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1 Convergence of random
variables
We think of a (real-valued) random variable as a function  and so if we have a sequence of RVs  we can define

various types of convergence.

Convergence almost sure

Convergence in probability

Convergence in 

In subsequent chapters we are will study another type convergence, namely weak convergence (also called convergence
in distribution). It is of quite different type because it based on on the distribution of  and not on the notion of random

variable as a function.

X(ω) {X ​}n

Lp

X
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1.1 Almost sure convergence
Definition 1.1 (Almost sure convergence) A sequence of RVs  converges almost surely to a RV  if

that is .

Almost sure convergence is pointwise convergence, the limit is unique if of course we identify RV which are equal a.s.

It will be very useful to rephrase almost sure convergence in a different way. At first sight it looks a bit strange but it is a
good idea. We explain the idea first for a sequence  of numbers. Consider the function defined for any 

Lemma 1.1  

A sequence  converges to  if and only if  for every .

If there is a non-negative sequence  such that  and  then  converges

to some .

{X ​}n X

​X ​(ω) =
n

lim n X(ω) a.s

P ({ω : lim ​ X ​(ω) =n n X(ω)}) = 1

{x ​}n ϵ > 0

i ​(x) =ϵ 1 ​(x) =(ϵ,∞) ​ ​{ 1
0

x > ϵ

x ≤ ϵ

{x ​}n x ​ i ​(∣x ​ −∑
n ϵ n x∣) < ∞ ϵ

ϵ ​n ​ ϵ ​ <∑n n ∞ ​ i ​(∣x ​ −∑n ϵ n x ​∣) <n+1 ∞ x ​n

x
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Proof.

Fix . If  then there exists  such that for any ,  which means 

for  and thus . Conversely if  then, since the terms are either

 or , only finitely many terms can be nonzero and thus there exists  such that  for . 

If this holds there exists  such that  for . Taking  gives

Since the the sequence  is summable  goes to  as . Therefore the sequence  is a Cauchy

sequence and thus .

Returning to random variables we find

Theorem 1.1 The sequenceof RV  converges almost surely if and only if, for every ,

ϵ > 0 x ​ →n x N n ≥ N ∣x ​ −n x∣ ≤ ϵ i ​(∣x ​ −ϵ n x∣) = 0
n ≥ N ​ i ​(∣x ​ −∑n ϵ n x∣) < ∞ ​ i ​(∣x ​ −∑n ϵ n x∣) < ∞

0 1 N ∣x ​ −n x∣ ≤ ϵ n ≥ N □

N ∣x ​ −n x ​∣ ≤n+1 ϵ ​n n ≥ N n > m ≥ N

∣x ​ −n x ∣ ≤m ∣x ​ −n x ​∣ +n−1 ⋯ + ∣x ​ −m+1 x ​∣ ≤m ϵ ​ +m ⋯ + ϵ ​ ≤n ​ϵ ​

j=m

∑
∞

j

ϵ ​n ​ ϵ ​∑j=m
∞

j 0 m → ∞ x ​n

x →n x

X ​n ϵ > 0

​ i ​ ∘
n

∑ ϵ ∣X ​ −n X∣ < ∞  almost surely (1.1)
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Proof.

Let  the set on which convergence holds, then the sum in  converges for  (which is independent

of ).

For the converse the only small issue to deal with is that the set on which the sum converges may depend on . So pick

a sequence  and let  the value of the sequence in  and we have . Since

,  and so . The events  are shrinking to

By sequential continuity  and thus  converges to  almost surely. .

At this point we recall the Borel-Cantelli theorem

Lemma 1.2 (Borel Cantelli Lemma) Suppose  is a collection of events. Then

which we use to prove the following criteria for almost sure convergence

Ω ​0 Equation 1.1 ω ∈ Ω ​0

ϵ

ϵ

ϵ ​ ↘k 0 N ​k Equation 1.1 P (N ​ <k ∞) = 1
ϵ ​ ≤k+1 ϵ ​k i ​ ≥ϵ ​k+1 i ​ϵ ​k

N ​ ≥k+1 N ​k {N ​ <k ∞}

Ω ​ =0 {ω : ​ i ​ ∘
n

∑ ϵ ∣X ​ −n X∣ < ∞ for all ϵ > 0}

P (Ω ​) =0 lim ​ P (N ​ <k k ∞) = 1 X ​n X □

B ​n

​P (B ​) <
n

∑ n ∞ ⟹ ​ 1 ​ <
n

∑ B ​n
∞ almost surely .
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Theorem 1.2  

1. If, for any ,  then  almost surely.

2. If there exists a sequence  such that , then  almost surely.

3. If there exists a sequence  with  and , then  almost

surely.

Proof.

1. By Borel-Cantelli we have  a.s. which means a.s convergence.

2. By the Borel-Cantelli Lemma we have  for all but finitely many , almost surely. Since  this

means that  converges to  a.s

3. By  and Borel-Cantelli  is a Cauchy sequence a.s. and thus converges a.s.

ϵ > 0 ​ P (∣X ​ −∑n n X∣ ≥ ϵ) < ∞ X ​ →n X

ϵ ​ ↘n 0 ​ P (∣X ​ −∑
n n X∣ ≥ ϵ ​) <n ∞ X ​ →n X

ϵ ​n ​ ϵ ​ <∑n n ∞ ​ P (∣X ​ −∑n n X ​∣ ≥n+1 ϵ ​) <n ∞ X ​ →n X

​ i ​(∣X ​ −∑
n ϵ n X∣) < ∞

∣X ​ −n X∣ ≤ ϵ ​n n ϵ ​ →n 0
X ​n X

Lemma 1.1 {X ​}n
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1.2 Convergence in Probability
Definition 1.2 (Convergence in probability) A sequence of RVs  converges in probability to a RV  if, for any 

,

This is a very useful mode of convergence in probability, in particular due to the fact that, that it is weaker than almost
sure convergence and thus easier to prove.

Example: Let  and  be Lebesgue measure. Consider the sequence of RV

We claim that  converges to  in probability. Indeed for any ,  since the

 is a charactersitic function of an interval  whose measure goes to  as  goes to infinity.

The sequence  does not converge a.s. Indeed  belong to infinitely many intervals of the form 

and does not belong to infinitely many such intervals. Therefore .

The sequence  has (many!) convergent subsequence which converges to  almost surely. To do this choose 

such that the interval  for  is contained in the interval  for .

{X ​}n X ϵ >
0

​P ({ω :
n→∞
lim ∣X ​(ω) −n X(ω)∣ > ϵ}) = 0 .

Ω = [0, 1) P ​0

X ​ =1 1 ​,X ​ =[0, ​ )2
1 2 1 ​,X ​ =[ ​ ,1)2

1 3 1 ​,X ​ =[0, ​ )3
1 4 1 ​,X ​ =[ ​ , ​ )3

1
3
2 5 1 ​,,X ​ =[ ​ ,1)3

2 6 1 ​,X ​ =[0, ​ )4
1 7 1 ​ ⋯[1/4, ​ )4

2 (1.2)

X ​n 0 ϵ > 0 P (∣X ​∣ >n ϵ) = P (X ​ =n 1) → 0
X ​ =n 1 ​I ​n

I ​n 0 n

X ​n ω ∈ [0, 1) [ ​ , ​ )
n
k

n
k+1

lim inf X ​(ω) =n 0 = lim supX ​(ω) =n 1

X ​(ω)n 0 n ​k

I ​n ​k
X ​ =n ​k

1 ​I ​n ​k
I ​n ​k−1 X ​ =n ​k−1 1 ​I ​n ​k−1
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The relation between almost sure convergence and convergence in probability is contained in the following theorem. The
third part, while looking somewhat convoluted is cvery useful to streamline subsequent proofs. It relies on the following
simple fact: suppose that the sequence  is such that every subsequence has a subsubsequence which converges to 

then  converges to .

Theorem 1.3 (Almost sure convergence versus convergence in probability)  

1. If  converges almost surely to  then  converges in probability to .

2. If  converges in probability to  then there exists a subsequence  which converges to  almost surely,

3. If every subsequence has a further subsubsequence which converges to  almost surely, then  converges to 

in probability.

Proof. Item 1.: If  converges to  almost surely then  converges to  almost surely. By the bounded

convergence theorem this implies  converges to .

Item 2.: If  converges to  in probability then pick . Since  as 

 we can find a subsequence  such that . and thus

By part 2. of   converges almost surely to .

x ​n x

x ​n x

X ​n X X ​n X

X ​n X X ​n ​k
X

X X ​n X

X ​n X i ​(∣X ​ −ϵ n X∣) 0
E[i ​(∣X ​ −ϵ n X∣)] = P (∣X ​ −n X∣ ≥ ϵ) 0

X ​n X ϵ ​ =k ​ ↘
k
1 0 P (∣X ​(ω) −n X(ω)∣ > ϵ ​) →k 0 n →

∞ n ​k P (∣X ​(ω) −n ​k
X(ω)∣ > ϵ ​) ≤k ​2k

1

​P (∣X ​(ω) −
k=1

∑
∞

n ​k
X(ω)∣ > ϵ ​) ≤k ​ ​ <

k

∑
2k
1

∞ .

Theorem 1.2X ​n ​k
X
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Item 3.: Assume that every subsequence of  has a sub-subsequence which converges to . Fix  and consider the

numerical sequence . Since this sequence is bounded, by Bolzano-Weierstrass theorem, let

 be a convergent subsequence with . By assumption  has a convergent subsequence  which

converges to  almost surely. This implies, by part 1., that  converges to . This means that for the sequence ,

every convergent subsequence has a subsubsequence which converges to . This implies that  converges to  and thus

 converges to  in probability. .

Based on this we obtain the following continuity theorem

Theorem 1.4 (Continuity theorem for convergence in probability)  

1. If  converges to  almost surely and  is continous function then  converge to  almost surely.

2. If  converges to  in probability and  is continous function then  converge to  in probability.

Proof. Part 1. is just the definition of continuity.
For part 2. suppose  converges to  in probability. Then, by , there exists a subsequence  which

converges almost surely which implies, by part 1, that  converges to  almost surely.

Now we apply part 3. of  to the sequence . Since  converges in probability, by the previous

paragraph, every subsequence  has a convergent subsubsequence whic converges to  a.s. and thus 

converges to  in probability.

