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1 Poisson processes
We turn now to continuous Markov processes  where . The simplest such example of such process is the

ubiquitous Poisson process.

X ​t t ∈ [0, ∞)
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1.1 Definition of the Poisson process
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1.2 Distribution of the Poisson process
Theorem 1.1 (Distribution of the Poisson process) The Poisson process  with  has the distribution

i.e.   has Poisson distribution with parameter . Morever for ,  is a Poisson process.

Proof (version 1 using Poisson limit). Pick a large number  and divide the interval  into  intervals of size . Write

as a sum of  independent random variables. If  is large the probability that any of these random variables is at least  is

small. Indeed, by a union bound, we have

which goes to  as .
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Therefore  is, approximately, a binomial random variables with success probability :

and as  this converges to a Poisson distribution with parameter . .

Proof (version 2 using ODEs). Let us derive a system of ODEs for the family . We have

Conditioning we find

and this gives the system of equations
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We find  for . We use an integrating factor and set . We have then  and

for 

which we can solve iteratively to find

and thus  has distribution

.
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1.3 Poisson process and exponential random variables
Poisson processes and exponential (and gamma) random variables are intimately related. Given a Poisson process we
consider the interarrival times :  is time of the occurence of the first event,  is the time elapsed between

the first and second event, and so on.

Theorem 1.2 If  is a Poisson process with parameter  the interarrival times are independent exponential random

variables with paramter .

Proof. If  it means no event has occured up time  and so . Therefore

and thus  has an exponential distribution. For  we condition on 

and, using the independence of the increments,

from which we conclude that  has exponential distribution and is independent of . This argument can be repeated for

 by conditioning on the time of the second event, , and so on. 

T ​,T ​, ⋯1 2 T ​1 T ​2

N ​t λ

λ

T ​ >1 t t N ​ =t 0

P T ​ > t ={ 1 } P N ​ = 0 ={ t } e−λt

T ​1 T ​2 T ​1

P T ​ > t ={ 2 } P (T ​ >∫ 2 t∣T ​ =1 s)f ​(s)dsT ​1

P T ​ > t∣T ​ = s ={ 2 1 } P 0 events in (s, s + t]∣T ​ = s ={ 1 } P 0 events in (s, s + t] ={ } e−λt

T ​2 T ​1

T ​3 T ​ +1 T ​2 ■

9



Another set of closely related quantities are the arrival times of the  event  which are related to the

interarrival times by

By   is the sum of  independent exponential RVs and thus  a Gamma RV with parameter  with

density

We can actually prove this fact using the Poisson process by noting that, by definition,

that is if  or more events have occured by time  if and only the  event has occured prior to or at time .

So the CDF of  is

and upon differentiating we find
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1.4 Poisson process and uniform distribution
Let us start with a special case and assume assume that , that is exactly one event has occured in . Since the

Poisson process has independent increments it seems reasonable the event may have occur with equal probability at any
time on . Indeed for  we have, using the independence of increments.

and thus the density of the arrival time  conditioned on  is uniform on 

We study further the properties of the arrival times  of a Poisson process. The following result tells us

that they follow a uniform distribution on .

Theorem 1.3 Given the event , the  arrival times  have the same distribution as the order

statistics for  independent random variables uniformly distributed on .

Proof. The conditional density of  given that  can be obtained as follows. If 

 and  then the intearrival times must satisfy
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By the independence of the interarrival times proved in  the conditional density is given by

which is the joint density of the order statistic of  uniform. 

Recall if  are IID random variable with joint density  and  the

order statistics, then the joint pdf of  is given by

Theorem 1.2
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1.5 Simulation of Poisson process
The characterization of the Poisson process in terms of exponential random variables suggest immediately a very simple
algorithm to simulate .

Simulate independent exponential RVs  with parameter  and set  for ,  for

, and so on.

Code

N ​t

T ​,T ​, ⋯1 2 λ N ​ =t 0 0 ≤ t < T ​1 N ​ =t 1
T ​ ≤1 t < T ​ +1 T ​2
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1.6 Simulation of a Poisson random variable
It is not easy to simulate directly a Poisson random variable  from its pdf/cdf but we can do it elegantly using its

relation with exponential random variable. To do this generate independent exponential random variable until they
sum up to  (so as to generate ) and use the relation between exponential and uniform.

Algorithm to simulate a Poisson random variable with parameter : Generate random numbers until their product is

smaller than .

Generate random number .

Set  if 
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Code

15



1.7 Long time behavior of the Poisson process
We investigate the behavior of  for large time. We prove a CLT type result, namely that

where  is a standard normal RV.

Recall that the characteristic function of a Poisson RV  with parameter  is . Therefore

Expanding the exponential we have  and thus 

.

The same computation shows also that, for any fixed ,  since rescaling the

parameter is equivalent to rescaling time.
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1.8 Sampling a Poisson process
We can sample or split a Poisson process. Suppose that every event of a Poisson process (independently of the other
events) comes into two different types, say type  with probability  and type  with probability .

Theorem 1.4 Suppose  is a Poisson process with parameter  and that every event (independently) is either of type

 with probability  or type  with probability . Then , the number of events of type  up to time , and

, the number of events of type  up to time , are independent Poisson process with rate  and .

Proof. We check that  satisfy the definition of a Poisson process and the use 

 and  has independent increments since  has independent increments and events are classified of type

 and  independently of each other.

We have

1 p 2 q = 1 − p
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= λΔt × p + o(Δt)
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Finally to show that  and  are independent we compute their joint PDF by conditioning on the value of  and

find
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1.9 The coupon collecting problem
We revisit the couplon collector but we relax the assumption that all the toys are equally probable. We assume that
any box contains toy  with probability . How do we compute now the expected number of boxes needed to collect

all the  toys? The argument used earlier does not generalize easily.

i p ​i

M

We use the following trick or radomizing the time between boxes. Instead of collecting boxes at fixed time interval, we
collect them at times which are exponentially distributed with parameter . Then the number of boxes collected up to

time  a Poisson process  with rate  (on average it takes the same time to get a new box). We have now 

types of events (getting a box with toy ) and we split the poisson process accordingly. Then by  the

number of toys of type  collected up to time ,  is a Poisson process with rate  and the Poisson

processes  are independent.

1
t N ​t λ = 1 M

i Theorem 1.4

i t N ​t
(i)

λp ​ =i p ​i

N ​t
(i)

We now consider the times

that is the time where the first toy of type  is collected. The times  are independent since the underlying Poisson

processes are independent, and are exponential with parameter . Furthermore

T =(i)  time of the first event for the process N ​t
(i)

i T (i)

p ​i

S = T =
i

max (i)  time until one toy of each type has been collected.
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By independence we have

Thus

P S ≤ t ={ } P ​T ≤ t ={
i

max (i) } ​P T ≤ t =
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∏
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∏
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e )−p ​ti
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0

∞

t}dt = ​(1 −∫
0

∞

​(1 −
i=1

∏
M

e )) dt−p ​ti

Finally we relate  to the original question. If  is the number of box needed to collect all the toys then we have

where  aree IID exponential with parameter . But conditioning it is easy to see that

and we are done.

