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1 Poisson processes

We turn now to continuous Markov processes X; wheret € [O, oo) The simplest such example of such process is the
ubiquitous Poisson process.




1.1 Definition of the Poisson process




1.2 Distribution of the Poisson process

Theorem 1.1 (Distribution of the Poisson process) The Poisson process IV; with IN; = 0 has the distribution

P{N, =k} = e_At%

i.e. Nt has Poisson distribution with parameter At. Morever for s, My = N1 s — N, is a Poisson process.

Proof (version 1 using Poisson limit). Pick a large number 1 and divide the interval [O, t] into n intervals of size %.Write

n

Ne=), (Njﬁ - N(j—l)i)

j=1

as a sum of n independent random variables. If n is large the probability that any of these random variables is at least 2 is
small. Indeed, by a union bound, we have

P{Nj% _N(j—l)f—l > 2 for somej} < ZP{N]-% —N(j_l)% > 2} <nP {N
j=1

which goesto 0 asn — oo.




Therefore N, is, approximately, a binomial random variables with success probability )\i :

roien=(0) (2) (-2)”

and as . — 0o this converges to a Poisson distribution with parameter A\t. .

Proof (version 2 using ODESs). Let us derive a system of ODEs for the family P,(k) = P {N; = k}.We have

d T P{NH_At:kZ}—P{Nt:k}
ae ) = A At

Conditioning we find

P{Niat =k} =P {Ny a: = k|N; = k} P{X, = k}
Y P{Na = kN, =k —1}P{X, =k —1}
L P{Nya = kN, <k —2YP{X, <k —2)
=P,(k)(1 — AAt) + Py(k — 1)At + o(At)

and this gives the system of equations

d
2 12(0) = —AR(0) Py(0) = 1
S P(K) = APk —1) = AP(k)  Pyk) =0




We find Py(t) = e~ for k = 0.We use an integrating factor and set f;(k) = e P, (k). We have then f;(0) = 1 and
fork > 0

d
Eft(k) — )‘ft(k - 1), fo(k) =0

which we can solve iteratively to find

(At)*

and thus IV; has distribution




1.3 Poisson process and exponential random variables

Poisson processes and exponential (and gamma) random variables are intimately related. Given a Poisson process we
consider the interarrival times T, T, - - -:'I7 is time of the occurence of the first event, T5 is the time elapsed between

the first and second event, and so on.

Theorem 1.2 If [V, is a Poisson process with parameter X the interarrival times are independent exponential random
variables with paramter \.

Proof. If T7 > t it means no event has occured up time t and so N; = 0. Therefore
P{Ty >t} =P{N, =0} =e
and thus 17 has an exponential distribution. For T5 we condition on T}
P{TQ > t} = /P(T2 > t‘Tl = S)le(S)dS
and, using the independence of the increments,
P{T, > t|T) = s} = P{0 eventsin (s,s + t]|Ty = s} = P {0 eventsin (s,s + t]} = e

from which we conclude that T5 has exponential distribution and is independent of T7. This argument can be repeated for
T3 by conditioning on the time of the second event,T7 + T5,andsoon.
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Another set of closely related quantities are the arrival times of the n”* event S1, 59, - - - which are related to the
interarrival times by

51:T17 S2:T1‘|‘T2, 53:T1—|—T2—|—T3,-'-

By Theorem 1.2 S,, is the sum of n independent exponential RVs and thus .S,, a Gamma RV with parameter (n, )\) with
density

e ()"
(n—1)!

We can actually prove this fact using the Poisson process by noting that, by definition,

fs.(t) = Ae fort > 0.

Ny >n <— S, <t,

th

that is if n or more events have occured by time ¢ if and only the n*" event has occured prior to or at time .

So the CDF of S,, is

Fy (t) = P{S, < t} = P{N, > n} — Z -t At)

and upon differentiating we find

—At — (At) — )t — (At)! L (A)!
fs.(t) = —Xe Z(j!) + Ae Zﬁ:/\e ﬁ _

j=n Jj=n
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1.4 Poisson process and uniform distribution

Let us start with a special case and assume assume that Ny = 1, that is exactly one event has occured in [0, t]. Since the

Poisson process has independent increments it seems reasonable the event may have occur with equal probability at any
time on [0, t]. Indeed for s < t we have, using the independence of increments.

P{T; <s,N; =1} P{leventin (0,s] and no event in (s,t]}

P{T; < s|N, = 1} =

/\86—)\36—)\(15—3) s
B Ate— M Tt

and thus the density of the arrival time T7 conditioned on N; = 1 is uniform on [0, ¢]

We study further the properties of the arrival times S7 < Sy < - - - of a Poisson process. The following result tells us
that they follow a uniform distribution on [0, ¢|.

Theorem 1.3 Given the event {Nt = n} the n arrival times S1, Sa, - - - have the same distribution as the order
statistics for n independent random variables uniformly distributed on [0, ¢.

Proof. The conditional density of (S1, - - - , S,,) given that IN; = n can be obtained as follows. If S1 = s1, Sy =
So, -+, 8, = s, and N; = n then the intearrival times must satisfy

Tl :317T2 = 89 — 815y 7Tn — sn_sn—17Tn+1 >t—3n'
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By the independence of the interarrival times proved in Theorem 1.2 the conditional density is given by

f(817327 T 78n7n)
P{Nt E— n}
)\e—)\sl )\6—)\(52—32) . )\e—)\(sn—sn_l)e—)\(t—sn) n!

f(817 32, P ,sn’n) —

oAt (A1) T

n!

which is the joint density of the order statistic of n uniform.
Recallif X1, - - - , X, are ID random variable with joint density f(z1) - - - () and X < X2 < ... X (™) the
order statistics, then the joint pdf of X (1) - .. X (") is given by

g(z1,+ ,2n)) = { n!f(a:1)6..f(mn) Z:el <zyg<--ez,
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1.5 Simulation of Poisson process

The characterization of the Poisson process in terms of exponential random variables suggest immediately a very simple
algorithm to simulate IV,.

Simulate independent exponential RVs 17, 15, - - - with parameter Aandset IN; = Ofor0 <t < 13, N; = 1for
T, <t <1Tj+ T5 andsoon.

» Code

2000 4 —— sample of N; ~
E[N:]1= At

1750 A

1500 A

1250 A

= 1000 -

750 A

500 A

250 A

0 25 50 75 100 125 150 175 200
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1.6 Simulation of a Poisson random variable

® |tisnoteasy tosimulate directly a Poisson random variable X from its pdf/cdf but we can do it elegantly using its

relation with exponential random variable. To do this generate independent exponential random variable until they
sumupto 1 (so as to generate X = IV;) and use the relation between exponential and uniform.

n n+1 n n+1
1 1
X=n<+<= ) TH <1<) T < Z_XIH(U"’) <1< Z‘Xln(Uk)
k=1 k=1 k=1 k=1
n n+1 n n+1
= W([JU:) > -A>W((]]U:) = [[U:ze?>]]U
k=1 k=1 k=1 k=1

® Algorithm to simulate a Poisson random variable with parameter A: Generate random numbers until their product is

smaller than e_)‘.