X ​n X ϵ > 0
p ​(ϵ) =n P (∣X ​ −n X∣ ≥ ϵ)

p ​n ​k
lim ​ p ​ =k n ​k

p X ​n ​k
X ​n ​k ​j

X p ​n ​k ​j
0 p ​n

0 p ​n 0
X ​n X □

X ​n X f f(X ​)n f(X)

X ​n X f f(X ​)n f(X)

X ​n X Theorem 1.3 X ​n ​k

f(X ​)n ​k
f(X)

Theorem 1.3 Y ​ =n f(X ​)n X ​n ​k

f(X ​)n ​k
f(X) f(X ​)n

f(X)
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Using a similar argument we show that convergence in probability is preserved under arithmetic operations.

Theorem 1.5 Suppose  converges to  in probability and  converges to  in probability then 

converges to  in probability,  converges to  in probability,  converges to  in

probability and  converges to  in probability (assuming that  and  are almost surely non-zero).

Proof. All the proofs are the same so let us do the sum. We pick a subsequence such that  converges to  almost surely

along that subseqence. Then we pick a subsubsequence such that both  and  converges almost surely along that

subsequence. For that subsequence  converges to  almsost surely. We now apply this argument to

subsequence of , every such subsequence as a subsubsequence which converges to  almost surely and

thus by part 3. of   converges to  almost surely.

We finish this section by showing that we can use weak convergence to turn the space of RV into a complete metric space.
We will use the following metric

The choice is not unique, often one will find instead .

X ​n X Y ​n Y X ​ +n Y ​n

X + Y X ​ −n Y ​n X − Y X ​Y ​n n XY

X − n/Y ​n X/Y Y ​n Y

X ​n X

X ​n Y ​n

X ​ +n Y ​n X + Y

X ​ +n Y ​n X + Y

Theorem 1.3X ​ +n Y ​n X + Y

d(X,Y ) = E[min{∣X − Y ∣, 1}]

d(X,Y ) = E ​[ 1+∣X−Y ∣
∣X−Y ∣ ]
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Theorem 1.6 (Convergence in probability and metric)  

 to converge to  in probability if and only if .

The space of all measurable RV,

with the metric  is a complete metric space for the metric  (as usual we identify RV which are a.s. equal).

Equivalently, for any Cauchy sequence  for convergence in probability there exists a random variable  such

that  converges to  in probbaility.

Proof. It is easy to check that  is a distance.

We also have for  and  the inequality

Replacing  by  and taking expectations and  shows that

and this proves the second claim.

X ​n X lim ​ d(X ​,X) =n→∞ n 0

L (Ω, A,P ) =0 {X : (Ω, A,P ) → (R, B) measurable}

d d(X,Y )
{X ​}n Y

X ​n Y

d(X,Y )

ϵ ∈ (0, 1) x ≥ 0

ϵi ​(x) ≤ϵ min{x, 1} ≤ ϵ + i ​(x)ϵ

x ∣X ​ −n X∣ n → ∞

ϵP (∣X ​ −n X∣ ≥ ϵ) ≤ d(X ​,X) ≤n ϵ + P (∣X ​ −n X∣ ≥ ϵ)
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Finally assume that  is a Cauchy sequence for the metric . Then  or, as we have just

seen, equivalently for any  we can find  such that  for . Choose now 

 and find corresponding . Setting , this implies that 

and thus  converges almost surely to a RV .

To conclude we show that  converges to  in probability. Since  we have

Taking expectations gives

The first goes to  as  goes to  since the sequence  is Cauchy and the second term goes to  since we have almost

sure convergence. Therefore  converges to  in probability. 

{X ​}n d lim ​ d(X ​,X ​) =n,m→∞ n m 0
ϵ > 0 N P (∣X ​ −n X ​∣ ≥m ϵ) ≤ ϵ n,m ≥ N ϵ ​ =k

​2k
1 N ​ ≤k N ​ ≤k+1 ⋯ Y ​ =k X ​N ​k

​ P (∣Y ​ −∑k k Y ​∣ >k+1 ϵ ​) <k ∞
Y ​k Y

X ​n Y ∣X ​ −n Y ∣ ≤ ∣X ​ −n X ​∣ +N ​k
∣Y ​ −k Y ∣

i ​(∣X ​ −ϵ n Y ∣) ≤ i ​(∣X ​ −
​2
ϵ n X ​∣) +N ​k

i ​(∣Y ​ −
2
ϵ k Y ∣) .

P (∣X ​ −n Y ∣ > ϵ) ≤ P (∣X ​ −n X ​∣ >N ​k
ϵ/2) + P (∣Y ​ −k Y ∣ > ϵ/2).

0 n ∞ X ​n 0
X ​n Y □
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1.3 Convergence in .
Convergence in  simply uses the norm . Most of the time we use  or .

Definition 1.3 (Convergence in ) A sequence of RVs  converges in  to a RV  if

or equivalently .

Remarks:

The limit of a sequence in  is unique since  by Minkovski inequality.

Note that if  converges to  in  then we have convergence of the first moments. Indeed we have

(the second follows the reverse triangle inequality ). Therefore  and

.

If  converges in  then  does not need to converge almost surely. See the sequence  which also

converges to  in .

Lp

Lp ∥X∥ ​p p = 1 p = 2

Lp {X ​}n Lp X

​E[∣X ​ −
n→∞
lim n X∣ ] =p 0

lim ​ ∥X ​ −n→∞ n X∥ ​ =p 0

Lp ∥X − Y ∥ ​ ≤p ∥X − X ​∥ ​ +n p ∥Y − X ​∥ ​n p

X ​n X L1

∣E[X ​] −n E[X]∣ ≤ E[∣X ​ −n X∣] and ∣E[∣X ​∣] −n E[∣X∣]∣ ≤ E[∣X ​ −n X∣]

∣∣x∣ − ∣y∣∣ ≤ ∣x − y∣ E[X ​] →n E[X]
E[∣X ​∣] →n E[∣X]

X ​n L1 X ​n Equation 1.2

0 L1
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If  converges in  then  converges in probability as well. We have 

by Markov inequality. In particular, by  if  converges to  in  then there exists a subsequence 

which converges almost surely to .

Conversely convergence in probability does not imply convergence in . Modify the sequence in  to

make it . This sequence converges in probability to  as well! This

ensures that  so  does not converge to  in . Note also that for any  there are infitely many 

such that  so the sequence cannot converge.

We prove now a converse which looks a bit like dominated convergence theorem.

Theorem 1.7 (Convergence in  versus convergence in probability)  

1. If  converges to  in  then  converges to  in probability.

2. If  converges to  in probability and  for some  then  converges to  in .

X ​n Lp X ​n P (∣X − X ​∣ ≥n ϵ) ≤ E[∣X ​ −n X∣ ]/ϵp p

Theorem 1.3 X ​n X Lp X ​n ​k

X

L1 Equation 1.2

Y ​ =1 X ​,Y =1 2 2X ​,Y ​ =2 3 2X ​,Y ​ =3 4 3X ​, ⋯4 0
E[Y ​] =n 1 Y ​n 0 L1 m m ≥ n

E[∣X ​ −n X ​∣ =m 2

Lp

X ​n X Lp X ​n X

X ​n X ∣X ∣ ≤n Y Y ∈ LP X ​n X Lp
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Proof. We already discussed 1. (Markov inequality).

For the converse, since  converges in probability to  there exists a subseqeunce  which converges almost surely

to .

Since  we see that  and thus .

The sequence , is bounded since, by Minkowski

Let  be a convergent subsequence. Then since  converges to  in probability there exists a subsubsequence 

which converge to  a.s Then  converges almost surely to  and  which is

integrable. So by DCT  converges to . This implies that  converges to . .

X ​n X X ​n ​k

X

∣X ​∣ ≤n ​k
Y ∣X∣ < Y X ∈ Lp

a ​ =n E[∣X − X ​∣ ]n
p

a ​ =n
1/p ∥X − X ​∥ ​ ≤n p ∥X∥ ​ +p ∥X ​∥ ​ ≤n p 2∥Y ∥ ​ .p

a ​n ​k
X ​n ​k

X X ​n ​k ​j

X ∣X ​ −n ​k ​j
X∣p 0 ∣X ​ −n ​k ​j

X∣ ≤P 2 ∣Y ∣p p

a ​n ​k ​j
0 a ​n 0 □
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1.4 Exercises
Exercise 1.1 Show (by a counterxample) that if  is not continuous, convergence of  in probability to  does not

imply convergence of  to  in probability.

Exercise 1.2 Let , , … be independent Bernoulli random variables with  and 

.

Show that  converges to  inprobability if and only if .

Show that  converges to a.s. if and only if .

Hint: Use the Borel Cantelli Lemmas

Exercise 1.3  

Suppose  converges to  in . Show that .

Suppose  converges to  in . Show that .

f X ​n X

f(X ​)n f(X)

X ​1 X ​2 P (X ​ =n 1) = p ​n P (X ​ =n 0) =
1−pn

X ​n 0 lim ​ p ​ =n n 0

X ​n ​ p ​ <∑n n ∞

X ​n X L1 lim ​ E[X ​] =n n E[X]

X ​n X L2 lim ​ E[X ​] =n n
2 E[X ]2
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2 The law of large numbers
The law of large numbers is a foundational (and also very intuitive) concept for probability theory. Suppose we are
interested in finding the the probability  for some event  which is the outcome of some (random experiment). To

do this repeat the experiment  times, for sufficiently large  and an approximate value for  is the proportion of

experiments for which the outocme belong to 

This is the basis for the frequentist approach to probability, probability of events are obtained by repeating the random
experiment.

P (A) A

n n P (A)
A

P (A) ≈ ​  if n is large enough
n

 number of times the experiment belongs to A
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2.1 Strong of law of large numbers
Consider a probability space  on which real-valued random variables  are defined. We define then

the sum

Law of large numbers stands for the convergence of the average  to a limit. The convergence can be in probability in

which case we talk of a weak law of large numbers or almost sure convergence in which case we talk about a strong law of
large numbers.

Example: Normal Consider  independent normal RV with mean  and variance . Then using the

moment generating function we have

We conclude that  is a normal random variable with variance .

By Chebyshev we conclude that  and so  converges to  in probability. This is not enough to show

almost sure convergence since .

By the Chernov bounds however we have (see the example after ?@thm-chernov)  and since

 Borel-Cantelli Lemma (see ) implies that  converges to  a.s.