S X

S = ​S ​

k=1

∑
X

k

S ​k 1

E[S] = E[N ]E[S ​] =1 E[N ]
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1.10 Poisson process with variable rate
We can generalize the Poisson process by making the rate  at which event occur depend on time: a

nonhomogeneous Poisson process  with rate paratmeter  is a continuous time stochastic process such that

λ(t)
N ​t λ(t)

Independent increments: Given times  the random variables  (that is

the number of events occurring in the disjoint time intervals ) are independent.

s ​ ≤1 t ​ ≤1 s ​ ≤2 t ​ ⋯ ≤2 s ​ ≤n t ​n N ​ −t ​i
N ​si

[s ​, t ​]i i

We have

​ ​ ​

P{N ​ = N ​}t+Δt t

P{N ​ = N ​ + 1}t+Δt t

P{N ​ ≥ N ​ + 2}t+Δt t

= 1 − λ(t)Δt + o(Δt)

= λ(t)Δt + o(Δt)

= o(Δt)

 with  ​ ​ = 0
Δt→0
lim

Δt

o(Δt)
(1.2)

One way to construct a nonhomgeneous Poisson process is by sampling it in a time-dependent manner. Suppose 

is bounded (locally in ), then we pick . We consider a Poisson process  with constant rate , and if an

event occurs at time  then we decide to keep this event with probability  and we discard the event with

probability . By the same argument we used in the section  we see the number of

kept events satisfies the definition of a non-homogeneous Poisson process in 

λ(t)
t λ > λ(t) M ​t λ

t p(t) = ​

λ

λ(t)

1 − p(t) Sampling a Poisson process

Equation 1.2
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Let us consider an event for the process  which occured in the interval . By our analysis of arrival time we

know that this event occured a time which is uniformly distributed on the interval . Therefore the probability that

this event was accepted and contribute to  is therefore

M ​t [0, t]
[0, t]

N ​t

p ​ =t ​ ​ ​ ds
t

1 ∫
0

t

λ

λ(s)

By repeating then the second part of the arguement in the section  we see that  has a

Poisson distribution with parameter

and in particular

Sampling a Poisson process M ​t

λtp ​ =t ​ λ(s) ds∫
0

t

E[N ​] =t ​ λ(s) ds∫
0

t
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1.11 Queueing model with infinitely many servers
Assume that the the flow of customers entering an onine store follows a Poisson process  with rate . The time 

spent in the store for a single customer (browsing around, checking out, etc..) is given by tis CDF 

and we assume that the customers are independent of each other.

To figure out how to allocate ressources one wants to figure out what is number of customers, , which are still in

the sytem at time .

To find the distribution of  let us consider one of the customer by time . If he arrived at time  then he will

have left the system at time  with probability  and will still be in the system by time  with probability 

. Since the arrival time of that customer is uniform on  the distribution of  is Poisson with mean

For large , we see that .

N ​t λ S

G(t) = P{S ≤ t}

M ​t

t

M ​t t s ≤ t

t G(t − s) t 1 −
G(t − s) [0, t] M ​t

E[M ​] =t ​(1 −∫
0

t

G(t − s))ds = λ ​(1 −∫
0

t

G(s))ds, .

t E[M ​] ≈t λE[S]
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1.12 Compound Poisson process
Example: Suppose that the number of claims receieved by an insurance follows a Poisson process. The size of each
claim will be different and it natural to assume that claims are independent from each other. If we look at the total
claims incurred by the insurance company this leads to a stochastic process called a compound Poisson process.

A stochastic process  is called a compound Poisson process if it has the form

where  is a Poisson process and  are IID random variables which are also independent of .

X ​t

X ​ =t ​Y ​

k=1

∑
N ​t

k

N ​t Y ​,Y ​, ⋯1 2 N ​t

The process  has stationary independent increments. Using that  is a Poisson processX ​t N ​ −t N ​s

X ​ −t X ​ =s ​Y ​ has the same distribution as X ​ =
k=N ​s

∑
N ​t

k t−s ​Y ​

0

∑
N ​t−s

k
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We can compute the MGF of  (or its charactersitic function) by conditining on . Suppose  is

the moment generating function of  and using the MGF for the Poisson RV we find

X ​t N ​t m ​(α) =Y E[e ]αY

Y

​ ​

m ​(α)X ​t
= E e = E e = ​E e ∣N ​ = n P{n ​ = n}[ αX ​t] [ α ​ Y ​∑

k=1
N ​t

k]
n=0

∑
∞

[ α ​ Y ​∑
k=1
N ​t

k
t ] t

= ​m(α) P{n ​ = n} = e
n=0

∑
∞

n
t

λt(m(α)−1)

We can compute then the mean and variance

and thus

With a bit more work we could prove a central limit theorem.

​ ​

m ​(α)X ​t

′

m ​(α)X ​t

′′

= e λtm (α)λt(m(α)−1) ′

= e (λtm (α) + λt) ()m (α) )λt(m(α)−1) ′′ 2 ′ 2

E[X ​] =t λtE[Y ]  and Var[X ​] =t λt(Var(Y ) + E[Y ] ])2
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1.13 Exercises
Exercise 1.1 Let  be a Poisson process with rate  and let . Compute

1. 

2. 

3. 

N ​t λ 0 < s < t

P (N ​ =t n + k∣N ​ =s k)

P (N ​ =s k∣N ​ =t n + k)

E[N ​N ​]t s
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Exercise 1.2 Robins and Blackbirds make independent visit to my birdfeeder and they are described by independent
Poisson processes  and  with rate  and  (per minute) respectively.

1. What is the probability I see four birds within the 5th and the 10th minutes.

2. What is the expected number of Robbins I will see between the third and fifth minutes given that I saw 3 Robbins in
the first two minutes.

3. What is the probability that the first two birds I see are Robins?

4. I have seen ten birds in the last hour. What is the probbaility that three of them were balckbirds?

5. What is the probability that I see exactly three Robins while I am waiting for to see my first blackbird?

6. Let  denotes the arrival time of the first blackbird. Find the distribution of  (i.e. compute )

R ​t B ​t ρ β

T R ​T P (R ​ =T k)
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Exercise 1.3 (Estimating the number of asymptomatic using Poisson process with variable rates) Suppose people get
infected with a disease at a certain rate, a process described by a Poisson process  with rate  which is unknown but

constant.

Upon being infected there is an incubation time  until the infected individual exhibits symptoms and we have 

 for some known distribution function .

1. Suppose  is the total number of infected individual exhibiting symptoms by time  and  is number of infected

individual which do not exhibit symptoms. What are the rates for the processes  and ?

2. If  is reasonably large one can argue that a poisson processes  with variable rate  satisfies 

 with high probability. (This follows from the fact that a Poisson RV with large parameter concentrates

around its mean, see the CLT argument).
Use this fact to estimate the  even if the infection rate  is unknown.

3. Suppose  with , and that after 16 years 220 thousand people are infected. What is the

estimate for the number of asymptomatic individuals?

I ​t λ

I P (I ≤
t) = G(t) G(t)

S ​t t A ​t

S ​t A ​t

t N ​t λ(t) N ​ ≈t E[N ​] =t

​ λ(s)ds∫0
t

E[A ​]t λ

P (I ≥ t) = e−t/β β = 10
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Exercise 1.4 (Bulk arrivals) At Spoke on Thursday night groups of customers arrive according to a Poisson process with
rate . Each of the groups, independently of all other groups and of the Poisson process, has a random size decribe a

random variable  taking value in the positive integers. Upon arriving every individual goes order drink by herslef and

spent a random amount of time  at Spoke with a distribution . In preparation for a big night Spoke

has infinitely many servers. After this individuals exit Spoke.

Find the the expected amount of customer  at Spoke at time .

Describe is the distribution of ?

If the night is infinitely long, does the system reach an equilibrium?

*Hint: Revisit the  queue and the compound Poisson process.

λ

N

T G(t) = P (T ≤ t)

Y ​t t

Y ​t

M/G/∞
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2 Continuous time Markov
chains
In this section that we build a continuous time Markov process  with . The Markov property can be expressed as

for any .

X ​t t ≥ 0

P{X ​ =t j∣{X ​}, 0 ≤r r ≤ s} = P{X =t j∣X ​} .s

0 < s < t
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2.1 Exponential random variables
To construct a Markov we will need to use exponential random variables. Recall that an exponential random variable 

with parameter  has the pdf , for , the cdf  and mean .

A simple and important fact is the memoryless property of exponential random variables.

If you think of  as a waiting time then the memoryless property tells you that if you have waited a time  then the

probability that you have to wait an extra time  is exactly the same as waiting for a time  at the beginning. In that sense

the process of waiting starts anew at anytime, and so you have forgotten the past. This property is the key to construct
Markov process in continuous time.

For general Markov process we will need exponential random variables with various parameters and we will use the
following simple fact repeatedly.

Proposition 2.1 (Properties of exponential randomm variables) Let  be independent exponential

random variables with parameter . Then

1.  is an exponential random variables with parameter . Note that  is

allowed if we assume that  is finite.

2. 