® Generate random number Uy, U, - - -.

u Sethnifn—l—lzinf{j : ilej <e_)‘}




» Code

Frequency

Histogram of Poisson(5) Samples vs. Theoretical PMF

800 -

600 A

200 A

I Simulated Data

[ Theoretical Poisson PMF

0.0 2.5 5.0 7.5 10.0 12.5 15.0
Poisson Random Variable

17.5

15
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1.7 Long time behavior of the Poisson process

® \Weinvestigate the behavior of NV, for large time. We prove a CLT type result, namely that
o N
m ———

t—oo A/ )\t

— / in distribution

where Z is a standard normal RV.

® Recall that the characteristic function of a Poisson RV Y with parameter pis E[eY ] = e#(¢"~1) Therefore

a

B [eiaﬁt\/%] _ e)\t(e m—iﬁ—l)

. . 1 . 2 1 . jo M2t
Exp;;mdlng the exponential we have \t (e N — zﬁ — 1) = -5+ O(ﬁ) and thus lim;_,., F/ [e | =
e_aT

® The same computation shows also that, for any fixed ¢, lim _, o Nt%};‘t = Z in distribution since rescaling the

parameter is equivalent to rescaling time.




1.8 Sampling a Poisson process

We can sample or split a Poisson process. Suppose that every event of a Poisson process (independently of the other
events) comes into two different types, say type 1 with probability p and type 2 with probabilityg = 1 — p.

Theorem 1.4 Suppose IV, is a Poisson process with parameter X and that every event (independently) is either of type
1 with probability 1 or type 2 with probability g = 1 — p. Then Nt(l), the number of events of type 1 up to time ¢, and
Nt(z), the number of events of type 2 up to time ¢, are independent Poisson process with rate Ap and )\(1 — p).

Proof. We check that Nt(l) satisfy the definition of a Poisson process and the use Theorem 1.1

Nél) = 0and Nt(l) has independent increments since [NV, has independent increments and events are classified of type

1 and 2 independently of each other.
We have

p {Nt(}r)At = t(l) + 1} = P{N;. A = N; + 1 and the event is of type 1}

+ P{N;,. A+ > N; + 2 and exactly one event is of type 1}
= MAt X p+ o(At)

17
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P {Nt‘j)m Nt(l)} — P{Niiat = N;Y + P{Ny,as = N; + 1 and the event is of type 2}

+ P{N;. A+ > N; + 2 and no event of type 1}
= (1 — AAt) + AAL(1 — p) + o(At) = 1 — AAtp + o(At)

P{NDy = N + 2} = o(At)

Finally to show that Nt(l) and Nt(2) are independent we compute their joint PDF by conditioning on the value of IV; and
find

P {Nt(l) — n,Nt(z) — m} — P {Nt(l) — n,Nt(z) — m|Nt — n-'-m} P{Nt —= n—|—m}
— <n+m) (1 . )m —At ()‘t)n+m

B n (n +m)!

_ e—)\pt (Apt)n e—)\(l—p)t ()‘(1 — p)t)m
n! m!
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1.9 The coupon collecting problem

® \Werevisit the couplon collector but we relax the assumption that all the toys are equally probable. We assume that
any box contains toy z with probability p;. How do we compute now the expected number of boxes needed to collect

all the M toys? The argument used earlier does not generalize easily.

® \We use the following trick or radomizing the time between boxes. Instead of collecting boxes at fixed time interval, we
collect them at times which are exponentially distributed with parameter 1. Then the number of boxes collected up to

time t a Poisson process IN; with rate A = 1 (on average it takes the same time to get a new box). We have now M
types of events (getting a box with toy z) and we split the poisson process accordingly. Then by Theorem 1.4 the
number of toys of type ¢ collected up to time ¢, Nt(z) is a Poisson process with rate Ap; = p; and the Poisson

processes Nt(i) are independent.

® \We now consider the times
T = time of the first event for the process Nt(i)

that is the time where the first toy of type 7 is collected. The times T are independent since the underlying Poisson
processes are independent, and are exponential with parameter p;. Furthermore

S = max T® — time until one toy of each type has been collected.
1
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® By independence we have

P{s <t} =P {max1® <o} < [[P{10 < e} = [Ja-e ™)
Thus
E[S] = /OO P{S > t}dt = /00(1 — ﬁu — e Pit)) dt

® Finally we relate S to the original question. If X is the number of box needed to collect all the toys then we have

X
5= s,
k=1
where S}, aree 11D exponential with parameter 1. But conditioning it is easy to see that
E[S] = E[N]E[S,] = E[N]

and we are done.
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1.10 Poisson process with variable rate

® \We can generalize the Poisson process by making the rate )\(t) at which event occur depend on time: a
nonhomogeneous Poisson process IV; with rate paratmeter (%) is a continuous time stochastic process such that

" Independent increments: Giventimes 1 < t; < 89 < ty--- < s, < t, therandom variables IV;, — N, (thatis
the number of events occurring in the disjoint time intervals [si, ti]) are independent.

® We have

P{Nt_|_At = Nt} =1- )\(t)At + O(At)

P{Niyar = Ny + 1} = A(t) At + o(At) with lim 2AY

At—0 At =0 (1.2)
P{Nt+At Z Nt —|— 2} — O(At)

® One way to construct a nonhomgeneous Poisson process is by sampling it in a time-dependent manner. Suppose )\(t)
is bounded (locally in t), then we pick A > )\(t). We consider a Poisson process M with constant rate A, and if an

event occurs at time £ then we decide to keep this event with probabilityp(t) = @ and we discard the event with

probability 1 — p(t). By the same argument we used in the section Sampling a Poisson process we see the number of
kept events satisfies the definition of a non-homogeneous Poisson process in Equation 1.2
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® |etusconsider an event for the process M; which occured in the interval [O, t]. By our analysis of arrival time we
know that this event occured a time which is uniformly distributed on the interval [O, t]. Therefore the probability that
this event was accepted and contribute to IV; is therefore

1 [P A(s)
= — —=d
Pe t/O 3\ S

® By repeating then the second part of the arguement in the section Sampling a Poisson process we see that M; has a
Poisson distribution with parameter

t
)\tpt:/ A(s)ds
0

and in particular

B[N, = /0 As) ds
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1.11 Queueing model with infinitely many servers

® Assume that the the flow of customers entering an onine store follows a Poisson process N; with rate X. The time S

spent in the store for a single customer (browsing around, checking out, etc..) is given by tis CDF G (t) = P{S < t}
and we assume that the customers are independent of each other.

® To figure out how to allocate ressources one wants to figure out what is number of customers, M, which are still in
the sytem at time £.