(Ω, A,P ) X ​,X ​, ⋯1 2

S ​ =n X ​ +1 ⋯ + X ​n

​

n
S ​n

X ​,X ​, ⋯ ,X ​1 2 n 0 σ2

E e =[ t ​

n
S ​n ] E e ⋯ e =[ ​X ​

n
t

1 ​X ​

n
t

1 ] E e ⋯E e =[ ​X ​

n
t

1 ] [ ​X ​

n
t

1 ] e =( ​2
σ2

n2
t2 )n e ​ ​2

σ2
n
t2

​

n
S ​n

​

n
σ

2

P ​ ​ ​ ≥ ϵ) ≤(∣
∣
n
S ​n

∣
∣ ) ​

nϵ
σ

2
​

n
S ​n 0

​ ​ =∑n nϵ
σ2

∞

P ​ ​ ​ ≥ ϵ ≤(∣
∣
n
S ​n

∣
∣ ) e−nϵ /2σ2 2

​ e <∑n
−nt /2σ2 2

∞ Theorem 1.2 ​

n
S ​n 0
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Example: Cauchy Consider  independent Cauchy RV with parameter . Using the characteristic

function (recall the chararcteristic function of a Cauchy RV is ) we find that

that is  is a Cauchy RV with same parameter as . No convergence almost sure or in probability seems reasonable

here convergence in distribution will be useful here.

We start with a (not optimal) version of the LLN

Theorem 2.1 (The strong law of large numbers) Suppose  are independent and identically distributed

random variables defined on the probability space  and with mean  and variance 

. Then we have

Proof. The proof is literally the same as what we did for discrete random variables and we shall not repeat it here.

X ​,X ​, ⋯ ,X ​1 2 n β

e−β∣t∣

E e =[ it ​

n
S ​n ] E e ⋯ e =[ ​X ​

n
it

1 ​X ​

n
it

1 ] E e ⋯E e =[ ​X ​

n
it

1 ] [ ​X ​

n
it

1 ] e =( −β ​∣ nt ∣)n e−β∣t∣

S ​nn X ​i

X ​,X ​, ⋯1 2

(Ω, A,P ) μ = E[X ​]i σ =2

Var(X ​) < ∞i

​ ​ =
n→∞
lim

n

S ​n
​ ​ =

n→∞
lim

n

X ​ + ⋯ + X ​1 n
μ ​ ​⎩⎨

⎧ almost surely
in probability
 in L2
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A stronger version exists, only existence of a finite mean is needed.

Theorem 2.2 (The strong law of large numbers) Suppose  are independent and identically distributed

random variables defined on the probability space  and with mean . Then we have

Various proofs of this exist. For example we can use a truncation argument of the random variables and argument similar
to the previoious theorem workking wiht subsequences. Another more fancy proof use the Martingale convergence
theorem.

We prove next that the case  can also be treated.

Theorem 2.3 Suppose  are independent indetically distributed non-negative random variables with

. Then we have

X ​,X ​, ⋯1 2

(Ω, A,P ) μ = E[X ​]i

​ ​ =
n→∞
lim

n

S ​n
​ ​ =

n→∞
lim

n

X ​ + ⋯ + X ​1 n
μ ​{ almost surely

in probability

μ = ∞

X ​,X ​, ⋯1 2

E[X ​] =i +∞

​ ​ =
n→∞
lim

n

X ​ + ⋯ + X ​1 n +∞ almost surely

22

Convergence of random variables



Proof. We use a truncation argument combined with the monotone convergence theorem. Given  set 

 which is bounded and thus has finite variance. So by  we have, almost surely, for 

Since  we have for any 

But as   and thus by the monotone convergent theorem 

. This concludes the proof. .

R > 0 Y ​ =n

min{X ​,R}n Theorem 2.2 μ ​ =R

E[min{X ​,R}]1

​ ​ =
n→∞
lim

n

Y ​ + ⋯ + Y ​1 n
μ ​R

X ​ ≥n Y ​n R

​ ​ ≥
n→∞

lim inf
n

X ​ + ⋯ + X ​1 n
​ ​ =

n→∞
lim

n

Y ​ + ⋯ + Y ​1 n
μ ​R

R ↗ ∞ min{X ​,R} ↗1 Y ​1 μ ​ =R E[min{X ​,R}] ↗1

E[X ​] =1 ∞ □
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2.2 Sample variance
Example: convergence of the sample variance Suppose  are independent and identically distributed RV, the

the sample variance is given by

After some calculation one can prove that .

We claim that  almost surely. Indeed we have

By the law of Large numbers, , which we apply to the RV  and the RV  (note that

) and by continuity, , we have

X ​,X ​, ⋯1 2

V ​ =n ​ X ​ − ​

i=1

∑
n

( i
n

S ​n)2

E[V ​] =n (n − 1)σ2

​ →
n
V ​n σ2

​ =
n

V ​n
​ ​ X ​ − ​ =

n

1

i=1

∑
n

( i
n

S ​n)2

​ X ​ − 2X ​ ​ + ​ =
n

1

i=1

∑
n

( i
2

i
n

S ​n

n2

S ​n
2 ) ​X ​ −

i=1

∑
n

i
2

​(
n

S ​n)2

Theorem 2.2 X ​,X ​, ⋯1 2 X ​,X ​, ⋯1
2

2
2

E[X ​] =1
2 σ +2 μ2 Theorem 1.4

​ →
n

V ​n
σ +2 μ −2 μ =2 σ .2
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Code
import random1
import matplotlib.pyplot as plt2

3
# Parameters for the exponential distribution4
lambda_parameter = 0.5  # Adjust this to your desired rate parameter5

6
# Initialize variables to track sample mean and sample variance7
sample_mean = 08
sample_variance = 09
sample_size = 010

11
# Number of samples to collect12
num_samples = 10000013

14
# Lists to store data for plotting15
sample_means = []16
sample_variances = []17

18
for _ in range(num_samples):19
    # Generate a random sample from the exponential distribution20
    sample = random.expovariate(lambda_parameter)21
    22
    # Update the sample size23
    sample_size += 124
    25
    # Update the sample mean incrementally26

l l ( l l ) / l i27

Last 20 sample means =[2.010433725990389, 2.010436103379991, 2.0104400629814756, 2.010425565861256, 
2.0104784945739826, 2.010464237002987, 2.010509954990142, 2.0105230324476455, 2.010548268282596, 
2.010551752165103, 2.0106193824308938, 2.010604223621517, 2.0106150659410043, 2.0106101808298944, 
2.0106085093298613, 2.0105962031333076, 2.010581152622161, 2.0106375647861308, 2.0106260239362452, 
2.0106405997359498]
Last 20 sample variances=[4.0206194186860085, 4.020579769941937, 4.020541124468071, 4.02052192529738, 
4.020761813684171, 4.020741924817882, 4.020910695941878, 4.020887581373271, 4.020911044766209, 
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4.020872044842493, 4.021289171647335, 4.021271932018198, 4.021243470730342, 4.021205641744572, 
4.021165706649759, 4.021140636472159, 4.021123074339779, 4.021401085580041, 4.021374189620114, 
4.021355220657325]
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2.3 LLN proof of the Weierstrass approximation theorem
A classical result in analysis is that a continuous function  can be uniformlu approximated by polynomial:

for any  there exists a polynomila  such that . Many proof of this result exists

and we give one here based on the Law of Large Numbers although the statement has nothing to do with probability.
Without loss of generality, by rescaling, we can take  and we use polynomial naturally associated to

binomial random variables, the Bernstein polynomials.

Theorem 2.4 Let  be a continuous function. Let  be the Bernstein polynomial of degree 

associated to , given by

Then we have

f : [a, b] → R
ϵ > 0 p(x) sup ​ ∣p(x) −x∈[a,b] f(x)∣ ≤ ϵ

[a, b] = [0, 1]

f : [0, 1] → R f ​(x)n n

f

f ​(x) =n ​ ​ x (1 −
k=0

∑
n

(
k

n) k x) f(k/n) .n−k

​ ​ ∣f(x) −
n→∞
lim

x∈[0,1]
sup f ​(x)∣ =n 0 .
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Proof. If  are IID Bernoulli with success probability  random then  is binomial random RV and

Since  converges  a.s and in probability we have  converges to  and thus taking expectation 

converges to . We still do need to work harder, though, to establish uniform convergence, in .

The variance of a binomial is  is bounded uniformly in  and thus by Chebyshev

Since  is continuous on a compact interval then  is bounded with  and  is also uniformly

continuous on . Given  pick  such . We have, for  large enough,

This proves uniform convergence. .

X ​i p S ​ =n X ​ +1 ⋯ + X ​n

E f ​ =[ (
n

S ​n)] ​ ​ x (1 −
k=0

∑
n

(
k

n) k x) f(k/n) =n−k f ​(p)n

​

n
S ​n p f ​(

n
S ​n ) f(p) f ​(p)n

f(p) p

np(1 − p) ≤ ​4
n p ∈ [0, 1]

P ​ ​ − p ​ ≥ δ ≤(
∣

∣

n

S ​n

∣

∣ ) ​ ≤
nδ2

p(1 − p)
​

4nδ2

1

f f sup ​ ∣f(x)∣ =x M < ∞ f

[0, 1] ϵ > 0 δ ∣x − y∣ < δ ⟹ ∣f(x) − f(y)∣ < ϵ n

​ ​

∣f ​(p) − f(p)∣ = ​E f ​ − f(p) ​ ≤ E ​f ​ − f(p) ​n
∣

∣ [ (
n

S ​n)]
∣

∣ [
∣

∣ (
n

S ​n)
∣

∣]
= E ​f ​ − f(p) ​ 1 ​ + E ​f ​ − f(p) ​ 1 ​ ≤ 2M ​ + ϵ ≤ 2ϵ[

∣

∣ (
n

S ​n)
∣

∣
​ −p ≥δ∣ n

S ​n ∣ ] [
∣

∣ (
n

S ​n)
∣

∣
​ −p <δ∣ n

S ​n ∣ ]
4nδ2

1

□
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2.4 Empirical density and Glivenko-Cantelli
Example: sample CDF and empirical measure Suppose  are independent and identically distributed RV with

common CDF 

 is called the empirical CDF. Note that  is the (random) CDF for the discrete random variable

with distribution

which is called the empirical distribution. The convergence of  to  is is just the law of large number applied to

 whose mean is .

X ​,X ​, ⋯1 2

F (t)

F ​(t) =n ​ →
n

#{i ∈ {1, ⋯ ,n} : X ​ ≤ t}i
F (t)  almost surely . (2.1)

F ​(t) =n F ​(t,ω)n F ​(t,ω)n

​ ​δ ​

n

1

i=1

∑
n

X ​(ω)i

F ​(t)n F (t)
Y ​ =n 1 ​X ​≤tn

E[Y ​] =n P (Y ​ ≤n t) = F (t)
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A strengthening of the law of large number is that the empirical CDF  converges to  uniformly in .