T

λ f ​(t) =T λe−λt t ≥ 0 F ​(t) =T 1 − e−λt E[T ] = ​

λ
1

P ((T > t + s∣T > s) = P (T > t)

T s

t t

T ​,T ​,T ​, ⋯1 2 3

λ ​,λ ​, ⋯1 2

T = min{T ​, ⋯ ,T ​}1 n λ ​ +1 ⋯ + λ ​n n = ∞
​ λ ​∑

n n

P{T ​ =i min{T ​, ⋯ ,T ​}} =1 n ​

λ ​ + ⋯ + λ ​1 n

λ ​i
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Proof. For 1. we have, using independence,

and thus  is an exponential random variable.

For 2. we have, by conditioning,

P T > t ={ } P T ​ > t, ⋯ ,T ​ > t ={ 1 n } P T ​ > t ⋯P T ​ > t ={ 1 } { m } e−(λ ​+⋯λ ​)t1 n

T

P T ​ = T ={ 1 } ​ P{T ​ >∫
0

∞

2 t, ⋯ ,T ​ >n t}f ​(t) dt =T ​1 ​ e λ ​e dt =∫
0

∞
−(λ ​+⋯+λ ​)t2 n

1
−λ ​t1

​

λ ​ + ⋯λ ​1 n

λ ​1

■
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2.2 Definition of a continuous time Markov chain
As for the Poisson process we will give two equivalent definition of the process, the first one describe infinitesimal
rates of change of the probability disttribution and leads to a system of ODEs describing the evolution of the pdf of 

which are called the Kolmogorov equation. The second definition use exponential random variables and waiting times
and will lead naturally to an algorithm to simulate a continuous time Markov chain, often called the stochastic
simulation algorithm.

X ​t

To define a Markov process on the state space  we assign a number  for any pair of states  with . You

should think these numbers

We denote

S α(i, j) i, j i = j

α(i, j) =  rate at which the chain changes from state i to state j .

α(i) = ​α(i, j) =
j=i

∑  rate at which the chain changes from state i .

Formally a continuous Markov chain with rates  is a stochastic process  such thatα(i, j) X ​t

​ ​

P{X ​ = i∣X ​ = i}t+Δt t

P{X ​ = j∣X ​ = i}t+Δt t

= 1 − α(i)Δt + o(Δt)

= α(i, j)Δt + o(Δt)
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Proceeding as for the Poisson process we can derive a differential equation for . By conditioning

we have

which leads to the system of linear ODE’s

called the Kolmogorov backward equations.

p ​(i) =t P{X ​ =t i}

P{X ​ =t+Δt i} = (1 − α(i)Δt)P{X ​ =t i} + ​α(j, i)ΔtP{X ​ =
j=i

∑ t j} + o(Δt)

​p ​(i) =
dt

d
t −α(i)p ​(i) +t ​α(j, i)p ​(j)

j=i

∑ t (2.1)

The infinitesimal generator of a continuous-time Markov chain is given by the matrix

and the entries of  satifies

A = ​ ​ ​ ​ ​ ​ ​

1
2
3

⋮ ⎝
⎛−α(1)
α(2, 1)
α(3, 1)

⋮

α(1, 2)
−α(2)
α(3, 2)

⋮

α(1, 3)
α(2, 3)
−α(3)

⋮

⋯
⋯
⋯

⎠
⎞

A

A(i, j) ≥ 0 for i = j  and  ​A(i, i) =
i

∑ 0
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If we use a row vector  then we can rewrite  as the systemp ​ =t (p ​(1), p ​(2), ⋯ )t t Equation 2.1

​p ​ =
dt

d
t p ​At (2.2)

If  is finite then one can write the solution in terms of the matrix exponential 

where  is the initial distribution.

S e :=tA
​ ​∑k=0

∞
k!
t Ak k

p ​ =t p ​e .0
tA

p ​(i) =0 P{X ​ =0 i}

We can also write equation for the transition probabilities (take )

and we obtain the matrix equation

which we can solve using linear algebra techniques.

X =0 i

P ​(i, j) =t P{X ​ =t j∣X ​ =0 i}

​P ​ =
dt

d
t P ​A,  with P ​ =t 0 I ⟹ P ​ =t etA
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2.3 Solving the Komogorov equation
For finite state space  finding the transition probability reduces to a linear algebra problem. For example if the matrix 

is diagonalizable (e.g. if the matrix symmetric or if all the eigenvalues are distinct). let us denote the eigenvalues of  are

 of  with corresponding the eigenvectors . Note that  is always an eigenvalue with eigenvector

 (the sum of the rows is equal to ).

Then we have

We find then that

S A

A

λ ​,λ ​,λ ​1 2 N A f ​, ⋯ , f ​1 N 0
​ ​ ​(1 1 ⋯ 1)T 0

D = Q AQ =−1
​ ​ ​ ​ ​ ​⎝

⎛λ ​1

0
⋯
⋯

0
λ ​2

⋯
⋯

⋯
0

⋱
0

0
⋯
⋯
λ ​N
⎠
⎞

P ​ =t e =At QE Q =Dt −1 Q ​ ​ ​ ​ ​ ​Q

⎝
⎛eλ ​t1

0
⋯
⋯

0
eλ ​t2

⋯
⋯

⋯
0

⋱
0

0
⋯
⋯
eλ ​tN ⎠

⎞
−1
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For state space os smalll size  this is easy to compute using numerical or symbolic (for very small N) computation

package. For example if

we find

Code

N

A = ​ ​ ​ ​ ​ ​ ​

1
2
3
4⎝
⎛−1

1
0
0

1
−3
1
1

0
1

−2
1

0
1
1

−2⎠
⎞

P ​ =t ​ ​ ​ ​ ​

⎝
⎛ ​ + ​ + ​4

1
3

2e−t

12
e−4t

​ − ​4
1

4
e

−4t

− ​ + ​4
1

3
e−t

12
e−4t

− ​ + ​4
1

3
e−t

12
e−4t

​ − ​4
1

4
e−4t

​ + ​4
1

4
3e−4t

​ − ​4
1

4
e−4t

​ − ​4
1

4
e−4t

​ − ​ + ​4
1

3
e−t

12
e−4t

​ − ​4
1

4
e

−4t

​ + ​ + ​ + ​4
1

6
e−t

2
e−3t

12
e−4t

​ + ​ − ​ + ​4
1

6
e−t

2
e−3t

12
e−4t

​ − ​ + ​4
1

3
e−t

12
e−4t

​ − ​4
1

4
e

−4t

​ + ​ − ​ + ​4
1

6
e−t

2
e−3t

12
e−4t

​ + ​ + ​ + ​4
1

6
e−t

2
e−3t

12
e−4t⎠
⎞

Matrix A:
⎡-1  1   0   0 ⎤
⎢              ⎥
⎢1   -3  1   1 ⎥
⎢              ⎥
⎢0   1   -2  1 ⎥
⎢              ⎥
⎣0   1   1   -2⎦

Eigenvalues of A:
{-4: 1, -3: 1, -1: 1, 0: 1}

Eigenvectors of A:
⎛       ⎡⎡1 ⎤⎤⎞
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⎜       ⎢⎢  ⎥⎥⎟
⎜       ⎢⎢-3⎥⎥⎟
⎜-4, 1, ⎢⎢  ⎥⎥⎟
⎜       ⎢⎢1 ⎥⎥⎟
⎜       ⎢⎢  ⎥⎥⎟
⎝       ⎣⎣1 ⎦⎦⎠
⎛       ⎡⎡0 ⎤⎤⎞
⎜       ⎢⎢  ⎥⎥⎟



2.4 Stochastic simulation algorithm
In this section we propose an alternative descritpion which is more probabilistic in nature and allows us to construct the
paths of the Markov chains.
To any pair of states  we associate a “clock”  which is an exponential random variable with paramter (rate)

. All the random variables used are assumed to be independent.

If , the Markov chain moves to another state after the first clocks  rings, this happens at time

which is exponential with parameter . So we have .

If the clocks that rings first is the clock  that is if  then the Markov chain

moves to state  at time. That is we set .

The probability that the Markov chain jumps to  is

which defines a transition matrix.

Take a set of brand new clocks  with rates  and repeat.