® To find the distribution of M} let us consider one of the customer by time ¢. If he arrived at time s < ¢ then he will
have left the system at time ¢ with probability G(t — s) and will still be in the system by time ¢ with probability 1 —
G(t — s).Since the arrival time of that customer is uniform on [0, ] the distribution of M is Poisson with mean

E[M,] =/0(1—G(t—s))ds:)\/0 (1— G(s))ds, .

For large t, we see that E[M;] =~ AE|S].




24

1.12 Compound Poisson process

® [Example: Suppose that the number of claims receieved by an insurance follows a Poisson process. The size of each
claim will be different and it natural to assume that claims are independent from each other. If we look at the total
claims incurred by the insurance company this leads to a stochastic process called a compound Poisson process.

® Astochastic process X is called a compound Poisson process if it has the form

Ny
X, =) Y,
k=1
where IV; is a Poisson process and Y7, Y5, - - - are [ID random variables which are also independent of IV;.

® The process X; has stationary independent increments. Using that N; — N is a Poisson process

Ny Ni s
X, — X, = Z Y. has the same distribution as X;_, = Z Y.
k=N, 0
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® We can compute the MGF of X (or its charactersitic function) by conditining on IN;. Suppose my (a) = E[e®" ] is
the moment generating function of Y and using the MGF for the Poisson RV we find

0

mx,(a) = E [e**] = E [easzill’k] = ZE [eafoilYk‘Nt =n| P{n; = n}
n=0
= Z m(a)"P{n; =n} = eMt(m(a)-1)

® \We can compute then the mean and variance

mly () = @D tm! (o)
m’g, (a) = MM D (m (a) + At)?()m/ (a)?)

and thus
E[X,] = ME[Y] and Var[X = At(Var(Y) + E[Y]?])

With a bit more work we could prove a central limit theorem.
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1.13 Exercises

Exercise 1.1 Let NV, be a Poisson process with rate A and let 0 < s < t. Compute
1.P(Nt :n—|—k’Ns :k)
2.P(N3 :k|Nt :n—l—k)

3. E[N;N,]




Exercise 1.2 Robins and Blackbirds make independent visit to my birdfeeder and they are described by independent
Poisson processes R; and B; with rate p and 3 (per minute) respectively.

1. whatis the probability | see four birds within the 5th and the 10th minutes.

2. What is the expected number of Robbins | will see between the third and fifth minutes given that | saw 3 Robbins in
the first two minutes.

3. What is the probability that the first two birds | see are Robins?
4. | have seen ten birds in the last hour. What is the probbaility that three of them were balckbirds?
5. What is the probability that | see exactly three Robins while | am waiting for to see my first blackbird?

6. Let T denotes the arrival time of the first blackbird. Find the distribution of Ry (i.e. compute P(Rr =k))

27




Exercise 1.3 (Estimating the number of asymptomatic using Poisson process with variable rates) Suppose people get
infected with a disease at a certain rate, a process described by a Poisson process I, with rate A which is unknown but

constant.

Upon being infected there is an incubation time I until the infected individual exhibits symptoms and we have P(I <
t) = G(t) for some known distribution function G(t).

1. Suppose S; is the total number of infected individual exhibiting symptoms by time ¢ and A, is number of infected
individual which do not exhibit symptoms. What are the rates for the processes Sy and A,?

2. If tis reasonably large one can argue that a poisson processes IN; with variable rate A(t) satisfies Ny ~ E[N;] =
t
fo )\(s)ds with high probability. (This follows from the fact that a Poisson RV with large parameter concentrates

around its mean, see the CLT argument).
Use this fact to estimate the E/| A;| even if the infection rate X is unknown.

3. Suppose P(I > t) — e /P with B = 10, and that after 16 years 220 thousand people are infected. What is the
estimate for the number of asymptomatic individuals?

28




Exercise 1.4 (Bulk arrivals) At Spoke on Thursday night groups of customers arrive according to a Poisson process with
rate \. Each of the groups, independently of all other groups and of the Poisson process, has a random size decribe a

random variable N taking value in the positive integers. Upon arriving every individual goes order drink by herslef and

spent a random amount of time 7" at Spoke with a distribution G(t) = P(T' < t). In preparation for a big night Spoke
has infinitely many servers. After this individuals exit Spoke.

® Find the the expected amount of customer Y; at Spoke at time ¢.

® Describe is the distribution of Y;?

® |fthe night is infinitely long, does the system reach an equilibrium?

*Hint: Revisit the M/G/oo gueue and the compound Poisson process.

29
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2 Continuous time Markov
chains

In this section that we build a continuous time Markov process X; witht > 0. The Markov property can be expressed as
P{X; = jl{X;},0 <r <s} = P{X; = j|X,}.

forany0 < s < t.
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2.1 Exponential random variables

To construct a Markov we will need to use exponential random variables. Recall that an exponential random variable I’

with parameter A has the pdf fr(t) = Ae™ M, fort > 0,thecdf Fr(t) =1 — e * andmean E[T] = 1.

A simple and important fact is the memoryless property of exponential random variables.
P(T>t+s|T>s)=P(T>t)

If you think of T" as a waiting time then the memoryless property tells you that if you have waited a time s then the
probability that you have to wait an extra time ¢ is exactly the same as waiting for a time ¢ at the beginning. In that sense

the process of waiting starts anew at anytime, and so you have forgotten the past. This property is the key to construct
Markov process in continuous time.

For general Markov process we will need exponential random variables with various parameters and we will use the
following simple fact repeatedly.

Proposition 2.1 (Properties of exponential randomm variables) Let 17, T5, T3, - - - be independent exponential
random variables with parameter A1, A, - - -. Then
1.7 = min{Ty, - -- ,T,} is an exponential random variables with parameter A\; + - - - + \,. Note that n = oo is
allowed if we assume that Zn A is finite.
.
2. P{T;, = min{T\,--- ,T,}} = ‘
{7 {7, In}} g Ak aas 4=
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Proof. For 1. we have, using independence,
P{T >t} =P{Ti >t,--- , T, >t} =P{TL > t}--- P{Tp >t} = e M1t Mn)t

and thus 7' is an exponential random variable.
For 2. we have, by conditioning,

00 00 ]\
P{T' =T} = / P{T, > t,---, T, >t} fr,(t)dt = / e~ ot Fha)ty e=Nt gy — X L X
0 0 1+
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2.2 Definition of a continuous time Markov chain

® Asfor the Poisson process we will give two equivalent definition of the process, the first one describe infinitesimal
rates of change of the probability disttribution and leads to a system of ODEs describing the evolution of the pdf of X

which are called the Kolmogorov equation. The second definition use exponential random variables and waiting times
and will lead naturally to an algorithm to simulate a continuous time Markov chain, often called the stochastic
simulation algorithm.

® To define a Markov process on the state space S we assign a number (%, ) for any pair of states ¢, j withé # j. You
should think these numbers

a(i,j) = rate at which the chain changes from state i to state j .

