 0→ (ω(X), ω(Y )) (compactness and continuity with respect
to the weak∗-topology). Therefore, the infimum is attained and we can deduce that

{x, y | Ĩ(x, y) ≤ a} = F ({ω ∈ Serg|−s(ω) + ω(EΦ) ≤ a}) (3.9)

where F : ω 0→ (ω(X), ω(Y )). The level set on the left-hand side is closed and hence
Ĩ is l.s.c.
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By using the infinite-volume Gibbs variational principle [12, 20], the Legendre–
Fenchel transform of Ĩ reads

sup
(x,y)∈R2

(ux + vy − Ĩ(x, y)) = sup
ω∈Serg

(s(ω) − ω(EΦ) + uω(X) + v ω(Y ))

= p(u, v). (3.10)

The equality I = Ĩ then follows by the involution property of the Legendre–Fenchel
transform on the set of convex lower-semicontinuous functions, see, e.g., [20].

Independence of boundary conditions. Observe that both Theorems 3.1
and 3.2 have been formulated for the finite volume Gibbs states with open bound-
ary conditions. It is however easy to check that this choice is not essential and
other equivalent formulations can be obtained. Indeed, by the standard log-trace
inequality,

| log TrΛ(e−βHΛ+WΛ+|Λ|G(X̄Λ,ȲΛ)) − log TrΛ(e−βHΛ+|Λ| G(X̄Λ,ȲΛ))| ≤ ‖WΛ‖
(3.11)

and hence if one chooses WΛ such that limΛ↗Zd ‖WΛ‖/|Λ| = 0, then we can replace
−βHΛ by −βHΛ + WΛ in Theorems 3.1 and 3.2.

Finite-range restrictions. It is obvious that our paper contains some restrictions
that are not essential. In particular, by standard estimates (in particular, those used
to prove the existence of the pressure, see, e.g., [20]) one can relax the finite-range
conditions on the interaction Φ to the condition that

∑

A)0

‖ΦA‖
|A| < ∞, (3.12)

and similarly for the local observables X, Y . Moreover, it is not necessary that G
is a non-commutative polynomial. Starting from (3.11), one checks that it suffices
that G can be approximated in operator norm by non-commutative polynomials.

4. Approximation by Ergodic States

In this section, we describe a construction that is the main ingredient of our proofs,
as well as of those in [10, 17]. This construction will be used in Secs. 6 and 7.

Let V be a hypercube centered at the origin, i.e. V = [−L, L]d for some L > 1
and let

∂V := {i ∈ V
∣∣ ∃i′ ∈ Zd\V such that i, i′ are nearest neighbors} (4.1)

We write

Zd/V = ((2L + 1)Z)d (4.2)

to denote the “block lattice” whose points can be thought of as translates of V . In
other words, Zd = ∪i∈Zd/V V + i. Consider a state µV on BV .



August 10, 2010 15:1 WSPC/S0129-055X 148-RMP
J070-S0129055X10004089

Note on Non-Commutative Laplace–Varadhan Integral Lemma 851

We aim to build an infinite-volume ergodic state out of µV . First, we define the
block product state

µ̃ :=
⊗

Zd/V

µV . (4.3)

We define also the translation-average of µ̃,

µ̄ :=
1
|V |

∑

j∈V

µ̃ ◦ τj . (4.4)

We can now check the following properties:

• We have the exact equality of entropies

s(µ̄) = s(µ̃) =
1
|V |S(µV ). (4.5)

This follows from the affinity of the entropy in infinite-volume. A remark is in
order: A priori, the infinite-volume entropy is defined for translation-invariant
states, whereas µ̃ is only periodic. However, one easily sees that the entropy can
still be defined, e.g. be viewing µ̃ as a translation-invariant state on the block
lattice Zd/V , and correcting the definition by dividing by |V |.