(i, j) T (i, j)
α(i, j)

X ​ =t i T (i, j)

T = ​{T (i, k)}
k

min

α(i) = ​ α(i, k)∑
k=i X ​ =t+s i  for 0 ≤ s < T

T (i, j) T (i, j) = T = min ​{T (i, k)}k

j T ​ =t+T j

k

Q(i, j) = P T (i, j) = T = ​{T (i, k)} =(
k

min ) ​

​ α(i, k)∑k

α(i, j)

T (j, k) α(j, k)
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The Markov property follows form the memoryless property for an exponential distribution : 

.

If  then by construction the position after the next jump after time  clearly depends only  and not the states that

the Markov chain visited before time . Moreover if we consider the time of the last jump before time  which occured,

say at time , then the memoryless property of the exponential random variable implies that the time at which the

jump occur after time  does not depend on  at all. Putting these together this implies the Markov property

To connect this to the previous description we derive an integral equation for  by conditioning on the first jump

Iterating this equation and setting  we find

T P (T ≥ t + s∣T ≥
s) = P (T > t)

X ​ =t i t i

t t

s < t

t s

P{X ​ =t+u j∣X ​, 0 ≤s s ≤ t} = P{X ​ =t+u j∣X ​}t

P ​t

P ​(i, j) =t P (X ​ =t j∣X ​ =0 i) = ​ +

 no jump in [0,t]

​δ(i, j)e−α(i)t
​ ​ ​P ​(k, j)ds∫

0

t

density of jump time 

​α(i)e−α(i)s

choice of jump

​​Q(i, k)
k

∑ t−s

t = Δt

​ ​

P (X ​ = j∣X ​ = i)Δt 0 = δ(i, j)e + ​ α(i)e ​ ​δ(k, j)e ds + ⋯−α(i)Δt ∫
0

Δt
−α(i)s

k

∑
α(i)
α(i, k) −α(k)(Δt−s)

= δ(i, j)e + α(i, j)Δt × ​ + ⋯−α(i)Δt

→1 as Δt→0

​e ​ ​ e ds−α(j)Δt

Δt

1 ∫
0

Δt
−(α(i)−α(j))s

= δ(i, j)(1 − Δtα(i)) + α(i, j)Δt + o(Δt)

[0 Δt] (Δt)



2.5 Stochastic Simulation algorithm (or Gillepsie algorithm)
The description of Markov chain using the rates is essentially a pseudo-code to generat trajectories of .

Code

X ​t
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2.6 Example: Uniformizable chain
Consider a Markov chain  with transition matrix  and we assume that . Then we pick rate 

for all states . The times at which the Markov chain has transition is thus a sum of IID exponential, that at time  is

then described by a Poisson process . In other terms we have

where  is a Poisson process with rate .

In this case we can compute the transition matrix quite explicitly:

and the generator is given by .

Y ​n Q Q(i, i) = 0 α(i) = 1
i t

N ​t

X ​ =t Y ​N ​t

N ​t 1

​ ​

P{X ​ = j∣X ​ = i}t 0 = P{Y ​ = j∣X ​ = i}N ​t 0

= ​P{Y ​ = j,N ​ = n∣X ​ = i}
n=0

∑
∞

N ​t t 0

= ​P{Y ​ = j∣X ​ = i}P{N ​ = n}
n=0

∑
∞

n 0 t

= ​ ​Q (i, j) = e
n=0

∑
∞

n!
e t−t n

n t(Q−I)

A = (Q − I)
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2.7 Exercises
Exercise 2.1 Machine 1 is currently working and machine 2 will be put in use at a time T from now. If the lifetimes of the
machines 1 and 2 are exponential random variables with parameters  and , what is the probability that machine 1

is the first machine to fail?

Exercise 2.2 Consider a two-server system in which a customer is first served by server 1, then by server 2 and then
departs. The service times at server  are exponential random variables with parameter  with . When you

enter the system you find server 1 free and two customers at server 2, customer A in service and customer B waiting in
line.

1. Find the probability  that  is still in service when you move over to server 2.

2. Find the probability  that  is still in service when you move over to server 2.

3. Compute , where  is the total time you spend in the system. Hint: Write  where

 is your service time at server i,  os the amount of time you wait in queue when while  is being served, and

 the amount of time you wait in queue when while  is being served.

λ ​1 λ ​2

i μ ​i i = 1, 2

P ​A A

P ​B B

E[T ] T T = S ​ +1 S ​ +2 W ​ +A W ​b

S ​i W ​A A

W ​B B
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Exercise 2.3 (Hyperexponential and hypoexponential random variables) Suppose  and  are independent

exponential random variables with parameters  and .

1. Suppose  is a RV with  and . The random variable  is

called an hyperexponential RV. It describe the service time of an agent sent to one of two service station with
suitable probabilities. What is the probability distribution function of .

2. The random variable  is called an hypoexponential RV and describe the service time of an agent going

through 2 successive service station. What is the probability distribution of ?

Exercise 2.4 (The flip-flop process) Let  be a poisson process and consider the process

where  is a random variable taking value in  and which is independent of . Note that  oscillates

between  and . Show that

T ​1 T ​2

λ ​1 λ ​2

N P (N = 1) = p(1) P (N = 2) = p(2) = 1 − p(1) T ​N

T ​N

T ​ +1 T ​2

X ​ +1 X ​2

N ​t

X ​ =t X ​(−1)0
N ​t

X ​0 {−1, 1} N ​t X ​t

0 1

P ​ =t ​ ​ ​

2
1 (1 + e−2λt

1 − e−2λt
1e−2λt

1 + e−2λt)
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3 Long time behavior of
continous-time Markov
chains
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3.1 Stationary distributions and detailed balance
A probability vector  is a stationary distribution for the Markov chain with generator  if

In terms of the rate  we see that  is stationary if and only if

which we can interpret as balance equation. The quantity  is the rate at which the chain in a state 

changes from  to  and the stationarity equation means that

As for discrete time we say that a Markov chain satisfies detailed balance if

and clearly detailed balance implies stationarity.

π A

πP ​ =t π  for all t > 0

0 = ​πP ​ =
dt

d
t πAP ​ ⟹t πA = 0.

α(i, j) π

​π(i)α(i, j) =
i=j

∑ π(j)α(j) = ​π(j)α(j, i)
i=j

∑

π(i)α(i, j) π

i j

 flow of probability away from state i =  flow of probability into state i  holds for all statesi

π(i)α(i, j) = π(j)α(j, i) for all i = j
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The Markov chain with generator  is irreducible if for any pair of states  we can find states  such

that

If there exists a stationary distribution for an irreducible chain then  for all . Indeed if  and

 then  implies that  and thus .

The issue of periodicity cannot occur for continuous time Markov chains

Lemma 3.1 For an irreducible Markov chain with generator ,  for all  and all .

Proof. Using the Markov property and a sequence of states  with positive transition rates

and for example, using that .

A i, j i ​, ⋯ , i ​1 N−1

α(i, i ​)α(i ​, i ​) ⋯α(i ​, j) >1 2 3 N−1 0

π(i) > 0 i π(i) > 0
α(i, j) > 0 πA(j) = 0 π(j)α(j) = ​ π(k)α(k, j) ≥∑

k
π(i)α(i, j) > 0 α(j) > 0

A P ​(i, j) >t 0 i, j t > 0

i ​ =0 i, i , ⋯ , i ​ =1 N j

​ ​

P{X ​ = j∣X ​ = i}t 0 ≥ P{X ​ = i ​,X ​ = i ​, ⋯X ​ = j∣X ​ = i}t/N i 2t/N 2 t 0

= P{X ​ = i ​∣X ​ = i}P{X ​ = i ​∣X ​ = i ​} ⋯P{X ​ = j∣X ​ = i ​}t/N 1 0 2t/N 2 t/N i t t ​

N
N−1 n−1

α(i, i ​) >1 0

P{X ​ =t/N i ​∣X ​ =1 0 i} ≥ ​ α(i)e Q(i, i ​)e >∫
0

t/N
−α(i)s

1
−α(i ​)(t−s)1 0. ■
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3.2 Convergence to the stationary distribution
If the state space is finite and the chain is irreducible then we have convergence to equilibrium.