We denote

ai) = Z a(i,7) = rate at which the chain changes from state i .
JF#t

® Formally a continuous Markov chain with rates (4, 7) is a stochastic process X; such that

P{Xiiat = j|Xi = i} = (i, j) At + o(At)
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® Proceeding as for the Poisson process we can derive a differential equation for p; (z) = P{Xt = 7,} By conditioning

we have

P{Xyat =1} = (1 —a(@i)At)P{X; =i} + Z a(f, 1) AtP{X; = j} + o(At)

J#4
which leads to the system of linear ODE’s
d
) = —en) + 3 el in) (2.1
JF1

called the Kolmogorov backward equations.

® The infinitesimal generator of a continuous-time Markov chain is given by the matrix

1 [—a(l) a(1,2) «(1,3)
21 a(2,1) —a(2) «(2,3)
A=3]a3,1) «3,2) —a3)

and the entries of A satifies

A(i,j) > 0fori#j and Y A(i,i) =0
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® Ifweusearowvector p; = (ps(1),p:(2),- - - ) then we can rewrite Equation 2.1 as the system
d
— Pt — tA 22
P =P (2.2)
k Ak
® |f S'isfinite then one can write the solution in terms of the matrix exponential etd .= 120:0 %
tA
bt = Po€ .

where po(2) = P{X, = i} is the initial distribution.
® \We can also write equation for the transition probabilities (take Xg = 17)
P,(i,j) = P{X; = j|Xo = i}

and we obtain the matrix equation

d
P =PA, withR =1 = P, = ¢4

which we can solve using linear algebra techniques.
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2.3 Solving the Komogorov equation

For finite state space S finding the transition probability reduces to a linear algebra problem. For example if the matrix A
is diagonalizable (e.g. if the matrix symmetric or if all the eigenvalues are distinct). let us denote the eigenvalues of A are
A1, A2, Ay of A with corresponding the eigenvectors f1, - - - , fi. Note that 0 is always an eigenvalue with eigenvector

(1 1 --- 1)T(thesumoftherowsisequaltoO).

Then we have

We find then that
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For state space os smalll size IV this is easy to compute using numerical or symbolic (for very small N) computation
package. For example if

1/-1 1 0 O
211 -3 1 1

A=
3 0 1 —2 1
4\0 1 1 —2
we find
1 2¢7t e ¥ 1 e 4 1 et e 4 1 et e 4
{4+ 3 t12 4 1 4_3+412 4_3+412 \
1_e” 1 3™ 1_ ™ 1_e”
Pt — 1 4e—t 4 o4t 41 efl4t 1 e—él e—%t o4t 1 e—fl o3t o4t
A TS v e S S L P A L R P )
e e e e e e e e e
4 3+12 4 4 4+6 2+1 4+6+2+1
» Code
Matrix A:

-1 1 0 o0 |

Eigenvalues of A:
{-4: 1, -3: 1, -1: 1, 0: 1}

Eigenvectors of A:

( M 171\
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2.4 Stochastic simulation algorithm

In this section we propose an alternative descritpion which is more probabilistic in nature and allows us to construct the
paths of the Markov chains.

To any pair of states (¢, j ) we associate a “clock” T'(%, 7 ) which is an exponential random variable with paramter (rate)
a(%, 7). All the random variables used are assumed to be independent.

® If X; = 1, the Markov chain moves to another state after the first clocks T'(%, j) rings, this happens at time

T = mk;m{T(i, k)}

which is exponential with parameter a(z) = >, ; (i, k). Sowehave Xy, =i for 0 < s <T.

® |f the clocks that rings first is the clock T'(¢, j) thatisif T'(i, j) = T = ming{T (¢, k) } then the Markov chain
moves to state j at time. Thatiswe set T} .7 = j.
The probability that the Markov chain jumps to k is

QUij) = P (T00.0) = T = min{T(i, b} ) =

which defines a transition matrix.

® Take a set of brand new clocks T'(j, k) with rates (3, k) and repeat.
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® The Markov property follows form the memoryless property for an exponential distribution 1T": P(T > 1+ S|T >
s)=P(T > t).

® |f X; = 1 then by construction the position after the next jump after time t clearly depends only ¢ and not the states that
the Markov chain visited before time £. Moreover if we consider the time of the last jump before time ¢ which occured,
say at time s < t,then the memoryless property of the exponential random variable implies that the time at which the
jump occur after time t does not depend on s at all. Putting these together this implies the Markov property

P{XH—u :]’XS,O <s< t} — P{Xt—HL — ]|Xt}

® To connect this to the previous description we derive an integral equation for P; by conditioning on the first jump

t
Py(i,5) = P(X; = j|Xo = i) = 6(i, j)e V' + / a(i)e > " Q(i,k)Pr_(k, j)ds
2 PRI A )

no jump in [0,t] density of jump time \_ i ,

~~

choice of jump

lterating this equation and settingt = At we find

—1 as At—0

=6(%,7)(1 — Ata(e)) + a(i, j) At + o(At)
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2.5 Stochastic Simulation algorithm (or Gillepsie algorithm)

The description of Markov chain using the rates is essentially a pseudo-code to generat trajectories of X.

» Code

Markov Chain Trajectory (SSA)
3.0 — -1 —
2.5 1
2.0 1 - - — = —
3
o 1.5
&
1.0 — — =
0.5
0.0 —
5 10 15 20 25 30
Time
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2.6 Example: Uniformizable chain

® Consider a Markov chain Y;, with transition matrix () and we assume that Q(%,¢) = 0. Then we pick rate a(¢) = 1
for all states 2. The times at which the Markov chain has transition is thus a sum of I1ID exponential, that at time ¢ is
then described by a Poisson process IV;. In other terms we have

Xt — YNt
where IV, is a Poisson process with rate 1.
® |nthis case we can compute the transition matrix quite explicitly:

P{X; = j|Xo =i} = P{Yn, = j| X0 =i}

=) P{Yy, = j, Ny = n|X, = i}

— ZP{Yn = j| Xo = i} P{N; = n}
n= O
—ttn

—Z @ (0,5) = "

and the generator isgivenby A = (Q — I).




2.7 Exercises

Exercise 2.1 Machine 1 is currently working and machine 2 will be put in use at a time T from now. If the lifetimes of the
machines 1 and 2 are exponential random variables with parameters A1 and Ay, what is the probability that machine 1

is the first machine to fail?

Exercise 2.2 Consider a two-server system in which a customer is first served by server 1, then by server 2 and then
departs. The service times at server 2 are exponential random variables with parameter p; withz = 1, 2. When you

enter the system you find server 1 free and two customers at server 2, customer A in service and customer B waiting in
line.

1. Find the probability P, that A is still in service when you move over to server 2.
2. Find the probability Pg that B is still in service when you move over to server 2.

3. Compute E|T),where T is the total time you spend in the system. Hint: Write T' = S1 + S2 + W4 + W3 where
S; is your service time at server i, W4 os the amount of time you wait in queue when while A is being served, and
W g the amount of time you wait in queue when while B is being served.
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Exercise 2.3 (Hyperexponential and hypoexponential random variables) Suppose 17 and 15 are independent
exponential random variables with parameters A\; and A\s.