• The state µ̄ is ergodic. This follows, for example, from an explicit calculation that
is presented in [10]. Note however that µ̄ is in general not ergodic with respect
to the translations over the sublattice Zd/V = ((2L + 1)Z)d. This phenomenon
(though in a slightly different setting) is commented upon in [20] (the end of
Sec. III.5).

• The state µ̄ is a good approximation of µV for observables which are empirical
averages, provided V is large. Consider the local observable X as in Sec. 2.1.
A translate τjX can lie inside a translate of V , i.e. Supp τjX ⊂ V + i for some
i ∈ Zd/V , or it can lie on the boundary between two translates of V . The difference
between µ̄(X) = µ̄(X̄) and µV (X̄V ) clearly stems from those translates where X
lies on a boundary, and the fraction of such translates is bounded by

|SuppX | × |∂V |
|V | . (4.6)

Hence

|µ̄(X̄) − µV (X̄V )| ≤ ‖X‖|SuppX | × |∂V |
|V | . (4.7)

5. The Lower Bound

In this section, we prove the following lower bound.

Lemma 5.1. Recall ZG
Λ (Φ) as defined in (3.1). Then

lim inf
Λ↗Zd

1
|Λ| log ZG

Λ (Φ) ≥ sup
ω∈Serg

((g(ω(X), ω(Y )) + s(ω) − ω(EΦ)) (5.1)

where all symbols have the same meaning as in Sec. 3.
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Proof. Consider a state ω ∈ Serg. We show that

lim inf
Λ↗Zd

1
|Λ| log ZG

Λ (Φ) ≥ g(ω(X), ω(Y )) + s(ω) − ω(EΦ). (5.2)

Consider, for each volume Λ, the restriction ωΛ := ω
∣∣
BΛ

. By the finite-volume
variational principle (see, e.g., [2, Proposition 6.2.22]),

1
|Λ| log ZG

Λ (Φ) ≥ ωΛ(G(X̄Λ, ȲΛ)) +
1
|Λ|S(ωΛ) − 1

|Λ|ωΛ(HΛ). (5.3)

The following convergence properties apply with Λ↗Zd in the sense of Van Hove:

(1) ωΛ(G(X̄Λ, ȲΛ)) = ω(G(X̄Λ, ȲΛ)) → g(ω(X), ω(Y )), (5.4)

(2)
1
|Λ|S(ωΛ) → s(ω), (5.5)

(3)
1
|Λ|ω(HΛ) → ω(EΦ). (5.6)

The relation (5.6) is obvious from the finite range condition on Φ, see Sec. 2.1. The
convergence (5.5) is the definition of the mean entropy s. Finally, (5.4) follows from
the ergodicity of ω as explained in Sec. 2.3.

The relation (5.2) now follows immediately, since one can repeat the above
construction for any ergodic state ω.

6. The Upper Bound

6.1. Reduction to product states

In this section, we outline how to approximate
1
|Λ| log ZG

Λ (Φ) (6.1)

by a similar expression involving the partition function of a block-product state.
Fix a hypercube V = [−L, L]d and cover the lattice with its translates, as explained
in Sec. 4. From now on, Λ is chosen such that it is a multiple of V . One can easily
adopt the arguments such as to cover the case where Λ tends to infinity in the sense
of Van Hove (as one has to do as well in the proof of the existence of the pressure
for local interactions, see [12]).

Define the observables

HV
Λ ≡ HΦ,V

Λ , X̄V
Λ , Ȳ V

Λ (6.2)

by cutting all terms that connect any two translates of V , i.e.