Theorem 2.5 (Glivenko-Cantelli Theorem) For a RV  with CDF  we have

Proof. We only the prove the case where  is continuous but the proof can be generalized to general CDF by

considering the jumps more carefully. The proof relies on the fact that  is increasing which precludes oscillations and

control the convergence.

First we show that we can pick a set of probability  such that the convergence occurs for all  on that set. Since a

countable union of sets of probability  has probability , we can pick a set  of probability 1 such  converges

to  for all *rational  and all . For  and rational  with  we have

and therefore

Since  as  and  as  we conclude that  for all .

F ​(t)n F (t) t

X F (t)

​ ∣F ​(t) −
t∈R
sup n F (t)∣ converges to 0 almost surely.

F (t)
F

1 t ∈ R
0 0 Ω ​0 F ​(t,ω)n

F (t) t ∈ R ω ∈ Ω ​0 x ∈ R s, t s ≤ x ≤ t

F ​(s,ω) ≤n F ​(x,ω) ≤n F ​(t,ω)n

F (s) ≤ ​F ​(x,ω) ≤
n

lim inf n ​F ​(x,ω) ≤
n

lim sup n F (t)

F (t) ↘ F (x) t ↘ x F (s) ↗ F (x) s ↗ x F ​(t,ω) →n F (t) ω ∈ Ω ​0
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We show next that, for any , the convergence is uniform in . Since  is increasing and bounded, given  we

can find  such that . Using that  and  are increasing we

have for 

We can now pick  such that  if  and therefore if  we

have, for all ,

for all  and all . This that  converges almost surely to . .

ω ∈ Ω ​0 t F ϵ > 0
t ​ =0 −∞ < t ​ <1 ⋯ < t ​ =m +∞ F (t ​) −j F (t ​) ≤j−1 ​2

ϵ F ​n F

t ∈ [t ​, t ​]j−1 j

​ ​

F ​(t) − F (t)n

F ​(t) − F (t)n

≤ F ​(t ​) − F (t ​) ≤ F ​(t ​) − F (t ​) + ​n j j−1 n j j 2
ϵ

≥ F ​(t ​) − F (t ​) ≥ F ​(t ​) − F (t ​) − ​n j−1 j n j−1 j−1 2
ϵ

N ​ =j N ​(ω)j ∣F ​(t ​) −n j F (t ​)∣ ≤j ​2
ϵ n ≥ N ​j n ≥ N = max ​ N ​j j

t ∈ R

∣F ​(t,ω) −n F (t)∣ ≤ ϵ

t n ≥ N(ω) sup ​ ∣F ​(t) −t∈R n F (t)∣ 0 □
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Illustration of the Glivenko-Cantelli Theorem (made with Chat GPT)

Code
import numpy as np1
import matplotlib.pyplot as plt2
from scipy.stats import beta3

4
# Generate random data from a Beta distribution5
np.random.seed(42)6
true_distribution = beta.rvs(2, 5, size=1000)7

8
# Generate empirical distribution function9
def empirical_distribution(data, x):10
    return np.sum(data <= x) / len(data)11

12
# Compute empirical distribution function for different sample sizes13
sample_sizes = [10, 100, 1000]14
x_values = np.linspace(0, 1, 1000)15

16
plt.figure(figsize=(12, 8))17

18
for n in sample_sizes:19
    # Generate a random sample of size n20
    sample = np.random.choice(true_distribution, size=n, replace=True)21
    22
    # Calculate empirical distribution function values23
    edf_values = [empirical_distribution(sample, x) for x in x_values]24
    25
    # Plot the empirical distribution function26

lt l t( l df l l b l f' { }')27
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2.5 The Monte-Carlo method
The (simple) Monte-Carlo method is a probabilistic algorithm using sums of independent random variables the law of
large numbers to estimate a (deterministic) quantity  (or ).

The basic idea is to express  as the expectation of some random variable  and then use the law of large

numbers to build up an estimator for .

Simple Monte-Carlo Sampling Algorithm: To compute 

Find a random variable  such that .

, where  are IID copies of , is an unbiased estimator for , that is we have

For all  we have  (unbiased).

 almost surely and in probability.

An interesting part is that there are, in general, many ways to find the random variables .

Conversely in many problems the random variable  is given but the expection is too diffcult to compute, so we

rely on the LLN to compute .

μ ∈ R Rd

μ μ = E[h(X)]
μ

μ ∈ R

h(X) μ = E[h(X)]

I ​ =n ​ ​ h(X ​)
n
1 ∑k=1

n
k X ​k X μ

n E[I ​] =n μ

lim ​ I ​ =n→∞ n μ

h(X)

h(X)
μ
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2.6 Computing  with Buffon’s needlesπ

This seems to be the first example of a rejection sampling used to
solve a mathematical problem, by Le Comte de Buffon (see 

).
Bio in

Wikipedia

A needle of length  is thrown at random on floor made on

floorboards of width  and we assume . We want to compute

the probability that the needle does intersect two floor boards.

l

d l ≤ d

Denote by  the distance from the center of the needle to the

nearest intersection (this is uniformly distributed on ) and by

 the acute angle between the needle and an horizontal line (this is

uniformly distributed on ).

X

[0, ​ ]2
d

Θ
[0, ​ ]2

π

For the needle to intersect we must have  and thusx ≤ ​ sin(θ)2
l

P X ≤ ​ sin(Θ) =(
2
l ) ​ ​ ​dx ​dθ =∫

0

​2
π

∫
0

​ sin(θ)2
l

d

2
π

2
​

dπ

2l

So in order estimate  you shall throw  needles on the floors at

random and
. No random number

generator needed….

π n

π ≈ ​ ​

d
2ln

# of needles intersecting two floor boards
1

Buffon’s needles
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2.7 Computing  with random numbersπ
34
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Enclose a disk of radius  in a square of side length  and consider the following Bernoulli random variable .

Generate 2 independent vectors  uniformly distributed on .

If , set , otherwise set .

1 2 X

V ​,V ​1 2 [−1, 1]

V ​ +1
2 V ​ ≤2

2 1 X = 1 X = 0

Convergence of random variables



is Bernoulli withX p = =f th
area of the disk

4
π

2.8 Computing integrals
The goal is compute for example . Without loss of generality by rescaling space and replacing  by  we

can assume that  and . If  we recover the previous example.

Monte-Carlo version I: Pick independent random numbers  on . Define a Bernoulli RV  by

Then

and so for independent ,  almost surely.

Monte-Carlo version II: Pick  uniform on  then

and so for independent ,  almost surely.

​ h(x)dx∫
a

b
f cf + d

[a, b] = [0, 1] 0 ≤ h ≤ 1 h(x) = ​1 − x2

(U ​,U ​)1 2 [0, 1] × [0, 1] X

X = ​ ​{ 1
0

 if U ​ ≤ h(U ​)2 1

 else 

E[X] = P (U ​ ≤2 h(U ​)) =1 ​ ​ 1 ​dx ​dx ​ =∫
0

1

∫
0

1

{x ​≤h(x ​)}2 1 2 1 ​ dx ​ =∫
0

1

∫
0

h(x ​)1

2 ​ h(x)dx∫
0

1

Xi ​ ​ X ​ →
n
1 ∑i=1

n
i h(x)dx∫0

1

U [0, 1]

E[h(U)] = ​ h(x)dx∫
0

1

U ​i ​ ​ f(U ​) →
n
1 ∑i=1

n
i ​ h(x)dx∫0

1
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Monte-Carlo version III:

Pick  non-uniform on  with density  (e.g a beta RV with parameter ). Then we have

and so if  has distribution  then  converges to .

This is the idea behind importance sampling: you want to sample more points from regions where  is large and which

contribute more ot the integral. We will discuss this in a bit more detail when equipped with the central limit theorem.

We can generalize this to integral of subsets of  or integral over the whole space.

V [0, 1] f α,β

​ h(x)dx =∫
0

1

​ ​f(x)dx∫
0

1

f(x)
h(x)

V f ​ ​ ​

n
1 ∑i=1

n

f(V ​)i
h(V ​)i E[ ​ ] =

f(V )
h(v)

​ h(x)dx∫0
1

h

Rn
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2.9 Quantitative version of the law of large numbers
How many sample should we generate to obtain a given precision for the computation of ?

In Monte-Carlo methods  itself is unknown, so we would like to make a prediction about  given the sample mean

.

Convergence in probability is the way to go: we want to estimate

which gives a confidence interval for  in terms of the sample size  and the tolerance . For example of , if we

have  sample, we can predict tolerance for  with  confidence.

If we know the variance we could use Chebyshev . But it may require

knowledge of the variance and could be overly pessimistic if we have many moments.

Even better we could use Chernov bonds which gives exponentiall (in ) bounds

and a similar bound for .

μ = E[X]

μ μ

​ =
n
S ​n

​

n
X ​+⋯+X ​1 n

P ​ ​ − μ ​ ≤ ϵ =(
∣

∣

n

S ​n

∣

∣ ) P μ ∈ ​ − ε, ​ + ε ≥( [
n

S ​n

n

S ​n ]) 1 − δ

μ n ϵ δ = 0.01
n μ 99%

P μ ∈ ​ − ε, ​ + ε ≥( [
n
S ​n

n
S ​n ]) 1 − ​

nϵ2
σ

2

n

P ​ − μ ≥ ϵ =(
n

S ​n ) P (S ​ ≥n n(μ + ϵ)) ≤ ​ ​ =
t≥0
inf

en(μ+ϵ)

E[ ]tS ​n

e−n sup ​ t(μ+ϵ)−lnM(t)t≥0{ }

P ​ − μ ≤ −ϵ(
n
S ​n )
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2.10 Hoeffding’s bound
Chernov bounds are very sharp but requires knowledge of the mgf .

One of the main idea behind concentration inequalities: given  bound  by the mfg  of a

random variable  which you know explicitly. Mostly here we take  a Gaussian but one can also uses other ones,

Bernoulli, Poisson, Gamma, etc…

The following elementary bound will be used repeatedly.