Theorem 3.1 If the state space  is finite and the Markov chain with generator  is irreducible then for any initial

distribution  we have

Proof. We use a spectral argument and the result for discrete time Markov chain. Pick a number  such that 

 (this is possible since  is finite). Consider the matrix

Then  is a stochastic matrix since  and  is in . Clearly

 since . Let us denote  the Markov chain with transition matrix , it is often called

the resolvent chain for the continuous-time Markov chain . The Markov chain is aperiodic since  and it is

irreducible since  is irreducible.

Note also that  is a stationary distribution for  if and only if it is a stationary dsitribution for  since

so .

S A

μ

​μP ​ =
t→∞
lim t π

a a >
max iα(i) A

R = ​A +
a

1
I.

R 0 ≤ R(i, j) = ​ ≤a

α(i,j)
​ ≤a

α(i) 1 R(i, i) = − ​ +a

α(i) 1 (0, 1)
​ R(i, j) =∑j 1 ​ A(i, j) =∑j 0 Y ​n R

X ​t R(i, i) > 0
X ​t

π Y ​n X ​t

πR = ​πA +
a

1
πI = ​πA +

a

1
π

πR = π ⟺ πA = 0
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From the convergence theorem for discrete time  as  and we have seen (see the exercises) that 

has a simple eigenvalue 1 and all other eigenvalues  satisfy . Now

and so  is a simple eigenvalue for  and the other eiegenvalue are of the form  and so the

real part is strictly negative.

R (i, j) →n π n → ∞ R

λ ∣λ∣ < 1

Rf = λf ⟺ Af = a(λ − 1)f

0 A a(Re(λ) − 1) + ia Im (λ)



The vector  is a right eigenvector for  and  is a left eigenvector for . If we define the matrix  as

the matrix whose rows are equal to , we have then

Moreover if  the right eigenvector and  the left eigenvector for  for the eigenvalue  then we have

and thus we must have  and . Therefore

This implies that  has the simple eigenvalue  and the same eigenvalues  as  and  has strictly negative real

part. Therefore  converges to  as , or

1 = (1, 1, ⋯ , 1)T A π A Π
π

(P −t Π) ​ ​ ​ =⎝
⎛1

⋮
1⎠
⎞

0 and π(P −t Π) = 0 .

f g A μ = 0

π(Af) = μπf = (πA)f = 0  and (gA)1 = g(A1) = μg1 = 0

πf = 0 g1 = 0

P −t Π)f = P f =t e f  and g(P −μt t Π) = gP =t e g.μt

P −t Π 0 eμt P t μ

P −t Π 0 t → ∞

​P ​(i, j) =
t→∞
lim t π(j).
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3.3 Transient behavior
To study the transient behavior in continuous time we can use similar ideas as in discrete time.

Absorption probabilities: the absorption probabilities do not depend on the time spent in every state so they can be
computed using the transition matrix  for the embedded chain  and the formula in Section [Absorption

probabilities]

Expected hittiing time: For example we have the following result

Theorem 3.2 Supose  is an irreducible Markov chain with generator  and for  let

be the first hitting time to state . Let  the matrix obtained by deleting the  row and  column from the

generator . Then we have, for ,

The matrix  has rowsums which are non-positive and at least one of the row must be strictly negative.

Q(i, j) Y ​n

X ​t A j

Σ(j) = inf{t ≥ 0;X ​ =t j}

j A
~

jth jth

A i = j

E[Σ(j)∣X ​ =0 i] = ​B(i, l)  where B =
l

∑ A
~−1

A
~
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Proof. By conditioning on the first jump which happens at time  we have

If we set  (for ) we find the equation

which reads, in matrix form as

To show that  is invertible we consider the matrix  where  is chosen larger than all the entries. Then

the entries of  are non-negative and the rowsums do not exceed one with at least one strictly less than . By the results

for discrete time Markov chains we know that

is invertible.

T

E[Σ(j)∣X ​ =0 i] = ​ +

expected time until the first jump 

​E[T ∣X ​ = i]0 ​P{X ​ =
k∈S,k=j

∑ T k∣X ​ =0 i} ​

​ from the state after the first jump
expected hitting time

​E[Σ(j)∣X ​ = k]0

b(i) = E[Σ(j)∣X ​ =0 i] i = j

b(i) = ​ +
α(i)

1
​ ​b(k) ⟹

k=j

∑
α(i)
α(i, k)

1 = α(i)b(i) − ​α(i, k)b(k)
k=j

∑

1 = − b ⟹A
~

b = (− ) 1.A
~ −1

−A
~

R = ​ +
a
1A

~
I a

R 1

I − R = (− ​A)
a

1
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3.4 Explosion
For a continuous time Markov chain  let us consider the time of the successive jumps

Here the  are independent exponential but, in general, no identically distributed with parameters  which depends

on the state being visited. We have then

Explosion: To see what can happen consider a Markov chain with rate  and all other rates

equal to . Then the Markov chain moves up by  at every jump like a Poisson process but at accelerated pace. We

have then

so  with probability . So there are infinitely many jumps in finite time and  after a finite time.

This is called explosion.

X ​t

S ​ =1 T ​,S ​ =1 2 T ​ +1 T ​,S ​ =2 3 T ​ +1 T ​ +2 T ​, ⋯3

T ​i α ​i

E[S ​] =n ​ ​

i=1

∑
n

λ ​i

1

α(i, i + 1) = (n + 1)2

0 1

E[S ​] =∞ ​ ​ <
n=1

∑
n2

1
∞

S ​ <∞ ∞ 1 X ​ =t +∞
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This is an issue familiar in ODE: the equation  has solution has solution  which blows up at time

.

It is not easy to determine if an explosion really occurs. Indeed for no explosion to occur we must have, with probabilty
1,

where  is the embedded chain.

A sufficient condition for non-explosion is a suitable upper bound on the rates , say  which is true for

finite state spaces but this is by no means necessary.

​x ​ =
dt
d

t x ​t
2 x ​ =t ​

x ​−t0

x ​0

t = x ​0

​ ​ =
n

∑
α(Y ​)n

1
∞

Y ​n

α(i) α(i) ≤ α
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3.5 Transience, recurrence, and positive recurrence.
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3.6 Stationary distribution for recurrent chains
Theorem 3.3 If the Markov chain with rates  is irreducible and recurrent, then there exists a unique solution (up

to a multiplicative constant)  to the equation  with

If it holds that  then  can be normalized to a stationary distribution and  is positive recurrent.

Proof. The stationarity equation  can be written as

That is the row vector  with entries  must satisfy .

If  is recurrent then the embedded Markov chain  with transition  is recurrent and so by the discrete time theory

we know that there exists a solution to . Therefore we have proved the existence of a solution for .

α(i, j)
η = (η(1), η(2), ⋯ ) ηA = 0

0 < η(i) < ∞ .

​ η(i) <∑i ∞ η X ​t

ηA

​η(j)α(j, k) =
j=k

∑ α(k)η(k) ⟺ ​η(j)α(j)Q(j, k) =
j=k

∑ η(j)α(j)

μ μ(k) = α(k)η(k) μQ = μ

X ​t Y ​n Q

μQ = μ ηA = 0
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Moreover, we have a the representation

where  is some fixed but arbitrary reference state (this counts the number of visits to the state  between two

consecutive visits to the reference state )

If we denote by  the time of the  jump for  we have

which is nothing but the time spent (by ) in the state  between successive visits to .

μ(j) = α(j)η(j) = E ​ ​1 ​∣X ​ = i ​⎣
⎡

k=0

∑
τ(i)−1

{Y ​=j}k 0 ⎦
⎤

i j

i

S ​n nth X ​t

​ ​

η(j) = ​E ​1 ​1 ​∣X ​ = i

k=0

∑
∞

[
α(j)

1
{Y ​=j}k {τ(i)>k} 0 ]

= ​E (S ​ − S ​)1 ​1 ​∣X ​ = i

k=0

∑
∞

[ k+1 k {Y ​=j}k {τ(i)>k} 0 ]

= E ​ ​(S ​ − S ​)1 ​∣X ​ = i ​⎣
⎡

k=0

∑
τ(i)−1

k+1 k {Y ​=j}k 0 ⎦
⎤

X ​t j i
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If  then we have

which is the expected return time to state . That is the chain  is positive recurrent.