X̄V
Λ :=

1
|Λ|

∑

j∈Λ
∃i∈Zd/V :Supp τjX⊂V +i

τjX, (6.3)

and analogously for HV
Λ and Ȳ V

Λ . One can say that these observables with super-
script V are one-block observables with the blocks being translates of V . One easily
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derives that

‖X̄V
Λ − X̄Λ‖ ≤ ‖X‖|SuppX | |∂V |

|V | , ‖HV
Λ − HΛ‖ ≤ r(Φ)|Λ| |∂V |

|V | (6.4)

with the number r(Φ) as defined in Sec. 2.1.
Using the log-trace inequality, we bound

1
|Λ| log TrΛ(e−HΛ+|Λ|G(X̄Λ,ȲΛ)) − 1

|Λ| log TrΛ(e−HV
Λ +|Λ|G(X̄V

Λ ,Ȳ V
Λ )) (6.5)

as follows

(6.5) ≤ 1
|Λ| ‖HΛ − HV

Λ ‖ + ‖G(X̄Λ, ȲΛ) − G(X̄V
Λ , Ȳ V

Λ )‖

≤ (r(Φ) + Cg(‖X‖|SuppX | + ‖Y ‖|SuppY |)) |∂V |
|V |

where Cg is constant depending on the function G. The second term of (6.5) is
clearly the pressure of a product state with mean field interaction. We will find an
upper bound for this pressure by slightly extending the treatment of Petz et al.
in [17]. We prove an “extended PRV”-lemma, Lemma 6.1 in the next section.

6.2. The extended Petz–Raggio–Verbeure upper bound

In this section, we outline the bound from above on the quantity
1
|Λ| log TrΛ(e−HV

Λ +|Λ|G(X̄V
Λ ,Ȳ V

Λ )) (6.6)

that appeared in (6.5).
To do this, let us make the setting slightly more abstract. Consider the lattice

Zd with the one-site Hilbert space G given by

G :=
⊗

V

H. (6.7)

In words, Zd should be thought of as the block lattice Zd/V . Let D, A, B be one-
site observable on the new lattice, i.e. D, A, B are Hermitian operators on G. The
extended PRV (Petz–Raggio–Verbeure) states that

Lemma 6.1 (Extended PRV). Let all symbols have the same meaning as in
Secs. 2.1–2.3, except that the one-site Hilbert space is changed from H to G. Then

lim sup
Λ↗Zd

1
|Λ| log TrΛ(e−DΛ+|Λ|G(ĀΛ,B̄Λ)) ≤ sup

ω∈Ssym

(ω(G(Ā, B̄)) + s(ω) − ω(D)).

(6.8)

In particular ω(G(Ā, B̄)) defined as (2.17) exists.

To appreciate the similarity between (6.8) and (3.6), one should realize that D
is a local energy operator, as EΨ in (3.6). The proof of this lemma in the case that
A = B is in the original paper [17]. The proof for the more general case is presented
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in Sec. 7. Of course, one can prove that the right-hand side of (6.8) is also a lower
bound: it suffices to copy Sec. 5.

By the Størmer theorem, see (2.14), each symmetric state ω on U can be written
as the barycenter of a regulary probability measure on the product states, and since
all terms on the right-hand side of (6.8) are affine and upper semicontiuous functions
of ω, it follows that the sup can be restricted to product states (see [17] for the fine
details of this argument). Since, moreover, all product states are ergodic, we can
replace ω(G(Ā, B̄)) by g(ω(A), ω(A)). Hence, Lemma 6.1 implies that

lim sup
Λ↗Zd

1
|Λ| log TrΛ(e−DΛ+|Λ|G(ĀΛ,B̄Λ)) ≤ sup

ω prod.
(g(ω(A), ω(B)) + s(ω) − ω(D)).

(6.9)

6.2.1. From the extended PRV to the upper bound

Next, we use (6.9) to formulate an upper bound on the quantity
1
|Λ| TrΛ(e−HV

Λ +|Λ|G(X̄V
Λ ,Ȳ V

Λ )) (6.10)

for Λ a multiple of V . This means that we have to recall that the lattice sites in
(6.9) are in fact blocks. We write Λ∗ := Λ/V and choose

D := HV

A := X̄V

B := ȲV .