1. Suppose N isaRV with P(N = 1) = p(1)and P(N = 2) = p(2) = 1 — p(1). The random variable Ty is
called an hyperexponential RV. It describe the service time of an agent sent to one of two service station with
suitable probabilities. What is the probability distribution function of T’ .

2. The random variable T + T5is called an hypoexponential RV and describe the service time of an agent going
through 2 successive service station. What is the probability distribution of X1 + X397

Exercise 2.4 (The flip-flop process) Let IV, be a poisson process and consider the process
X = Xo(—-1)N
where X is arandom variable taking value in { —1, 1} and which is independent of IV;. Note that X oscillates

between 0 and 1. Show that
1 1 —2)t 1 —2)\t
p== ( +e e

2 \1— 6—2)\t 1+ 6—2)\15
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3 Long time behavior of
continous-time Markov
chains
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3.1 Stationary distributions and detailed balance

® A probability vector 7 is a stationary distribution for the Markov chain with generator A if

wP,=mn forallt >0

02%%1%:771413,5 — wA=0.

® Interms of the rate (4, j) we see that 7 is stationary if and only if

Y w(@)a(i, ) = m(G)all) = w4, i)

7] 7]

which we can interpret as balance equation. The quantity 7 (¢) (%, 7) is the rate at which the chain in a state 7
changes from ¢ to 7 and the stationarity equation means that

flow of probability away from state : = flow of probability into state ¢ holds for all statesz?

® Asfor discrete time we say that a Markov chain satisfies detailed balance if
m(i)e(d, §) = m(j)e(j, i) for all i # j

and clearly detailed balance implies stationarity.
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® The Markov chain with generator A is irreducible if for any pair of states %, j we can find states 41, - - - , 4y_1 such
that

Oi(?:, il)a(i% 7’3) e a(iN—laj) >0

If there exists a stationary distribution for an irreducible chain then 7 (¢) > 0 for all . Indeed if () > 0 and
a(i,j) > 0thenmA(j) = Oimpliesthat7(j)a(j) = >, 7(k)a(k, j) > m(i)a(i, j) > 0andthus a(j) > 0.

® Theissue of periodicity cannot occur for continuous time Markov chains

Lemma 3.1 For an irreducible Markov chain with generator A, P;(4,j) > Oforalli, jandallt > 0.

Proof. Using the Markov property and a sequence of states iy = 2,11, -+ , iy = J with positive transition rates

P{X; = j|Xo =1} > P{Xy/y = s, Xoy/y = t2, - Xy = j[Xo = i}
= P{Xyn = 01| Xo = i} P{Xoyyny = 02| Xyyv =i} - - P{X¢ = j|Xyn1 = in1}

and for example, using that (%, 41) > 0.

t/N
P{X;n = 01| Xy = i} 2/ a(i)e D5Q(i,3;)e =3 > 0. W
0
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3.2 Convergence to the stationary distribution

If the state space is finite and the chain is irreducible then we have convergence to equilibrium.

Theorem 3.1 If the state space S is finite and the Markov chain with generator A is irreducible then for any initial
distribution p we have

lim pP, =

t—00

Proof. We use a spectral argument and the result for discrete time Markov chain. Pick a number a such thata >
max ¢ (1) (this is possible since A is finite). Consider the matrix

1
R=-A+1
a

Then R is a stochastic matrix since 0 < R(,j) = a(i’j) < # < land R(%,1) = —@ + 1isin (0, 1).Clearly

Zj R(i,j) = 1since Zj A(i,j) = 0.Let us denote Y,, the Markov chain with transition matrix R, it is often called

the resolvent chain for the continuous-time Markov chain X;. The Markov chain is aperiodic since R(%,%) > 0anditis
irreducible since X; isirreducible.

Note also that 7 is a stationary distribution for Y, if and only if it is a stationary dsitribution for X} since

1 1
TR=—-mA+nl = —-7m7A+7
a a

somrtR=m <— wA=0.



From the convergence theorem for discrete time R" (4, j) — masn — 0o and we have seen (see the exercises) that R
has a simple eigenvalue 1 and all other eigenvalues A satisfy |A| < 1.Now

Rf=Af < Af=a(A—-1)f

and so 0 is a simple eigenvalue for A and the other eiegenvalue are of the form a(Re(A) — 1) + ia Im () and so the
real part is strictly negative.
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Thevectorl = (1,1,---, 1)T is a right eigenvector for A and 7 is a left eigenvector for A. If we define the matrix II as
the matrix whose rows are equal to 7, we have then

1
(P'—1II) | : | =0and n(P" —1I) =
1

Moreover if f the right eigenvector and g the left eigenvector for A for the eigenvalue 1 % 0 then we have
m(Af) =prf = (rA)f =0 and(g9A4)l =g(Al)=pgl =0
and thus we must have m f = 0 and g1 = 0. Therefore
P' —1II)f = P'f = e f and g(P" — II) = gP! = etg.

This implies that P? — II has the simple eigenvalue 0 and the same eigenvalues e/! as P! and 1 has strictly negative real
part. Therefore Pt — II convergesto Qast — 0o, or

lim P,(i, 5) = 7(j).

t—o0




3.3 Transient behavior

To study the transient behavior in continuous time we can use similar ideas as in discrete time.

Absorption probabilities: the absorption probabilities do not depend on the time spent in every state so they can be

computed using the transition matrix Q(%, 7 ) for the embedded chain Y;, and the formula in Section [Absorption
probabilities]

Expected hittiing time: For example we have the following result

Theorem 3.2 Supose X is an irreducible Markov chain with generator A and for j let
$(j) = inf{t > 0; X, = j}

be the first hitting time to state 7. Let A the matrix obtained by deleting the jth

row and 5" column from the
generator A. Then we have, for i # 7,

E[X(j)| X0 =1] = ZB’LZ where B = A~}

The matrix A has rowsums which are non-positive and at least one of the row must be strictly negative.
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Proof. By conditioning on the first jump which happens at time 1" we have

E[Z()| Xy = ] = E[T|X = i| + Y P{Xr=k|Xo =i} B[S()|Xo =k
. keS,k+£j el

expected hitting time

eXpeCted time until the first jump from the state after the first jump

Ifwesetb(i) = E[X(5)|Xo = 1] (fori # j) we find the equation

b(i) = —— + Y k) k) — 1= ai)b(i) — 3" als, k)b(k)

a(1) oy a(1) vy
which reads, in matrix form as
1=—-Ab — b= (—A)'1.