Lemma 2.1 (Hoeffding’s bound) Suppose  with probability . Then for any 

1. Bound on the variance 

2. Bound on the mgf 

Proof. For the bound on the variance  implies that  and therefore

M ​(t)X

X M ​(t) ≤X M(t) M(t)
Y Y

a ≤ X ≤ b 1 ε > 0

Var(X) ≤ ​

4
(b − a)2

E e ≤[ tX] e etE[X] ​8
t (b−a)2 2

a ≤ X ≤ b − ​ ≤
2

a − b
X − ​ ≤

2
a + b

​

2
a − b

Var(X) = Var X − ​ ≤(
2

a + b) E X − ​ ≤[(
2

a + b)2] ​ .
4

(b − a)2
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Since  is bounded the moment generating function  exists for any . To bound the  let us

consider instead its logarithmx . We have

We recognize  as the variance under the tilted measure  which is defined by . with tilted

density  and thus by part 1. (applied to ) we have .

Using the Taylor expansion with remainder we have, for some  between  and 

This concludes the proof. 

Remark: The bound on the variance in 1. is optimal. Indeed taking without loss of generality  and  then the

variance is bounded by  and this realized by taking  to be a Bernoulli with . This bound says that the RV with

the largest variance is the one where the mass is distributed at the end point.

The bound in 2. is optimal only in the sense that it is the best quadratic bound on . For example for a Bernoulli with

 and  we have  which is much smaller (for large ). There is

room for better bounds but using Gaussian is computationally convenient.

X M(t) = ​

E[e ]tX
e
tX

t ∈ R M(t)
u(t) = lnM(t)

​ ​ ​ ​

u (t)′

u (t)′′

= ​

M(t)
M (t)′

= ​ − ​

M(t)
M (t)′′ (

M(t)
M (t)′ )

2

=

=

E X ​[
E[e ]tX

etX ]
E X ​ − E X ​[ 2

E[e ]tX

etX ] [
E[e ]tX

etX ]
2

u (t)′′ Q ​t E ​[⋅] =Q ​t
E ⋅ ​[

E[e ]tX
etX ]

​

E[e ]tX
e
tX

Q ​t u (t) ≤′′
​4

(b−a)2

ξ 0 t

lnM(t) = u(t) = u(0) + u (0)t +′ u (ξ) ​ ≤′′

2
t2

tE[X] + ​ .
8

t (b − a)2 2

□

a = 0 b = 1
1/4 X p = ​2

1

u(t)
a = 0 b = 1 M(t) = ln( ​e +2

1 t
​ ) =2

1
​t +2

1 ln cosh ​( 2
t ) t
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If we appply the Hoeffding’s bound to a sum of random variables we find

Theorem 2.6 (Hoeffding’s Theorem) Suppose  are independent random variables such that 

 (almost surely). Then

X ​, ⋯ ,X ​1 n a ​ ≤i X ≤
b ​i

​ ​

P X ​ + ⋯ + X ​ − E[X ​ + ⋯ + X ​] ≥ ε( 1 n 1 n )

P X ​ + ⋯ + X ​ − E[X ​ + ⋯ + X ​] ≤ −ε( 1 n 1 n )

≤ e
− ​

​(b ​−a ​)∑
i=1
n

i i
2

2ε2

≤ e
− ​

​(b ​−a ​)∑
i=1
n

i i
2

2ε2 (2.2)

Proof. Using independence the Hoeffding’s bound we have

and using Chernov bound (for a Gaussian RV with variance ) gives the first bound in .

The second bound is proved similarly. .

e =t(X ​+⋯+X ​−E[X ​+⋯+X ​])1 n 1 n
​e ≤

i=1

∏
n

t(X ​−E[X ​])i i
​e =

i=1

∏
n

​8
t (b ​−a ​)2

i i
2

e ​8
t ​(b ​−a ​)2 ∑i i i

2

​ ​

i

∑
4

(b ​ − a ​)i i
2

Equation 2.2

□
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We obtain from this bound a confidence interval for emprical sum

Corollary 2.1 (non-asymptotic confidence interval) Suppose  are independent random variables such

that  (almost surely) and .

Proof. This is Hoeffding’s bound with  replaced by  and with . .

Using

we get the confidence interval

X ​, ⋯ ,X ​1 n

a ≤ X ≤ b μ = E[X ​]i

P μ ∈ ​ − ε, ​ + ε ≥( [
n

S ​n

n

S ​n ]) 1 − 2e− ​

(b−a)2
2nε2

ε nε ​(b ​ −∑i=1
n

1 a ​) =1
2 n(b − a)2 □

δ = 2e ⟺− ​

(b−a)2
2nε2

ϵ = ​​

2n
(b − a) ln ​

2 (
δ
2 )

P ​μ ∈ ​ ​ − ​, ​ + ​ ​ ​ ≥⎝
⎛

⎣
⎡
n

S ​n
​

2n
(b − a) ln2 (

δ
2 )

n

S ​n
​

2n
(b − a) ln ​

2 (
δ
2 )

⎦
⎤
⎠
⎞

1 − δ
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2.11 Bernstein bound
In Hoeffding’s bound we use, in an essential way, a bound on the variance. If the variance is small then one should expect
the bound to be poor. The Bernstein bound can be used if we have some a-priori knowledge about the variance.

Theorem 2.7 (Bernstein Bound) Suppose  is a random variable such that  and .

Then

Proof. We expand the exponential and use that for , with ,

and get

X ∣X − E[X]∣ ≤ c var(X) ≤ σ2

E[e ] ≤tX e .tE[X]+ ​2(1−c∣t∣/3)
σ t2 2

k ≥ 2 μ = E[X]

E (X − μ) ≤[ k] E (X − μ) ∣X − μ∣ ≤[ 2 k−2] E[(X − μ) ]c ≤2 k−2 σ c2 k−2

​ ​

E e = 1 + ​ ​E[(X − μ) ][ t(X−μ)]
k=2

∑
∞

k!
tk k ≤ 1 + ​ ​ ​ (∣t∣c)

2
t σ2 2

k=2

∑
k!
2 k−2

≤ 1 + ​ ​ ​  since  ​ ≥ 3
2

t σ2 2

k=2

∑
∞

(
3

∣t∣c)k−2

2
k! k−2

≤ 1 + ​ ≤ e  since 1 + x ≤ e □
2(1 − ​ )3

∣t∣c

t σ2 2
​

2(1− ​ )3
∣t∣c

t σ2 2

x
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To combine this we a Chernov bound we have to solve the following optimzation problem which after some
straightforward but lengthy computation gives

Note that we can invert the function  and we have . This make the Bernstein bound especially

convenient to get explcit formulas. By symmetry we find the same bound for the left tail.

Theorem 2.8 (Bernstein for sum of IID) If  are IID random variables with  and 

then

​ εt − ​ =
t≥0
sup {

2(1 − bt)
at2 } ​h ​  where h(u) =

b2

a (
a

bϵ) 1 + u − ​1 + 2u

h h (z) =−1 z + ​2z

X ​, ⋯ ,X ​1 N ∣X ​∣ ≤i c Var(X ​) ≤i σ2

P μ ∈ ​ − ​ ln ​ − ​, ​ + ​ ln ​ + ​ ≥( [
n

S ​n

3n
c (

δ

2) ​ ln ​

n

2σ2 (
δ

2)
n

S ​n

3n
c (

δ

2) ​ ln ​

n

2σ2 (
δ

2)]) 1 − δ
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Proof.

and we obtain the same bound for .

To obtain a confidence interval we need to solve

and set  and  to obtain the desired bound.

Comparison: Taking 

You should note that this bound can be substantially better than Hoeffding’s bound provided , if  is large then

the  term is much smaller than the  term and so Bernstein bound becomes better. See the illustration on the

next page.

There is an even more sophisticated version of this bound where one uses the sample variance to build a bound. One
needs then to estimate the probability that the sample varaince is far from the true variance which itself requires more
sophisticated inequalities using martingales.

​ ​

P ​ − μ ≥ ε(
n

S ​n ) = P X ​ + ⋯ + X ​− ≥ n(μ + ε) ≤ e( 1 n ) −n sup ​{ε− ​ }t≥0 2(1−ct/3)
σ t2 2

P ​ − μ ≥ ε(
n
S ​n )

δ = 2e ⟺−n ​h ​

b2
a ( a

bε ) ε = b ​ ln ​ +
n

1 (
δ

2) ​2a ​ ln ​

n

1 (
δ

2)
a = σ2 b = c/3

a = 0, b = 1

(Bernstein) ​ ln ​ +
3n
c (

δ

2) ​ ​  versus ​ ​ (Hoeffding)2 ln ​(
δ

2)
​n

σ
2 ln ​(

δ

2)
​n

σ ​max

σ ≤ σ ​max n

1/n 1/ ​n
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As an illustration we plot the empirical mean as well as Hoeffding’s and Bernstein’s confidence interval for computing the
mean beta RV so in Hoeffding’s the maximum variance is  and we can take  in Bernstein. Here we take the

parameter  and  so the true mean is  and the true variance is  which is quite a

bit smaller than .

confidence intervals with Bernstein and Hoeffding

​4
1 c = 1

α = 1 β = 2 ​ =
α+β
α

​3
1

​ =(α+β) (α+β+1)2
αβ

​18
1

​4
1
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2.12 Exercises
Exercise 2.1 Suppose  are independent and identically distributed normal random variable with mean  and

variance . Compute

Exercise 2.2 Suppose  are independent and indentically distributed with . Show that 

 almost surely.

Exercise 2.3 Suppose  and  are two random variables with finite variance and you want to estimate the correlation

coefficient

Use the law of large number to find an estimator for  using  independent copies of .

X ​i 1
3

​ ​

n→∞
lim

X ​ + X ​ + ⋯ + X ​1
2

2
2

n
2

X ​ + X ​ + ⋯ + X ​1 2 n

X ​i E[X ​] >i 0 lim ​ S =n→∞ n

lim ​ X ​ +n→∞ 1 ⋯ + X ​ =n +∞

X Y

ρ(X,Y ) = ​ .
​V (X)V [Y ]

Cov(X,Y )

ρ n (X ​,Y ​)i i
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Exercise 2.4 Suppose  are independent and indentically distributed and strictly positive (i.e ).

Show that, almost surely,

and compute . This is a simple model used in financial application where  describe the change of your investment

in any given day: if you start with  your fortune is  after the first day,  after the second day, and so

on…..

X ​i P (X ​ >i 0) = 1

​(X ​X ​ ⋯X ​) =
n→∞
lim 1 2 n

​

n
1

α .

α X ​i

F ​0 F ​X ​0 1 F ​X ​X ​0 1 2
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3 Weak convergence aka
convergence in distribution

49

Convergence of random variables



3.1 Weak convergence of probability measures
In the notion of weak convergence we do not view random variables as map  and work exclusively with their

distribution  (that is probability measures on ). Actually one can talk about weak convergence of random variables

even if they do not live on the same probability space!