Then, by the extended PRV,

(6.10) ≤ sup
ω prod. onB(Λ∗)

(
g(ω(A), ω(B)) +

1
|V |s

∗(ω) − 1
|V |ω(D)

)

= sup
ωV onBV

(
G(ωV (X̄V ), ωV (ȲV )) +

1
|V |S(ωV ) − 1

|V |ωV (HV )
)

where s∗ indicates that this is the entropy density on the block lattice Λ∗, hence
it should be divided by |V | to obtain the density on Λ. Now, let ω̃ be the infinite-
volume state obtained by taking a block-product over states ωV and let ω̄ be its
“translation-average”, as in Sec. 4. By the conclusions of Sec. 4, it follows that ω̄
is ergodic and s(ω̄) = S(ωV ). Also, we see that

|ωV (X̄V ) − ω̄(X)| ≤ ‖X‖|SuppX | |∂V |
|V |

1
|V | |ωV (HV ) − ω̄(EΦ)| ≤ r(Φ)

|∂V |
|V |

and analogously for ȲV . Consequently, we obtain

(6.10) ≤ sup
ω∈Serg

(g(ω(X), ω(Y )) + s(ω) − ω(EΦ)) + O

(
|∂V |
|V |

)
, V ↗Zd
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which proves the upper bound for Theorem 3.2, since the O( |∂V |
|V | )-term can be made

arbitrarily small by increasing V .

7. Proof of Lemma 6.1

Let the state µΛ on BΛ be given by

µΛ( · ) =
1

ZG
Λ (D)

TrΛ(e−DΛ+|Λ|G(ĀΛ,B̄Λ) ·)

with

ZG
Λ (D) := TrΛ(e−DΛ+|Λ|G(ĀΛ,B̄Λ)).

Naturally, µΛ is the finite-volume Gibbs state that saturates the variational
principle, i.e.

1
|Λ| log ZG

Λ (D) = sup
ωΛ onBΛ

(
ωΛ(G(ĀΛ, B̄Λ)) +

1
|Λ|S(ωΛ) − ωΛ(D)

)

= µΛ(G(ĀΛ, B̄Λ)) +
1
|Λ|S(µΛ) − µΛ(D). (7.1)

Our strategy is to attain the “entropy” and “energy” of the state µΛ via ergodic
states. For definiteness, we assume that G is of the form

G(ĀΛ, B̄Λ) := [ĀΛ]k[B̄Λ]l for some integers k, l,

(which, strictly speaking, is not allowed since G(ĀΛ, B̄Λ) has to be a self-adjoint
operator, but this does not matter for the argument in this section). The general
case follows by the same argument.

We apply the construction in Sec. 4 to µΛ, thus obtaining infinite-volume states
µ̃ and µ̄. Since we will repeat the construction for different Λ, we indicate the
Λ-dependence in µ̃{Λ} and µ̄{Λ}, but remembering that these are states on the
infinite lattice. They satisfy

s(µ̄{Λ}) =
1
|Λ|S(µΛ). (7.2)

We have also established in Sec. 4 that µ̄{Λ} is ergodic and that the states µ̄{Λ}

and µ̃{Λ} approximate µΛ for observables which are empirical averages. However,
we cannot conclude yet that they have comparable values for G(Ā, B̄), except in
the case where G is linear. Essentially, such a comparison is achieved next by using
the fact that µΛ is symmetric.

Choose a sequence of volumes Λn such that along that sequence the right-hand
side of (7.1) converges. We assume that µ̄Λn has a weak∗-limit, as n↗∞, which
can always be achieved (by the weak∗-compactness) by restricting to a subsequence
of Λn. We call this limit µ. By construction, it is a symmetric state.