​ η(j) <∑j ∞

E[Σ(i)] = E ​ ​(S ​ − S ​)∣X ​ = i ​ <⎣
⎡

k=0

∑
τ(i)−1

k+1 k 0 ⎦
⎤

∞

i X ​t
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3.7 Ergodic theorem for positive recurrent Markov chains
We have the following theorem which is the exact counterpart of the discrete time case (and is proved very similarly so
we will omit the proof).

Theorem 3.4 Suppose  is irreducible and positive recurrent. Then  has a unique stationary distribution, and with

probability , the time spent in state , converges to 

Moreover we have Kac’s formula:  is also equal to the average time between consecutive visits to state :

Conversely if  has a stationary distribution then  is positive recurrent. 

X ​t X ​t

1 j π(j)

​ ​1 ​ ds =
t→∞
lim ∫

0

t

{X ​=j}s
π(j).

π(j) j

π(j) = ​ .
E[Σ(j)∣X ​ = j]0

1

X ​t X ​t ■
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3.8 Exercises
Exercise 3.1 (Formula for the stationary distribution) Show that if  is irreducible then the stationary distribution

solve the equation

where  for all .

Hint: One option is to reduce it to the corresponding discrete case like in the proof of convergence in 

A

π = (1, ⋅, 1)(A + M)−1

M(i, j) = 1 i, j

Theorem 3.1
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Exercise 3.2 Consider the Markov chain  with generator

Find the stationary distribution.

If  what is the expected time until the Markov chain visit state  for the first time.

If  what is the probability that the Markov visits state 3 before state .

Compute (numerically) the transition probabilties .

Modify the SSA simulation algorithm to extract the stationary distribution from it.

X ​t

A = ​ ​ ​ ​ ​ ​ ​

1
2
3
4⎝
⎛−2

0
1
0

1
−1
1
0

1
1

−3
1

0
0
1

−1⎠
⎞

X ​ =0 1 4

X ​ =0 2 4

P ​(i, j)t
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4 Birth and death process
and queueing models
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4.1 Birth and death process
A general birth and death process is a continuous time Markov chain with state space  and whose only

non-zero transition rates are

The Kolmogorov equations for the distribution of  are, for 

For , the eqation reads .

The generator has the form

{0, 1, 2, ⋯ }

​ ​ ​ ​

λ(n) = α(n,n + 1)

μ(n) = α(n,n − 1)

=  birth rate for a population of size n

=  death rate for a population of size n

( for n ≥ 0)

( for n ≥ 1)

X ​t n ≥ 1

​p ​(n) =
dt

d
t ​ +

​in a population of size n+1
 increase due do death

​μ(n + 1)p ​(n + 1)t ​ −

​in a population of size n−1
 increase due do birth

​λ ​p ​(n − 1)n−1 t ​.

​in a population of sizen
 decrease due do birth/death

​(λ(n) + μ(n))p ​(n)t

n = 0 ​p ​(0) =
dt

d
t μ(1)p ​(1) −t λ(0)p ​(0)t

​ ​ ​ ​ ​ ​ ​ ​

0
1
2

⋮ ⎝
⎛−λ(0)

μ(1)
0

⋮

λ(0)
−λ(1) − μ(1)

μ(2)

⋱

0
λ(1)

−λ(2) − μ(2)

⋱

0
0

λ(2)

⋱

…
…
…

⎠
⎞
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The transition matrix for the embedded process  is

which is the transition matrix of a general random walk on the non-negative integers.

Y ​n

​ ​ ​ ​ ​ ​ ​ ​

0
1
2

⋮ ⎝

⎛ 0
​

μ(1)+λ(1)
μ(1)

0

⋮

1
0

​

μ(2)+λ(2)
μ(2)

⋱

0
​

μ(1)+λ(1)
λ(1)

0

⋱

0
0

​

μ(2)+λ(2)
λ(2)

⋱

…
…

…

⎠

⎞
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4.2 Examples
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Population models: If  describes the size of a population birth rate will be naturally proportional to the size of the

population if we assume that all individuals give birth or die with a certina rate.

Pure birth model: no death occur and so

Population model: the rates

Population model with immigration: if immigrants arrive acccording to a Poisson process with rate  the rates are

X ​t

λ(n) = nλ  and  μ(n) = 0

λ(n) = nλ  and  μ(n) = nμ

ν

λ(n) = nλ + ν  and  μ(n) = nμ
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4.3 Transience of birth/death chains
To study transience we use the embedded Markov chain and ?@thm-criteriontransience. Choosing the reference state 

we look for a solution  with  and  for  of the system of equations

This leads to

and thus, by telescoping,

Taking  we must have  and  and we find the solution

0
a(n) a(0) = 1 0 < a(n) < 1 n ≥ 1

λ(n)a(n + 1) + μ(n)a(n − 1) = (λ(n) + μ(n))a(n)

a(n + 1) − a(n) = ​ (a(n) −
λ(n)
μ(n)

a(n − 1)) = ⋯ = ​ ​ (a(1) −
j=1

∏
n

λ(j)
μ(j)

1)

a(n + 1) = 1 + ​(a(k +
k=0

∑
n

1) − a(k)) = 1 + 1 + ​ ​ ​ (a(1) −[
k=1

∑
n

j=1

∏
k

λ(j)
μ(j)] 1)

n → ∞ a(n) → 0 ​ ​ ​ <∑
k=1
∞ ∏

j=1
k

λ(j)
μ(j) ∞

a(n) = ​

1 + ​ ​ ​∑k=1
∞ ∏j=1

k

λ(j)
μ(j)

​ ​ ​∑
k=n
∞ ∏

j=1
k

λ(j)
μ(j)
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4.4 Positive recurrence of birth/death chains
To study postive recurrence we simply solve for the stationary distribution . Since the embedded Markov chain

satisfies detailed balance it is natural tro try to solve the detailed balance equations which amounts

which is eaisly solved to find

and thus we have a stationary distribution if and only if

πA = 0

π(n)λ(n) = π(n + 1)μ(n + 1)

π(n) = ​ ​π(0)
j=1

∏
n

μ(j)
λ(j − 1)

​ ​ ​ <
k=1

∑
∞

j=1

∏
k

μ(j)
λ(j − 1)

∞ .
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The Poisson process are bure birth models are not irreducible and converge to  almost surely.

-queue: 

Transient if .

Recurrent if 

Positive recurrent if  and with (geometric) stationary distribution: 

-queue: 

Transient if .

Recurrent if 

Positive recurrent if , the stationary  is a bit messy to write.

-queue: .

Always positive recurrent with Poisson stationary distribution 

+∞

M/M/1 ​ ​ =∏j=1
n

λ(j)
μ(j)

​(
μ
λ)n

μ < λ

μ = λ

λ < μ π(n) = ​ 1 − ​(
μ
λ)n (

μ
λ)

M/M/k ​ ​ =∏j=1
n

λ(j)
μ(j)

​ ​ .{ n! ​(
λ
μ)

n

​ ​

kk
k! (

λ
kμ)n

n < k

n ≥ k

kμ < λ

kμ = λ

λ < kμ π

M/M/∞ ​ ​ =∏j=1
n

λ(j)
μ(j)

n! (
λ
μ)

n

π(n) = e ​

− ​

μ
λ

n!
​( μ

λ )n
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4.5 Speed of convergence via coupling M/M/  queue
We can analyze the M/M/  queue in more details by the following argument. Suppose  is the size of the queue

at time . Then at time  the people in queue are of two different types: either they were in queue at time  and are still in

queue at time  or they arrive after time between times  and time  and are still in queue.

The probability that a person in queue at time  is still in queue at time  is .

Since the arrival of a Poisson process condiioned on  are uniformly distributed on , the probability that someone

not present at time  is still present at time  is

By combining this we see that

where

∞
∞ X ​ =0 j

o t 0
t 0 t

0 t e−μt

N ​t [0, t]
0 t

q(t) = ​ ​(1 −
t

1 ∫
0

t

e ) =−μ(t−s)
​ , .