To show that — A is invertible we consider the matrix R = %fl + I where a is chosen larger than all the entries. Then
the entries of R are non-negative and the rowsums do not exceed one with at least one strictly less than 1. By the results
for discrete time Markov chains we know that

is invertible.
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3.4 Explosion

® For a continuous time Markov chain X} let us consider the time of the successive jumps

Here the T} are independent exponential but, in general, no identically distributed with parameters a; which depends
on the state being visited. We have then

i=1 "'

® Explosion: To see what can happen consider a Markov chain with rate (¢, + 1) = (n + 1)? and all other rates
equal to 0. Then the Markov chain moves up by 1 at every jump like a Poisson process but at accelerated pace. We
have then

1
n=1

s0 Sso < 00 with probability 1. So there are infinitely many jumps in finite time and X; = +o00 after a finite time.
This is called explosion.




® Thisis anissue familiar in ODE: the equation j—t:ct = :c% has solution has solution x; = xj’gt which blows up at time

t:a:O.

® |tisnot easytodetermine if an explosion really occurs. Indeed for no explosion to occur we must have, with probabilty
1,

where Y, is the embedded chain.

® Asufficient condition for non-explosion is a suitable upper bound on the rates a(), say a(¢) < a which s true for
finite state spaces but this is by no means necessary.
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3.5 Transience, recurrence, and positive recurrence.
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3.6 Stationary distribution for recurrent chains

Theorem 3.3 If the Markov chain with rates (%, 7) is irreducible and recurrent, then there exists a unique solution (up
to a multiplicative constant) n = (n(1),7(2), - - - ) to the equation A = 0 with

0 <n(i) < oo.

If it holds that ) . 7(¢) < oo then 7 can be normalized to a stationary distribution and X is positive recurrent.

Proof. The stationarity equation 77A can be written as
> n(al, k) = alk)nk) <= > n()a(i)Qyk) = n(j)a(s)
J#k J#k

That is the row vector p with entries u(k) = a(k)n(k) must satisfy u@Q = p.

If X} is recurrent then the embedded Markov chain Y,, with transition @Q is recurrent and so by the discrete time theory
we know that there exists a solution to () = . Therefore we have proved the existence of a solution fornA = 0.




Moreover, we have a the representation

[T(z)—1 “
p(g) =a(@n(y) = E L Z 1iy,—j1| Xo = 'LJ

k=0
where 7 is some fixed but arbitrary reference state (this counts the number of visits to the state 7 between two

consecutive visits to the reference state 7)

If we denote by .S, the time of the nth jump for X; we have

N 1 ,
() =) E @Hn:ﬁl{f(i»k}l% = Z]
k=0 -

= Z E [(Sk41 — S)1yi=jy Lir(iy>ky | Xo = 1]

(i)-1
=E | > (Sks1— Si) gyl Xo =i
k=

B

(an}

which is nothing but the time spent (by X;) in the state j between successive visits to 1.
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If >, n(j) < cothenwe have

[T(i)—1 "
EX()|=E LZ (Sky1 — Sk)[Xo = ZJ < 00

k=0

which is the expected return time to state 2. That is the chain X} is positive recurrent.




3.7 Ergodic theorem for positive recurrent Markov chains

We have the following theorem which is the exact counterpart of the discrete time case (and is proved very similarly so
we will omit the proof).

Theorem 3.4 Suppose X is irreducible and positive recurrent. Then X; has a unique stationary distribution, and with
probability 1, the time spent in state 7, converges to ()

i

lim : 1ix,—j3 ds = 7(j).

t—00

Moreover we have Kac’s formula: 7r(j ) is also equal to the average time between consecutive visits to state j:

L 1
") = EEIXe =41

Conversely if X; has a stationary distribution then X} is positive recurrent. Il
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3.8 Exercises

Exercise 3.1 (Formula for the stationary distribution) Show that if A is irreducible then the stationary distribution

solve the equation

m=(1,1)(A+ M)

where M (i, j) = 1forallg, j.

Hint: One option is to reduce it to the corresponding discrete case like in the proof of convergence in Theorem 3.1




Exercise 3.2 Consider the Markov chain X; with generator

1(2 1 1 o\l
210 -1 1 0
A_3 1 1 -3 1

4\0 0 1 —1}

® Find the stationary distribution.

® |f Xy = 1 whatis the expected time until the Markov chain visit state 4 for the first time.

® |f X = 2whatis the probability that the Markov visits state 3 before state 4.
® Compute (numerically) the transition probabilties P, (%, 7).

® Modify the SSA simulation algorithm to extract the stationary distribution from it.
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4 Birth and death process
and queueing models
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4.1 Birth and death process

® A general birth and death process is a continuous time Markov chain with state space {0, 1,2,--- } and whose only
non-zero transition rates are

A(n) = a(n,mn+1) = birth rate for a population of size n( for n > 0)

u(n) = a(n,n —1) = death rate for a population of size n( for n > 1)

® The Kolmogorov equations for the distribution of X; are,forn > 1

d
& pu(n) = pln+ Vpe(n £ 1) + Meapin — 1) — (A(m) + u(n)pi(m).
increase C?l; do death increase Eure do birth decrease due\dro birth/death
in a population of size n+1 in a population of size n—1 in a population of sizen

d
Forn = 0, the eqation reads %pt(O) = u(1)p:(1) — A(0)p;(0).

® The generator has the form
0 /—X(0) A(0) 0 0

L w1 AQ)-p1)  AQ) 0
2| o W) AR - @) AQ)
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The transition matrix for the embedded process Y, is

o O 1 0 0 \
1 M(l) 0 A(l) 0
n(1)+A(1) p(1)+A(1)
2 0 ©(2) 0 A(2)
1(2)+A(2) 1(2)+A(2)

which is the transition matrix of a general random walk on the non-negative integers.
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4.2 Examples
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® Population models: If X; describes the size of a population birth rate will be naturally proportional to the size of the
population if we assume that all individuals give birth or die with a certina rate.

B Pure birth model: no death occur and so

A(n)=nA and u(n)=0
® Population model: the rates
A(n) =nA and u(n)=nu
® Population model with immigration: if immigrants arrive acccording to a Poisson process with rate v the rates are

A(n)=nA+v and pu(n)=ny
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4.3 Transience of birth/death chains

To study transience we use the embedded Markov chain and ?@thm-criteriontransience. Choosing the reference state 0
we look for a solution a(n) witha(0) = 1and 0 < a(n) < 1formn > 1 of the system of equations

A(m)a(n +1) + p(n)a(n — 1) = (A(n) + a(n))a(n)

This leads to

an+1) —a(m) = Y am) —an 1) = =] ﬂﬁ;(am 1)

and thus, by telescoping,

Taking — oo we musthavea(n) — Oand D, , HJ ) ’;E ; < 00 and we find the solution

o0 k ]

a(n) _ Zk =n H] 1 l)fgg
o0 k j
1+ > 14 %
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4.4 Positive recurrence of birth/death chains

To study postive recurrence we simply solve for the stationary distribution mA = 0. Since the embedded Markov chain
satisfies detailed balance it is natural tro try to solve the detailed balance equations which amounts

m(n)A(n) = m(n + 1)p(n + 1)
which is eaisly solved to find
TG
m(n) Hl GO

and thus we have a stationary distribution if and only if
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® The Poisson process are bure birth models are not irreducible and converge to 400 almost surely.
e M /M /1-queue: H?Zl % = (%)n

® Transientif u < A.