Definition 3.1 (Weak convergence of probability measures and convergence in distribution for random variables)  

1. The sequence  of probability measures on  converges weakly to  if

for any  bounded and continuous.

2. The {sequence of RVs  converges to  in distribution if the distribution  of  converges weakly to the

distribution  of , i.e.,

for any  bounded and continuous.

Remark: We can generalize this easily to RV taking values in  or some metric space (so we can talk about bounded

continuous function). We stick with  for simplicity.

X : Ω → R
PX R

(P ​)n R μ

​ fdP ​ =
n→∞
lim ∫ n fdP  ∫

f : R → R

(X ​)n X PX ​n X ​n

PX X

​E[f(X )] =
n→∞
lim n E[f(X)]

f : R → R

Rn

R

50

Convergence of random variables



3.2 Simple properties and some examples
Theorem 3.1 (weak means weak)  

1. If  converges to  in  or in probability, or almost surely then  converges to  weakly.

2. If  converges indistribution to a constant RV  then  converges to  in probability.

Proof. We show that convergence in probability implies convergence in distribution. Since almost sure convergence and
convergence in  implies convergence in probability, this will prove 1. But as we have proved in  if 

converges to  in probability, the continuity of  implies that  converges to  in probability.

Since  is bounded the random variables  and  are bounded (and so in any ). As we proved in  this

implies that .

For the (partial) converse statement in 2. we take assume that  converges weakly to a constant  and consider

the continuous function . Then we have

By  this implies that  converges to  in probability.

X ​n X Lp X ​n X

X ​n X = a X ​n a

Lp Theorem 1.4 X ​n

X f Y ​ =n f(X ​)n Y = f(X)
f Y ​n Y Lp Theorem 1.7

lim ​ E[f(X ​)] =n→∞ n E[f(X)]

X ​n X = a

f(x) = min{∣x − a∣, 1}

E[min{∣X ​ −n X], 1}] = E[f(X ​)] →n E[f(X)] = f(a) = 0

Theorem 1.6 X ​n X
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Examples:

1. If  are identically dsitributed RV (i.e.   for all  then  converges in distribution but  does not need to

converges in any other sense except if . An example is when  are IID Cauchy RV with

parameter  then  are also Cauchy RV with paramter . Then both  and  both

converges in distribution to a Cauchy RV paramter  but these sequences do not converges in any other sense.

2. The measure  converges weakly to the Lebesgue measure on . Indeed for  continuous, the

Riemman sum

3. If  then  converges weakly to  if and only if  and .

4. Convergence of the quantile functions: Let  be the quantile function for  and  the quantile function for  and let

 be Lebesgue measure on . Then  and .

If the quantiles  converges to  for  almost all  then for  continuous and bounded 

converges to  for  almost all . By the bounded convergence theorem

and thus  converges in distribution to .

X ​i P =X ​n P n X ​i X ​n

X = X ​ =1 X ​ =2 ⋯ X ​i

β ​ =
n
S ​n

​ (X ​ +
n
1

1 ⋯ + X ​)n β X ​n ​

n
S ​n

β

P =n
​ ​ δ ​

n
1 ∑i=1

n
​

n
i [0, 1] f

fdP ​ =∫ n ​ ​f ​ →
n

1

i=1

∑
n

(
n

i ) fdx .∫

P ​ =n δ ​x ​n
P ​n P P = δ ​x x ​ →n x

Q ​n X ​n Q X

P ​0 [0, 1] P =X ​n P ​ ∘0 Q ​

N
−1 P =X P ​ ∘0 Q−1

Q ​n Q P ​0 ω ∈ [0, 1] f f ∘ Q ​n

f ∘ Q P ​0 ω ∈ [0, 1]

E[f(X ​)] =n ​ f(x)dP (x) =∫
R

X ​n
​ f(Q ​(ω))dP ​(ω) →∫

[0,1]
n 0 ​ f(Q(ω))dP (ω) =∫

[0,1]

0 E[f(X)]

X ​n X
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3.3 Convergence of sets probabilities
Basic question If  converges weakly to  and  is some measurable set what does this imply for the convergence

of ?

Notation If  is a set, then we denote by  the closure of , by  the interior of , and by  the boundary of . We

have

Theorem 3.2 (Weak convergence and set covergence) The following are equivalent

1.  converges weakly to .

2. For any  closed we have .

3. For any  open we have .

4. For any  with  we have .

We will prove

P ​n P A ⊂ R
P ​(A) =n 1 ​dP ​∫ A n

A A A Å A ∂A A

=A A ∪ ∂A =Å A ∖ ∂A ∂A = ∖A Å

P ​n P

A lim sup ​ P ​(A) ≤n n P (A)

A lim inf ​ P ​(A) ≥n n P (A)

A P (∂A) = 0 lim ​ P ​(A) =n n P (A)

1. ⟹ 2. ⟺ 3. ⟹ 4. ⟹ 1
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Proof.  Asssume 1. hold and  is a closed set. We consider the -neighborhood of :

Since  is closed  and so by sequential continuity .

Consider now function  which is bounded and continuous and satisfies 

. From this we see that

Weak convergence means  and thus . Since this holds for all  we have

proved 2.

 2. and 3. are equivalent since complements of closed sets are open and vice versa and 

 for any sequence  in .

 Assume 3. and then also 2. hold. Let  be a Borel set, since  we have

If  then  and this implies that .

∙ A ϵ A

A ​ =ϵ {x, d(x,A) < ϵ} where d(x,A) = inf{d(x, y) ; y ∈ A}

A A ​ ↘ϵ A P (A ​) ↘ϵ P (A)

f(x) = min 1 − ​ , 0{
ϵ

d(x,A) } 1 ​ ≤A f(x) ≤

1 ​A ​ϵ

P ​(A) ≤n fdP ​  and  fdP ≤∫ n ∫ P (A ​)ϵ

fdP ​ →∫ n fdP∫ lim sup ​ P ​(A) ≤n n P (A ​)ϵ ϵ

∙ lim inf(1 − r ​) =n 1 −
lim sup ​ r ​n n r ​n [0, 1]

∙ A ⊃A A ⊃ Å

P ( ) ≥A ​P ​( ) ≥
n

lim sup n A ​P ​(A) ≥
n

lim sup n ​P ​(A) ≥
n

lim inf n ​P ​( ) ≥
n

lim inf n Å P ( )Å

P (∂A) = 0 P ( ) =A P ( )Å lim ​ P ​(A) =n n P (A)
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 Take  bounded and continuous so that  and consider the probability  on . Since atoms

are countable we pick a partition  so that  and  is not an atom for

.

Set  and define the simple functions

By construction we have

Since  is continuous if  (  is collection of intervals) then  or  which are not atoms.

Therefore  and thus  as . This implies that  and 

 and thus by  we have

Since  is arbitrary we . .

∙ f a < f(x) < b P ∘ f−1 (a, b)
a ​ =0 a < a ​ <1 a ​ <2 ⋯ < a ​ =m b a ​ −i a ​ <i−1 ϵ a ​i

P ∘ f−1

A ​ =i f ((a ​, a ​])−1
i−1 i

g = ​a ​1 ​ , h =
i

∑ i−1 A ​i
​a ​1 ​ .

i

∑ i A ​i

f − ϵ ≤ g ≤ f ≤ h ≤ f + ϵ. (3.1)

f x ∈ ∂A ​i A ​i f(x) = a ​i−1 f(x) = a ​i

P (∂A ​) =i 0 P ​(∂A ​) →n i 0 n → ∞ gdP ​ →∫ n gdP∫ hdP ​ →∫ n

hdP∫ Equation 3.1

​ ​

fdP − ϵ ≤ gdP = ​ gdP ​∫ ∫
n

lim ∫ n ≤ ​ fdP ​

n
lim inf ∫ n

≤ ​ fdP ​ ≤ ​ hdP ​ = hdP ≤ fdP + ϵ
n

lim sup ∫ n
n

lim ∫ n ∫ ∫

ϵ lim fdP ​ =n ∫ n fdP □
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3.4 Uniqueness of limits
Suppose  and  are two probability measures on  and suppose that  for all bounded continuous

functions. Then we claim that .

We can provide a simple proof using . Take  for all  then  converges weakly to  and so for

any open set  we have . Exchanging the role of  and  we get 

and thus  and  coincide on all open sets and such sets form a -system which generate the -algebra.

As a consequence limits in weak convergence are unique, if  converges weakly to  and  then .

P Q R fdP =∫ fdQ∫
P = Q

Theorem 3.2 P ​ =n P n P ​n Q

A lim inf P ​(A) =n P (A) ≥ Q(A) P Q Q(A) ≥ P (A)
P Q p σ

P ​n P Q P = Q
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3.5 Convergence of distribution and quantile functions
For random variables weak convergence is called convergence in distribution and the following theorem explain why.

Theorem 3.3 (Convergence in distribution and convergence of the distribution functions) The following are
equivalent

1. The random variables  converges to  in distribution.

2. The CDF  at every continuity point of .

3. The quantile functions  at every continuity point of .

Proof.  : Suppose  is a continuity point of  then  is not an atom for . From  part 4. we

see that  converges to .

 : Suppose  is a point of continuity for  and let . Fix , and choose  and 

 to be continuity points of . Since  is continuous at , then  is not flat at level  and thus 

. Since  by assumption we have  and thus  for all but finitely many

. This means that . A similar argument shows that

. Thus  and 3. holds.

 : The quantile function being increasing has only countable many discontinuities and thus continuous

Lebesgue almost everywhere. As we have seen in the example in  this implies convergence in dsitribution.

X ​n X

F ​(t) →X ​n
F (t) F

Q ​(z) →X ​n
Q ​(z)X Q

∙ 1. ⟹ 2. t F ​(t)X x P Theorem 3.2

F ​(t) =X ​n
P ((−∞, t]))X ​n P ((−∞, t])) =X F (t)

∙ 2. ⟹ 3. z Q t = Q(z) ϵ > 0 s ∈ (t − ϵ, t) r ∈
(t, t + ϵ) F Q z F z F (s) < z <
F (r) F ​(s) →n F (s) F ​(s) <n z Q ​(z) >n s > t − ϵ

n lim inf Q ​(z) >n t − ϵ

lim supQ ​(z) <n t + ϵ lim ​ Q ​(z) =n n Q(z)

∙ 3. ⟹ 2.
Section 3.2
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Example If  are independent and identically distributed random variables with commmon CDF  then the

Glivenko-Cantelli theorem implies that for almost all 

That is the empirical (random) measure  converges weakly to  for almost all . In this example the

convergence occurs for all  even if  has dsicontinuities.