μt

1 − e−μt

X ​ =t N ​ +t Y ​t

N  has a binomial distribution with parameters j and et
−μt

Y ​ has a Poisson distribution with parameters λq(t)t =t ​ (1 −
μ

λ
e )−μt
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Clearly we see, again, from this computation that the distribution of  converges to a Poisson distribution with

parameter .

We can also use it to control the speed of convergence since the previous calculation suggest a coupling. Indeed let 

and set

Then with  and  as above we set

The  and  are  queues starting at  and  respectively and they form a coupling.

We have then

If we start with two arbitrary initial distribution  and  we find then the bound

where  has distribution  and  has distribution 

X ​t

​

μ
λ

k > j

B  has a binomial distribution with parameters k −t j and e−μt

N ​t Y ​t

X ​ =t Y ​ +t N ​ ​ =t X
~
t Y ​ +t N ​ +t M ​t

X ​t ​X
~
t M/M/∞ j j

∥P ​(j, ⋅) −t P ​(k, ⋅)∥ ​ ≤t TV P (X ​t = Y ​) =t P (M ​ ≥t 1) ≤ E[∣M ​∣] =t (k − j)e−μt

ν ν~

∥νP ​ −t P ​∥ ​ ≤ν~ t TV ​ν(i) (j)∥μP ​(i, ⋅) −
i

∑ ν~ t νP ​(j, ⋅)∥ ​ ≤t TV ν(i) (j)∣j −
i

∑ ν~ i∣e =−μt E[∣X ​ −0 ​∣]eX
~

0
−μt

X ​0 ν ​X
~

0 ν~
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4.6 Queueing networks
A queueing network is an interconnected netwrok of service facilities called nodes. Each node has its own queueing
rules and there are probabilistic rules to move between nodes and exit the system. Queueing netwroks can be either
closed or open.

A closed network has a fixed number  of nodes and a fixed number  of customers. No agents enters or exit the

systems. Imagine for example a company with  trucks which can be either in a repair shop or assigned to a variety of

tasks.

A open network has a fixed number  of nodes but a variables number of customers. Agents can enters or exit the

system at some of the nodes in the systems. Imagine for example data packets being routed in a computer network.

To describe the process in a network with  nodes we consider the queue length process

The state space of the process for the queue length is process is given by

:::

K M

M

K

M

Q ​ =t Q ​, ⋯ ,Q ​  where Q ​ =( 1,t K,t) i,t  number of customers at node i at timet.

​ ​

S ​M

S

= n = n ​, ⋯ ,n ​ : n ​ ≥ 0 , ​n ​ = M  closed networks{ ( 1 K) i

i=1

∑
K

i }
= n = n ​, ⋯ ,n ​ : n ​ ≥ 0  open networks{ ( 1 K) i }
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4.7 Closed network of queues
To describe a closed queuing network we need to describing how the  agents move along the  nodes of the networks.

This is described in terms of routing matrix  with entries

It is possible that  describing the case where an agent may need two services. The matrix  is a stochastic matrix

with

We assume that  is irreducible and we will denote by  the corresponding stationary distribution, i.e.  .

We assume that at node  there is a single service station and that when at node  an agent is served with a rate  so that

service times at nodes  are IID exponentials with parameters .

Traffic equation: If the system is in equilbrium then the rate  at which customers leave a node  should be the to the rate

at which customer leaves a node . This leads to the equation

and therefore the stationary distribution should depend on the stationary distribution  for .

M K

P

P ​ =il  Probability that an agent exiting node i moves to node l 

P ​ >ii 0 P

P ​ ≥il 0  and  ​P ​ =
l=1

∑
K

il 1

P π πP = π

i i b ​i

i b ​i

r ​j j

j

​ =

exit rate

​r ​j ​

entrance rate

​r ​P

i

∑ i ij

π P
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Waiting time: suppose that the system is in the state  then the rate  is determined by the

minimum service time at all the nodes (which are not empty of agents) and thus we have

Transition rates At the time a service is completed the agent will move from one node (say ) to another node (say ), it will

be useful to introduce the notation

which describes the possible transition transition. Note that we have

and

The non-zero transition rates (when one agent moves from node  to node ) are given by

n = (n ​, ⋯ ,n ​)1 K α(n)

α(n) = ​b ​ =
i:n ​>0i

∑ i ​b ​(1 −
i:n ​>0i

∑ i δ ​)n ​,0i

i j

T ​n =ij (n ​, ⋯ ,n ​ −1 i 1, ⋯ ,n ​ +j 1, ⋯ ,n ​)  provided n ​ >K i 0

T ​T ​n  if n ​ >ji ij i 0

m = T ​n ⟺ij n = T ​m  provided n ​ >ji i 0 and m ​ >j 0

i j

α(n,T ​n) =ij b ​P ​  if n ​ >i ij i 0
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We have the following

Theorem 4.1 (stationary distribution for closed queueing networks) Consider a closed queuing networks with 

agents and  nodes with a single service station at each node. The waiting time at node  is exponential with rate

 and the motion between nodes is given by an irreducible stochastic matrix  and stationary distribution .

The stationary distribution is given by

is a stationary distribution for the process  with rates  (for 

The form of the stationary distribution is suggested by the form of the stationary distribution for the M/M/1 queue. But
note that here the total number of customer is fixed.

The constant  is in general difficult to compute.

Proof. We need to show that .

We will make use of the traffic equation  as well as from the fact that for  we have

M

K i

b ​ >i 0 P ​i,j π ​i

η(n) = C ​ ​  with C =
l=1

∏
K

(
b ​l

π ​l )n ​l

​ ​ ​

n∈S ​M

∑
l=1

∏
K

(
b ​l

π ​l )n ​l

Q ​t α(n,T ​n) =ij b ​P ​i ij n ​ >i 0)

C

​ η(n)α(n,m) =∑n=m α(m)η(m)

πP = π m ​ >j 0

η(T ​m) =ji ​ ⋯ ​ ⋯ ​ ⋯ ​ =(
b ​1

π ​1 )n ​1 (
b ​j

π ​j )n −1j (
b ​i

π ​i )n ​+1i (
b ​K

π ​K )n ​K

η(m) ​

π ​/b ​j j

π ​/b ​i i
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Note that we have

Since the state space if finite we can normalize  to make it a statonary distribution.

​ ​

​η(n)α(n,m)
n

∑ = ​η(n)α(n,m) = ​η(n)α(n,m)
n:m=T ​n for some i,jij

∑
n:n=T ​m for some i,jji

∑

= ​η(T ​m)α(T ​m,m)
i,j:m ​>0j

∑ ji ji

= ​η(m) ​b ​P ​

i,j:m ​>0j

∑
π ​/b ​j j

π ​/b ​i i
i ij

= ​η(m) ​

j:m ​>0j

∑
π ​/b ​j j

​ π ​P ​∑i i ij

= η(m) ​b ​  since π ​ = ​π ​P ​

j:m ​>0j

∑ j j

i

∑ i ij

= η(m)α(m)

η(n)
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4.8 Open queueing (Jackson) networks
In an open queuing network the number of customers in the system can be arbitrary and customers can both enter and
leave the systems (both must occur to obtain a stable system.) We need the following ingredients

Arrival rates  at each node which describing customers which enter the system at node  according to a Poisson

process with rate .

Waiting times at each node with rate  which describe the service time at node .