® Recurrentif u = A

B Positive recurrent if A < w and with (geometric) stationary distribution:w(n) — (%)n ( _ A)

n! (%)n n <k

* M/M/k-queue:]];_, % =\ R (’Lﬂ)n n>k
L >

® Transientif kyu < A

® Recurrentif by = A

® Positive recurrent if A\ < kpu, the stationary 7 is a bit messy to write.

* M /M /oo-queue: [];_ ’;— = n! (%)n

= >
= 1>

Always positive recurrent with Poisson stationary distribution w(n) = e

S
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4.5 Speed of convergence via coupling M/M/ o0 queue

We can analyze the M/M/o0 queue in more details by the following argument. Suppose Xy = j is the size of the queue
at time 0. Then at time ¢ the people in queue are of two different types: either they were in queue at time 0 and are still in
queue at time t or they arrive after time between times 0 and time t and are still in queue.

The probability that a person in queue at time 0 is still in queue at time t is e .

Since the arrival of a Poisson process condiioned on [V, are uniformly distributed on [O, t], the probability that someone

not present at time O is still present at time t is

t o, ut
at) =5 [(1-erny =12
t Jo put
By combining this we see that

Xt =N +Y;

where
N; has a binomial distribution with parameters j and e

A
Y; has a Poisson distribution with parameters Aq(¢)t = — (1 — e )

7
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Clearly we see, again, from this computation that the distribution of X; converges to a Poisson distribution with

parameter ﬁ

We can also use it to control the speed of convergence since the previous calculation suggest a coupling. Indeed let k > j
and set

B; has a binomial distribution with parameters k — j and e **
Then with IV; and Y; as above we set
X, =Y, + N X; =Y, + N+ M,

The X; and Xt are M/M/oo queues starting at 7 and j respectively and they form a coupling.

We have then

IP,(j,-) = Pk, )lzv < P(X: # Y) = P(M; > 1) < BIM|] = (k — j)e

If we start with two arbitrary initial distribution v and 7 we find then the bound

Hth—thHTv<Z o(j)|uPu(i,) — vP(j, \|Tv<Z )o(j)lj — ile™ = B[] Xo — Xolle ™

where X has distribution v and X'o has distribution U
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4.6 Queueing networks

® A queueing network is an interconnected netwrok of service facilities called nodes. Each node has its own queueing
rules and there are probabilistic rules to move between nodes and exit the system. Queueing netwroks can be either
closed or open.

® A closed network has a fixed number K of nodes and a fixed number M of customers. No agents enters or exit the

systems. Imagine for example a company with M trucks which can be either in a repair shop or assigned to a variety of
tasks.

® A open network has a fixed number K of nodes but a variables number of customers. Agents can enters or exit the
system at some of the nodes in the systems. Imagine for example data packets being routed in a computer network.

® To describe the process in a network with M nodes we consider the queue length process

Q: = (Q14t,- -+ ,Qk:) where Q;; = number of customers at node 7 at timet.

® The state space of the process for the queue length is process is given by

Sy=qn=(ny,---,ng) :n; >0, an =M closed networks

S={n=(Mny, - ,ng) :n; >0} open networks
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4.7 Closed network of queues

To describe a closed queuing network we need to describing how the M agents move along the K nodes of the networks.
This is described in terms of routing matrix PP with entries

P, = Probability that an agent exiting node ¢+ moves to node [

It is possible that P;; > 0 describing the case where an agent may need two services. The matrix P is a stochastic matrix
with

K
Py>0 and ) Fy=1
=1

We assume that P is irreducible and we will denote by 7 the corresponding stationary distribution, i.e. 7P = .

We assume that at node 7 there is a single service station and that when at node ¢ an agent is served with a rate b; so that
service times at nodes 7 are 11D exponentials with parameters b;.

Traffic equation: If the system is in equilbrium then the rate r; at which customers leave a node 7 should be the to the rate
at which customer leaves a node 7. This leads to the equation

7”]' — Z’QP@

~~ p
exit rate \ —

entrance rate

and therefore the stationary distribution should depend on the stationary distribution 7 for P.




75

Waiting time: suppose that the systemis in the staten = (ng, - - - , ng ) then the rate a(n) is determined by the
minimum service time at all the nodes (which are not empty of agents) and thus we have

am)= > b= > bi(l—0ny)

1:m; >0 1:m; >0

Transition rates At the time a service is completed the agent will move from one node (say %) to another node (say 7), it will
be useful to introduce the notation

Tin=(ny,---,n;—1,--- ,mj+1,--- ,ng) providedn; >0
which describes the possible transition transition. Note that we have
T;Tiymn ifn; >0
and
m=7;n < n=1T;m providedn; >0andm; >0
The non-zero transition rates (when one agent moves from node % to node 7) are given by

a(n, TILJII) = bfLR] if n;, > 0




We have the following

Theorem 4.1 (stationary distribution for closed queueing networks) Consider a closed queuing networks with M
agents and K nodes with a single service station at each node. The waiting time at node 7 is exponential with rate

b; > 0 and the motion between nodes is given by an irreducible stochastic matrix P ;j and stationary distribution ;.
The stationary distribution is given by

o-efl(3) e i)

is a stationary distribution for the process (); with rates a(n, T;;jn) = biPij (form; > O)

The form of the stationary distribution is suggested by the form of the stationary distribution for the M/M/1 queue. But
note that here the total number of customer is fixed.

The constant C'is in general difficult to compute.
Proof. We need toshow that » |, n(n)a(n, m) = a(m)n(m).

We will make use of the traffic equation mP = 7 as well as from the fact that for m; > 0 we have

m ni T n;—1 T n;+1 T nK 7'('/b
T — [ — R ] AU e [Tk _ i/ 0;
(Tim) (bl) (bj) (bz) (bK) "(m)ﬁj/bj
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Note that we have

> n(n)a(n,m) = > n(n)a(n,m) = >, n(n)a(n, m)

n:m=1T;;n for some i,j n:n=T};m for some i,j

Z 1(Tj;m)o(Tj;m, m)

1,7:m;>0

- Z n(m) Mbipij

7:/b;
i,5:m;>0 9/ J

= 3 ) 2T

7 /b

= n(m) Z b since m; = ZwiPij

J:m;>0

— n(m)a(m)

Since the state space if finite we can normalize (1) to make it a statonary distribution.
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4.8 Open queueing (Jackson) networks

In an open queuing network the number of customers in the system can be arbitrary and customers can both enter and
leave the systems (both must occur to obtain a stable system.) We need the following ingredients

® Arrival rates a; > 0 at each node which describing customers which enter the system at node ¢ according to a Poisson
process with rate a;.