Example Consider the random variables  with distribution function

Then  converges to  for  and  for all . So  converges to  at all continuity

pooints of . So a uniform random variable on  converges weakly to the random varibale .

X ​i F (t)
ω

F ​(t) =n ​ ​ 1 ​ →
n

1

k=1

∑
n

{X ​(ω)≤t}k
F (t)  for all t.

​ ​ δ ​

n
1 ∑k=1

n
X ​(ω)k

PX ω

t F

X ​n

F ​(t) =n ​ ​ ​⎩⎨
⎧ 0

​ + ​t2
1

2
n

1

t ≤ − ​

n
1

− ​ < t < ​

n
1

n
1

t ≥ ​

n
1

F ​(t)n 0 t = 0 F ​(0) =n ​2
1 n F ​(t)n F (t) = 1 ​(t)[0,∞)

F [− ​ , ​ ]
n
1

n
1 X = 0
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Example: extreme value and maxima of Pareto distribution Consider  to be independent Pareto RV each

with cumulative distribution function  for  and  for . We are interested in the distribution of

the maximum

for the limit of large . We have, by independence

This suggest the scaling  so that

Thus we proved that  converges in distribution to a distribution which is called a Frechet distribution.

X ​, ⋯ ,X ​1 n

F (t) = 1 − ​

tα
1 t ≥ 1 0 t ≤ 1

M ​ =n ​X ​

m≤n
max n

n

P (M ​ ≤n t) = P (X ​ ≤1 t, ⋯ ,X ​ ≤n t) = F (t) =n 1 − ​(
tα
1 )n

t = n y1/α

P (M ​ ≤n n y) =1/α 1 − ​ →(
n

y−α )n

e  as n →−yα ∞.

M ​/nn
1/α
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3.6 Convergence of densities
We show next that convergence of the densities  implies convergence in distribution.

Theorem 3.4 Suppose  is sequence of random variables with densities  and  converges Lebesgue

almost everywhere to a density . Then  converges in dsitribution to the random variables  with density

.

Proof. The cumulative distribution function  is continuous for every  and we would like to show

that  converges to  for every . However we cannot use dominated convergence theorem

since there is no dominating function for .

We prove instead that for any  bounded and continuous we have  using that  is non-

negative and is normalized. Since  is bounded we set  and consider the two non-negative function

We now apply Fatou’s Lemma to the sequence of non-negative functions  and . We have for

f ​(x)n

X ​n f ​(x)n f ​(x)n

f(x) X ​n X

f(x)

F (t) = ​ f ​(x)dx∫−∞
t

n t

F ​(t)n F (t) = ​ f(x)dx∫−∞
t

t

f ​n

h lim ​ E[h(X ​)] =n n E[h(x)] f ​n

h α = sup ​ ∣h(x)∣x

h ​(x) =1 h(x) + α ≥ 0 h ​ =2 α − h(x) ≥ 0

h ​(x)f ​(x)1 n h ​(x)f ​(x)2 n

i = 1, 2

E[h ​(X)] =i f(x)h ​(x)dx ≤∫ i ​ f ​(x)h ​(x)dx =
n

lim inf ∫ n i ​E[h ​(X ​)]
n

lim inf i n
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From this we obtain

and thus . .

Example Suppose  is a sequence of normal random variables with mean  and variance . If  and 

 then  converges to a normal random variable with mean  and variance . This follows from the fact that the

density of a normal random variable is a continous function of  and .

E[h(x)] + α ≤ ​E[h(X ​)] +
n

lim inf n α  and  α − E[h(x)] ≤ α − ​E[h(X ​)]
n

lim sup n

E[h(X)] = lim ​ E[h(X ​)]n n □

X ​n μ ​n σ ​n μ ​ →n μ σ ​ →n

σ > 0 X ​n μ σ2

μ σ2
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3.7 Some remarks on convergence in total variation
The convergence of densities implies in fact a stronger mode of covergence than weak convergence.

We have not used the fact that  is continuous in the proof and thus we proved here that

In particular we can take  for any measurable set  and we have

This convergence is much stronger that weak convergence and is called convergence in total variation.

h

​E[h(X ​)] =
n

lim n E[h(X)]  for all h bounded and measurable

h = 1 ​A A

​P (X ​ ∈
n

lim n A) → P (X ∈ A)  for all measurable setsA, .
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3.8 Tightness and Prohorov Theorem
Basic question: We prove next a compactness result with respect to weak convergence: given a collection of probability
measures  on  when can we expect to have the existence of a (weakly) convergent subsequence?

We first need a new concept.

Definition 3.2 (Tightness) A collection of probability measure  is tight if for any  there exists 

such that

The following theorem is (a version of) Prohorov theorem which actually holds on more general spaces than  (actually

any complete separable metric space).

Theorem 3.5 (Prohorov theorem on ) If a collection of probability measure  is tight then any sequence of measure

 with  has a subsequence which converges weakly to some probability measure .

Proof. The proof use the cumulative distribution function . Since for any  we have 

. by Bolzano-Weierstrass there exists a subsequence  such that  converges. Of course the

subsequence  will depend a prioiri on .

P n R

P = {P ​} ​i i∈I ϵ > 0 R

P ​([−R,R]) ≥i 1 − ϵ  for all i ∈ I

R

R P

{P ​}n P ​ ∈n P P

F ​(t) =n P ​((−∞, t])n t ∈ R 0 ≤
F ​(t) ≤n 1 F ​n ​k

F ​n ​(t)k

n ​k t
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To construct the limit for any  we use a diagonal sequence argument: consider an enumaration  of the rational

.

For  there exists a subsequence  such that the limit exists and we set

For  there exists a sub-subsequence  of  such that the limit exists and we set

and note that we also .

Continuing in this way for  we have subsequence  and we set

and note that  converges for .

Finally consider the diagonal sequence  and we have for all 

since  is a subsequence of  for .

t r ​, r ​, ⋯1 2

Q

r ​1 n ​1,k

G(r ​) =1 ​F ​(r ​) .
k→∞
lim n ​1,k 1

r ​2 n ​2,k n ​1,k

G(r ​) =2 ​F ​(r ​) .
n→∞
lim n ​2,k 2

G(r ​) =1 lim ​ F ​(r ​)n→∞ n ​2,k 1

r ​j n ​j,k

G(r ​) =j ​F ​(r ​)
n→∞
lim n ​j,k j

F ​(r)n ​j,k r = r ​, r ​, ⋯ , r ​1 2 j

n ​ =k n ​k,k j

G(r ​) =j ​F ​(r ​)
n→∞
lim n ​k j

n ​k n ​j,k k ≥ j
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We now define a function  on  by setting

Since  is non-decreasing,  is also non-decreasing and it is right continuous by construction.

We now use the tightness hypothesis and choose  so that  for all  simultaneoussy. This implies

that

The same holds for the function  and finally also for the function  and we have

Since ,  is right-continuos and decreasing and  is arbitrary this shows that  as  and

 as  and  is the cumulative distribution function for some probability measure .

To conclude we need to prove that  converges to  for all continuity points of . Assuming that 

 we see that there exists  such that

If  is large enough we have

F R

F (t) = inf G(r), r ≥ t rational{ }

G F

R P ​([−R,R]) ≥n 1 − ϵ n

F ​(t) ≤n ϵ for t ≤ −R  and  F ​(t) ≥n 1 − ϵ for t ≥ R .

G F

F (t) ≤ ϵ for t ≤ −R  and  F (t) ≥ 1 − ϵ for t ≥ R .

0 ≤ F ≤ 1 F ϵ F (t) → 0 t → −∞
F (t) → 1 t → +∞ F P

F ​(t)n ​k
F (t) F F (t ​) =−

F (t) r, s ∈ Q

F (t) − ϵ < G(r) ≤ F (t) ≤ G(s) ≤ F (t) + ϵ

k

F (t) − 2ϵ < F ​(r) ≤n ​k
F ​(t) ≤n ​k

F ​(s) ≤n ​k
F (t) + 2ϵ
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Thus

and since  is arbitrary  exists and must be equal to . By  this shows that  converges

weakly to .

F (t) − 2ϵ < F (r) ≤ ​F ​(t) ≤
k

lim inf n ​k
​F ​(t) ≤

k

lim sup n ​k
F (s) ≤ F (t) + 2ϵ

ϵ lim ​ F ​(t)k n ​k
F (t) Theorem 3.3 P ​n

P
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3.9 Weak convergence and characteristic function
A fundamental result to prove the central limit theorem is the following

Theorem 3.6 (Lévy continuity theorem) Let  be a sequence of probability measure on  and  their Fourier

transforms.

1.  converges weakly to  implies that  converges pointwise to 

2. If  converges pointwise to a function  which is continuous at  then  is the Fourier

transform of a measure  and  converges weakly to .

Proof. For 1. just note that  is bounded and continuous and thus weak convergence implies convergence to the

charatersitic function for every .

For 2. we show first that if  converges to a function  which is continuous at  then the sequence  is tight. By

Fubini theorem

P ​n R ​(t)Pn

P ​n P ​(t)Pn (t)P

​
(t)Pn h(t) 0 h(t) = (t)P

P P ​n P

eitx

t

​(t)Pn h(t) 0 P ​n

​ ​

​ ​(t)dt∫
−α

α

Pn = ​ ​ e dtdP ​(x) = ​ ​ cos(tx)dtdP ​(x) = ​ ​ sin(αx)dP ​(x)∫
−∞

∞

∫
−α

α
itx

n ∫
−∞

∞

∫
−α

α

n ∫
−∞

∞

x

2
n
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Next using the following easy bound

we obtain

Now since  for all  we have  and so by the assumed continuity of  we can choose  sufficiently

small so that

By the bounded convergence theorem we have

and so combining  with  we find that for  large enough

This ensures that the sequence  is tight.