Routing matrix  which describe the transition between nodes and the exits from the system. We assume  is sub-

stochastic, i.e.   and  with at least one row have a sum . We interpet

We can think of  as describing the transition probablities of a set of transient states in a Markov chain with an

absorbing state which corresponds to being out of the system. In particular we know that  is invertible.

a ​ ≥i 0 i

a ​i

b ​ >i 0 i

Q Q

Q ​ ≥ij 0 ​ Q ​ ≤∑j i,j 1 ​ Q ​ <∑j i,j 1

Q ​ =i,j P ( go to node j after service at node i)

q ​ =i 1 − ​Q(i, j) =
j

∑ P ( exit the system  after service at node i)

Q

I − Q
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Traffic equations If we are in a stationary state the rate  at which customers leave the node  should balance the rate

at which customer enter node . This leadf to the equation

If we use a row vector  we obtain

Transition rates As for closed networks we will use the function  which removes an agent at noe  and adds it at node

. But we will also need the transition maps

which add/remove agents to/from the system at node . The transition rates and jump rates are then given by

r ​j j

j

​ =

rate of leavingj

​r ​j ​ +

rate of entering j from outisde

​a ​j ​ ​

i

∑
rate of entering j from node i

​r ​Q ​i ij

r = (r ​, ⋯ , r ​)1 j

r = a + rQ ⟹ r = a(I − Q)−1

T ​ij i

j

S ​(n ​, ⋯ ,n ​) =i
+

1 K (n ​, ⋯ ,n ​ +1 i 1, ⋯ ,n ​) ,S ​(n ​, ⋯ ,n ​) =K i
−

1 K (n ​, ⋯ ,n ​ −1 i 1, ⋯ ,n ​) (if n ​ >K i 0

i

​ ​

α(n,S ​n) = a ​j
+

j

α(n,S ​n) = b ​q ​  if n ​ > 0j
−

j j j

α(n,T ​n) = b ​Q ​  if n ​ > 0ij i ij i

α(n) = ​a ​
+

j

∑ j ​b ​

j:m ​>0j

∑ j
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Theorem 4.2 (stationary distribution for open queueing networks) Consider an open queueing network with arrival
rate , waiting times rate  and routing matrix  (irreducible and substochastic). Let  denote the solution of the

traffic equation . Then stationary distribution exists if and only  for all nodes and is then given by a

product of geometric distribution

We prove . We decompose that sum over  into three different pieces

corresponding to the different transition (arrivals, exit, swap of nodes). We have

ai b ​i Q ​ik r

r = a + rQ r ​ <i b ​i

η(n) = C ​ ​

l=1

∏
K

(
b ​l

r ​l )n ​l

​ η(n)α(n,m) =∑n=m α(m)η(m) n

​

​η(S ​m)α(S ​m,m) = ​η(m) ​a ​ = η(m) ​ ​a ​

j:m ​>0j

∑ j
−

j
−

j:m ​>0j

∑
r ​j

b ​j
j

j:m ​>0j

∑
r ​j

b ​j
j

​

​η(S ​m)α(S ​m,m) = ​η(m) ​b ​q ​ = η(m) ​r ​q ​

j

∑ j
+

j
+

j

∑
b ​j

r ​j
j j

j

∑ j j
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Finally using the traffic equations we have

From the traffic equation and multipling by the row vector of ’s’ and using that  we find

Summing up the three terms we find that

as desired. 

​ ​

​η(T ​m)α(T ​m,m) = η(m) ​b ​Q ​

i,j:m ​>0j

∑ ji ji

i,j:m ​>0j

∑
r ​/b ​j j

r ​/b ​i i
i ij

= η(m) ​ ​ ​r ​Q ​ = η(m) ​ ​ (r ​ − a ​) = η(m) ​b ​ 1 − ​

j:m ​>0j

∑
r ​j

b ​j

i

∑ i ij

j:m ​>0j

∑
r ​j

b ​j
j j

j:m ​>0j

∑ j (
r ​j

a ​j )

1 Q1 = 1 − q

r1 = a1 + rQ1 = a1 + r(1 − q) ⟹ a1 = rq  or  ​a ​ =
j

∑ j ​r ​q ​

j

∑ j j

​η(n)α(n,m) =
n=m

∑ η(m) ​ ​a ​ + ​b ​ ​ =⎝
⎛

j

∑ j

j:m ​>0j

∑ j⎠
⎞

α(m)η(m)

■
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4.9 Exercises
Exercise 4.1 (Yule process) The Yule process is is a pure birth process describing the the growth of a population: if
there are  individual in the population then each individual will give birth with a rate  and so the birth rate is

. The goal here is to compute explicitly the transition probbaility .

Assume first  and let  be the time it takes for the population to go from size  to size , that is  is

exponential with rate .

n λ

λ(n) = nλ P (X ​ =t n∣X ​ =0 k)

X(0) = 1 T ​i i i + 1 T ​i

λi
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Exercise 4.2 (Non-Explosion for birth/death models) Show that a birth and death model with birth and death rates
which satisfiy  does not undergo explosion.

Exercise 4.3 (Population model with immigartion) Consider a birth death model with birth rate  and

death rate .

For which value of   and  is the process positive recurrent, null recurrent, transient.

Suppose . Show that the mean  and the variance  satisfy

differential equations. Solve them.

λ(n) + μ(n) ≤ an + b

λ(n) = nλ + ν

μ(n) = nμ

λμ ν

X ​ =0 i m(t) = E[X ​]t v(t) = E[X ​] −t
2 m(t)2
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Exercise 4.4 (Geometric sum of exponential) For use in  prove the following fact. If  is geometric that

 for  and  are IID exponential with parameter  then

is exponential with parameter .

Hint: You can use either the MGF (like in the compound Poisson process or like for branching processes) or the CDF
and the PDF..

Exercise 4.3 Q

P (Q = k) = (1 − q) qk−1 k = 1, 2, 3, ⋯ T ​i λ

T ​ +1 T ​ +2 ⋯T ​Q

λq

84



Exercise 4.5 (More on the M/M/1 queue) Consider an M/M/1 queue with arrival rate  and service rate . Recall that

when  its stationary distribution is geometric with parameter .

1. Show that if the queue is stationary then rate at which customer leaves must be equal to  (and is independent of 

!)

2. Suppose again that the queue is stationary, compute the distribution and the expectation of the time  a customer

spends in the queue until they reach service station (this is often an important quantity when designing a queueing
model!).
Hint: Note the distribution of  as a continuous and discrete part. Use the result in .

3. Suppose that upon entering the system the customers look at the length of the queue and may decide to leave the
system depending on the length of the queue. For example assume that if there are  customers in the system,

upon entering customers will stay with probability . Find the stationary distribution in this case.

4. Suppose that agents are actually difficult customers: upon exiting the service station with probability  they exit

the system for good but with probaility  they re-enter the sytem and go back in line Show that this process is

equivalent to another M/M/1 queue with new rates.
Hint: Use  again.

λ μ

λ < μ λ/μ

λ μ

W

W Exercise 4.4

n

p(n) = ​

n+1
1

q

1 − q

Exercise 4.4
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Exercise 4.6 (M/M/1 queues in series) Consider the following queueing system. Agents arrive into the system
according to a Poisson process with rate  and then pass successviely through a sequence of  service stations where

the service time in station  is exponential with parameters .

We describe the number of customers by the vector  where  is the number of customers at

the  station and which which takes values in the state space 

1. Make a list of all possible transitions and compute the corresponding rate.

2. From  (part 1.) we learned that for a single M/M/1 queue in equilibrium the rate at which customers
enter and leave the system is equal to . Since the customers are then fed into the next queue this suggests that for

the queue in series the rate of customer entering and exiting all the queues will all be equal to  and that can be

achieved by the product of geometric distributions

Prove that  is indeed stationary.

Hint: it is easiest to prove this using detailed balance.

λ K

i μ ​i

X ​ =t (X ​, ⋯X ​)1t Kt X ​it

ith S = n = n ​, ⋯ ,n ​ : n ​ ≥ 0 integer .{ ( 1 K) i }

Exercise 4.3
λ

λ

π(n) = π n , ⋯ ,n ​ =( 1 K) ​ 1 − ​

i=1

∏
K

(
μi

λ ) (
μ ​i

λ )n ​i

π
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Exercise 4.7 (Jackson networks) Consider an open Jackson network such that at node  the service rate is  if the

. This correspond to the situation with infnityl many servers at each node. Show that such network has a

stationary distribution given by \eta({\bf n}) = \prod_{l=1}^K \frac{\left(\frac{r_k}{b_k}\right)^{n_l}e^{-\left(\frac{r_k}
{b_k}}}{n_l!} where  satisfy the traffic equation .

i n ​b ​i i

Q ​ =t n

r ​k r = a + rQ
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