August 10, 2010 15:1 WSPC/S0129-055X 148-RMP
J070-S0129055X10004089

856 W. De Roeck et al.

Energy estimate. Since µ̄Λn → µ, in the weak∗-topology, and µ̄Λn(D) = µΛn(D),
we have

µΛn(D) → µ(D). (7.3)

G-estimates. Using the symmetry of the state µΛ, we estimate

|µΛ(G(ĀΛ, B̄Λ)) − µΛ(⊗kA ⊗l B)|

≤ max (‖A‖, ‖B‖)k+l
(

(k + l)2

|Λ| + O

(
c(k, l)
|Λ|2

))
, |Λ|↗∞ (7.4)

where the tensor products

⊗k A ⊗l B := A ⊗ · · · ⊗ A︸ ︷︷ ︸
k copies

⊗B ⊗ · · · ⊗ B︸ ︷︷ ︸
l copies

(7.5)

denote that all one-site operators are placed on different sites. Since µΛ is sym-
metric, we need not specify on which sites. The error term of order 1/|Λ| comes
from those terms in the expansion of the monomial containing a product of k + l
one-site operators but only involving k+ l−1 sites. Since µ is symmetric, we obtain
analogously that

µ(G(Ā, B̄)) = µ(⊗kA ⊗l B). (7.6)

In particular, the left-hand side is well-defined. Hence, by combining (7.4) and (7.6),
we obtain

µΛn(G(ĀΛn , B̄Λn)) → µ(G(Ā, B̄)). (7.7)

For a more general non-commutative polynomial G as defined in Sec. 2.2 (not
necessarily a monomial), the convergence (7.7) follows easily since G(ĀΛn , B̄Λn)
can be approximated in operator norm by polynomials.

Entropy estimates. As established in Sec. 4, we have
1
|Λ|S(µΛ) = s(µ̄{Λ}), for all Λ. (7.8)

By the upper semi-continuity of the infinite-volume entropy and the convergence
µ̄Λn → µ, we get that

lim sup
n↗∞

s(µ̄{Λn}) ≤ s(µ). (7.9)

Hence

lim
n↗∞

1
|Λn|

S(µΛn) ≤ s(µ). (7.10)

By combining the convergence results (7.3), (7.7) and (7.10), we have proven
that there is a symmetric state µ such that the right-hand side of (6.8) with ω ≡ µ is
larger than a given limit point of the right-hand side of (7.1). Since the construction
can be repeated for any limit point, this concludes the proof of Lemma 6.1.
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Appendix. Proof of Lemma 2.2

To prove Lemma 2.2, it is convenient to introduce an extended framework: Let
πω be the cyclic GNS-representation associated to the state ω, Hω the associated
Hilbert space and ψ ∈ Hω the representant of the state ω, i.e.

ω(A) = 〈ψ, πω(A)ψ〉Hω , A ∈ U. (A.1)

The set πω(U) is a subalgebra of B(Hω). Let Uj ,∈ Zd be the unitary representation
of the translation group induced on πω(U), i.e.

Ujπω(A)U∗
j = πω(τjA). (A.2)

Ergodicity of ω implies (see, e.g., the proof of [20, Theorem III.1.8]) that
1
|Λ|

∑

j∈Λ
Uj

strongly−−−−−→
Λ↗Zd

Pψ (A.3)

where Pψ is the one-dimensional orthogonal projector associated to the vector ψ,
and Λ↗Zd in the sense of Van Hove. Using (A.3) and the translation-invariance
Ujψ = ψ, one calculates

π(X̄Λ)π(ȲΛ)ψ =
1

|Λ|2
∑

j,j′∈Λ
Ujπ(X)Uj′−jπ(Y )U−j′ψ

−−−−→
Λ↗Zd Pψπ(X)Pψπ(Y )ψ = ω(X)ω(Y )ψ

for local observables X, Y ∈ U. Taking the scalar product with ψ, we conclude
that ω(X̄ΛȲΛ) → ω(X)ω(Y ). The same argument works for all polynomials in
X̄Λ, ȲΛ, thus proving Lemma 2.2. Finally, we remark that one can also construct
the operators X̄, Ȳ as weak∗-limits of X̄Λ, ȲΛ, as Λ↗Zd (these weak∗-limits are
simply multiples of identity: ω(X)1, ω(Y )1). This is however not necessary for our
results.
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