® \Waiting times at each node with rate b; > 0 which describe the service time at node 1.

® Routing matrix () which describe the transition between nodes and the exits from the system. We assume () is sub-
stochastic, i.e. Qij > 0and Zj Qi,j < 1 with at least one row have a sum Zj Qi,j < 1.We interpet

Qi; = P( go to node j after service at node ¢)

g =1-— Z Q(i,j) = P( exit the system after service at node )
J

We can think of () as describing the transition probablities of a set of transient states in a Markov chain with an
absorbing state which corresponds to being out of the system. In particular we know that I — () is invertible.
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® Trafficequations If we are in a stationary state the rate r; at which customers leave the node j should balance the rate
at which customer enter node 7. This leadf to the equation

T = a; + g riQij
~~ ~—~ - ——
rate of leavingj rate of entering j from outisde rate of entering j from node 7

If we use arow vector r = (rq, - - - , ;) we obtain

r=a+rQQ — r:a(I—Q)_1

® Transition rates As for closed networks we will use the function Tij which removes an agent at noe ¢ and adds it at nod:
7. But we will also need the transition maps

S'—i_(nla"' 7nK): (nla"' 7ni+]—7"' anK)as'_(nla"' 7nK): (nla"' ani_]-?"' anK) (lfnz > |

1 1

which add/remove agents to/from the system at node 2. The transition rates and jump rates are then given by
a(n,Sin) = a;

a(n,S;n) =bjq; ifn; >0

a(n, T;;jn) = szzy ifn; >0

a(n) :Zaj+ Z b;

j:mj >0




Theorem 4.2 (stationary distribution for open queueing networks) Consider an open queueing network with arrival
rate a;, waiting times rate b; and routing matrix @);;, (irreducible and substochastic). Let 7 denote the solution of the

trafficequationr = a + r(Q). Then stationary distribution exists if and only ; < b; for all nodes and is then given by a
product of geometric distribution

Weprove » ., n(n)a(n, m) = a(m)n(m). We decompose that sum over n into three different pieces
corresponding to the different transition (arrivals, exit, swap of nodes). We have

S (S m)a(S;mm) = 3 n(m)Za; =nm) 3 Lo,

, , T; : j
Jim;>0 Jim;>0 Jim;>0

Zn(Sfm) Zn TJ quJ = n(m erq]
J
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Finally using the traffic equations we have

S aTma(Tmm) = 3 nm) 0,

1,J:m;>0 i,J:m;>0 Tj/bj
b, a;
m) 3 2 Tn@y = nlm) 3y ) <atem) 3 by (1)
jm]>0 Jm;>0 J Jim;>0 J

From the traffic equation and multipling by the row vector of 1’s’ and using that Q1 = 1 — g we find

rl=al+rQl=al+7r(l1—q) = al=rq or Zajzzrjqj'

Summing up the three terms we find that

Y n(n) Zag > b | = a(m)n(m)

n#m Jim;>0

asdesired. B
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4.9 Exercises

Exercise 4.1 (Yule process) The Yule process is is a pure birth process describing the the growth of a population: if
there are n individual in the population then each individual will give birth with a rate X and so the birth rate is

A(n) = nA. The goal here is to compute explicitly the transition probbaility P(X; = n| Xy = k).

Assume first X (0) = 1 and let T} be the time it takes for the population to go from size ¢ to size ¢ + 1, thatis T is

exponential with rate Az.
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Exercise 4.2 (Non-Explosion for birth/death models) Show that a birth and death model with birth and death rates
which satisfiy A(n) + pu(n) < an + bdoes not undergo explosion.

Exercise 4.3 (Population model with immigartion) Consider a birth death model with birth rate A(n) = n + v and
deathrate u(n) = nu.

® For which value of A p and v is the process positive recurrent, null recurrent, transient.

® Suppose X = i.Show that the meanm(t) = E[X;] and thevariance v(t) = E[X?] — m(t)? satisfy
differential equations. Solve them.




Exercise 4.4 (Geometric sum of exponential) For use in Exercise 4.3 prove the following fact. If () is geometric that
P(Q=k)=(1—q)*qfork =1,2,3,--andTj are IID exponential with parameter X then

T+ Ty +---Tg

is exponential with parameter Aq.

Hint: You can use either the MGF (like in the compound Poisson process or like for branching processes) or the CDF
and the PDF..
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Exercise 4.5 (More on the M/M/1 queue) Consider an M/M/1 queue with arrival rate A and service rate . Recall that
when A < p its stationary distribution is geometric with parameter A / .

1. Show that if the queue is stationary then rate at which customer leaves must be equal to A (and is independent of 1

')

2. Suppose again that the queue is stationary, compute the distribution and the expectation of the time W a customer

spends in the queue until they reach service station (this is often an important quantity when designing a queueing
model!).
Hint: Note the distribution of W as a continuous and discrete part. Use the result in Exercise 4.4.

3. Suppose that upon entering the system the customers look at the length of the queue and may decide to leave the
system depending on the length of the queue. For example assume that if there are n customers in the system,

upon entering customers will stay with probabilityp(n) = n+r1 Find the stationary distribution in this case.

4. Suppose that agents are actually difficult customers: upon exiting the service station with probability g they exit
the system for good but with probaility 1 — g they re-enter the sytem and go back in line Show that this process is

equivalent to another M/M/1 queue with new rates.
Hint: Use Exercise 4.4 again.
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Exercise 4.6 (M/M/1 queues in series) Consider the following queueing system. Agents arrive into the system
according to a Poisson process with rate A and then pass successviely through a sequence of K service stations where

the service time in station 7 is exponential with parameters ;.

—“ - i1 Ly KXKX fio e < = E 1 00000 [LK =
We describe the number of customers by the vector Xy = (X7, - - - X k¢ ) where Xj; is the number of customers at
the 4" station and which which takes values in the state space S = {n = (ny,--- ,ng) : n; > 0 integer} .

1. Make alist of all possible transitions and compute the corresponding rate.

2. From Exercise 4.3 (part 1.) we learned that for a single M/M/1 queue in equilibrium the rate at which customers
enter and leave the system is equal to . Since the customers are then fed into the next queue this suggests that for

the queue in series the rate of customer entering and exiting all the queues will all be equal to A and that can be
achieved by the product of geometric distributions

m(n) = 7 (n,- - ’”K)Zﬁ(l_%) (%)n

Prove that 7t is indeed stationary.
Hint: it is easiest to prove this using detailed balance.




Exercise 4.7 (Jackson networks) Consider an open Jackson network such that at node 7 the service rate is n;b; if the
(Q; = n.This correspond to the situation with infnityl many servers at each node. Show that such network has a
stationary distribution given by \eta({\bf n}) = \prod_{I=1}*K \frac{\left(\frac{r_k}{b_kNright)*{n_l}e*{-\left(\frac{r_k}
{b_k}I}Hn_I'} where 7}, satisfy the traffic equation” = a + Q.
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