2 1 − ​ ​ ​(
v

sin(v)) { ≥ 1
≥ 0

 if ∣v∣ ≥ 2
 always 

​ ​

​ ​(1 − ​(t))dt
α

1 ∫
−α

α

Pn = ​ 2 1 − dP ​(x) ≥ ​ dP ​(x) = P ​ − ​ , ​∫
−∞

∞ (
αx

sin(αx)) n ∫
α∣x∣≥2

n n ([
α

2
α

2 ]c) (3.2)

​(0) =Pn 1 n h(0) = 1 h α

​ ​ ∣1 −
α

1 ∫
−α

α

h(t)∣dt ≤ ​

2
ϵ

(3.3)

​ ​ ​ ∣1 −
n→∞
lim

α

1 ∫
−α

α

​(t)∣dt =Pn ​ ​ ∣1 −
α

1 ∫
−α

α

h(t)∣dt

Equation 3.2 Equation 3.3 n

P ​ − ​ , ​ ≤n ([
α

2
α

2 ]c) ϵ .

{P ​}n
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To conclude we invoke : for any subsequence  there exists a subsubsequence  which converges

weakly to some probability measure . By part 1. this implies that  converges  which must then be

equal to . This shows that  is the characteristic function for the probability measure  and this shows that the

limit is the same for any choice of subsequence . This implies that  converges weakly to . .

Example If  is Poisson then . Take  Poisson with  and set 

So  converges weakly to a standard normal.

This is exactly the kind of computation that we will use to prove the central limit theorem in the next section.

Theorem 3.5 P ​n ​k
P ​n ​k ​j

P lim
​ ​

(t)j Pn ​k ​j
(t)P

h(t) h(t) P

n ​k P ​n P □

Z E e =[ itZ] eλ(e −1)iλt

Z ​n λ = n Y ​ =n ​

​n
Z ​−nn

​ ​ ​

E[e ]itY ​n =

=

E e = e E e = e e[ i ​ (Z−n)
​n

t ] −it ​n [ i ​Z
​n

t ] −it ​n
n e −1( i ​

​n
t )

e e = e e−it ​n n i ​ − ​ +O(n )(
​n

t
2n
t2 −3/2 ) − ​2

t2 O(n )−1/2

Y ​n
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3.10 Exercises
Exercise 3.1 (Continuity Theorem for convergence in distribution) Show that if  converges in distribution to 

and  is a continuous function then  converges in distribution to .

Exercise 3.2 (Convergence of distributions for discrete random varables) Suppose  and  takes values in . Show

that  converges to  if and only if  converges to  for all .

Hint: For the “if” direction pick a finite set  such that .

Exercise 3.3 (Criterion for tightness) Suppose  is a non-negative function with . Show that if

 then the sequence of random variable  is tight (that is the family of distribution 

is tight).

Exercise 3.4  

1. Show that if  converges to  in distribution and  converges to  in distribution and  and  are

independent for all  then  converges to  in distribution. Hint: Use the characetristic function.

2. Show with a counterexample that the assumption that  and  are independent can, in general, not be dropped

in part 1.

X ​n X

f f(X ​)n f(X)

X ​n X Z
X ​n X P (X ​ =n j) P (X = j) j ∈ Z

Λ ⊂ Z P (X =∑j∈Λ j) ≥ 1 − ϵ

ϕ lim ​ ϕ(x) =∣x∣→∞ +∞
C = sup ​ E[ϕ(X ​)] <n n ∞ X ​n PX ​n

X ​n X Y ​n Y X ​n Y ​n

n X ​ +n Y ​n X + Y

X ​n Y ​n
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Exercise 3.5 Given independent identically distributed random variables  with a common

distribution function  let  be the maximum.

1. Assume that for any finite  we have  (this means that the  are unbounded). Show that

Hint: Fix an arbitrary  and consider the event . Apply then Borel-Cantelli Lemma.

2. Assume that we have  and  if  (this means that  are bounded). Show that

Hint: Argue as in 1.

3. Suppose that  are an exponential random variable with distribution function . From part 1. we

know that  diverges almost surely. In order to characterize this divergence show that

The random variable  with distribution function  is called a Gumbell distribution.

X ​,X ​, ⋯ ,X ​1 2 n

F (x) = P (X ​ ≤j x) M ​ =n max ​ X ​1≤k≤n k

x F (x) < 1 X ​j

​M ​ =
n→∞
lim n +∞  almost surely.

R A ​ =n P (Y ​ ≤n R)

F (x ​) =0 1 F (x) < 1 x < x ​0 X ​j

​M ​ =
n→∞
lim n x ​  almost surely.0

X ​j F (x) = 1 − e−x

M ​n

​P (M ​ −
n→∞
lim n log n ≤ x) = e−e−x

Z P (Z ≤ x) = e−e−x
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4 Central limit theorem
The LLN asserts that for IID random variables the empirical mean $ $converge to the mean . The central

limit theorem describes the small fluctations around the mean. Informally it says that if the  are independent and

identically distributed and have finite variance then

where  is a standard normal random variable.

μ = \E[X ​]i
X ​i

​ ≈
n

S ​n
μ + ​Z as n →

​n

σ
∞

Z
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4.1 Empirical finding
We take  to be uniform on  with mean  and variance . For various value of 

we generate  IID samples of  and then rescale them by  to obtain a variance which is independent of . We plot

then an histogram of the values obtained, comparing with the pdf of a normal distribution with mean  and variance 

Code

X ​k {−40, −39, ⋯ , 40} μ = 0 σ =2
​12

81 −12
n

m ​

n
S ​n

​n n

0 σ2

import numpy as np1
import matplotlib.pyplot as plt2
from scipy.stats import norm3

4
# number of sample in the sample mean5
num = [1, 10, 100, 1000] 6
# list of sample means7
means = [] 8

9
# number of realizations of the sample means10

11
num_re = 1000012

13
# Generating num random numbers from -40 to 4014
# taking their mean and appending it to list means.15
for j in num:16
    x = [np.mean(17
        np.random.randint(18
            -40, 41, j)) for _i in range(num_re)]19
    means.append(x)20

21
k = 022
xrange = np.arange(-100,100,.1)23

24
# plotting all the rescaled means in one figure25
fig, ax = plt.subplots(2, 2, figsize =(8, 8))26
f i i (0 2)27
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4.2 The central limit theorem
Theorem 4.1 (Central Limit theorem) Suppose the random variables  are IID RVs with  and

 for all . Then

converges in distribution to a standard normal random variable .

To understand and remember the the scaling, note that

Often, using one version of the convergence in distribution we write that for any  we have

X ​i E[X ​] =i μ

Var(X ​) = σi
2 i

Y ​ =n ​

​σn

S ​ − nμn

Z

E[Y ​] =n 0 Var(Y ​) =n Var(S ​) =
nσ2

1
n 1

a, b

​P a ≤ ​ ≤ b =
n→∞
lim (

​σn

X ​ + ⋯ + X ​ − nμ1 n ) ​ ​dx∫
a

b

​2π

e−x /22
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Proof. We have done most of the work already! By  it enough to prove that the characteristic function

 converges to  for all . We denote by  the characteristic function of the random variables

. We have, using independence,

Since  has finite variance by ?@thm-differentiabilityft,  is twice continuously differentiable and we have

and so  and  a Taylor expansion around  gives

We have then

where we have used that if  then  (by L’Hopital rule). 

Theorem 3.6

E[e ]itY ​n E[e ] =itZ e−t /22
t ϕ

​

σ
X ​−μi

​

ϕ ​(t) = E e = E e = ​E e = ϕ( ​ )Y ​n
[ itY ​n] [ i ​ ​(X ​−μ)

​σn
t ∑

k=1
n

k ]
k=1

∏
n

[ i ​ ​

​n
t

σ

X ​−μk ]
​n

t n

X ​i ϕ(t)

ϕ (t) =′ iE ​ e ϕ"(t) =[(
σ

X ​ − μk ) it ​

σ

X ​−μk ] −E ​ e[(
σ

X ​ − μk )2
it ​

σ

X ​−μk ]
ϕ (0) =′ 0 ϕ"(0) = −1 0

ϕ(t) = 1 − ​ +
2
t2

t h(t) =2 1 − ​ (1 −
2
t2

h(t))  with  lim t → 0h(t) = 0

ϕ ​(t) =Y ​n ϕ ​ =(
​n

t )n

1 − ​ →(
n

t (1 − h(t/ ​))2 n )
n

e−t /22

c ​ →n c (1 + c ​/n) →n
n ec □
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4.3 Variations on the CLT
Modifying the proof slightly one can find

Theorem 4.2 Let  be independent random variables with  for all  and variance . Assume

 and . Then

where  is a standard normal.

and also there is a multidimensional version

Theorem 4.3 (multi-dimensional central limit theorem) Let  be IID -valued random variables. Let 

the vector or means and let  be the covariance matrix . Then

where  is Gaussian with mean vector  and covariance matrix .

X ​i E[X ​] =i 0 i σ ​ =i
2 Var(X ​)i

sup ​ σ ​ <i i
2 ∞ ​ σ ​ =∑i i

2 ∞

​ →
​​ σ ​∑j=1

n
j
2

S ​n
Z  in distribution

Z

X ​i Rd μ = E[X ​]i
Q Q = Cov(X ​,X ​)i i

​ →
​n

S ​ − nμn
Z  in distribution

Z μ Q
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4.4 Confidence intervals (version 1)
We build build confidence interval for , since by the Central limit theorem

 is asymptotically normal.

​

n
S ​n

​ ( ​ −
σ

​n

n
S ​n μ)

To build a -confidence interval we let  the number defined byα z ​α

α = ​ ​ e dx  for example  ​ ​

​2π

1 ∫
−z ​α

z ​α

− ​2
x2

⎩⎨
⎧ z ​ = 1.645... (90% confidence interval).90

z ​ = 1.960... (95% confidence interval).95

z ​ = 2.576... (99% confidence interval).99

By the CLT 

Approximate  Confidence Interval

P μ ∈ ​ − z ​ ​ , ​ + z ​ ​ ⪅( [
n

S ​n
α

​n

σ

n

S ​n
α

​n

σ ]) α.  as n → ∞.

α

P μ ∈ ​ − ϵ, ​ + ϵ ⪅( [
n

S ​n

n

S ​n ]) α  provided  n ≥ z ​ ​α
ϵ2

σ2
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The issue with that formula is that we are trying to compute  so there is no reason

to believe that the variance  should be known! To remedy this issue we will use

later the estimator for  built from our samples .

μ

σ2

σ2 X ,X ​, ⋯1 2
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4.5 Applications of the CLT to Monte-Carlo method
In the spirit of the Monte-Carlo method the CLT provides a method to compare different MCMC methods to compute a
number . The idea is simple: given two Monte-Carlo estimator to compute 

choose the one with the smallest variance since by the central limit theorem the estimator with smallest variance will be
more concentrated around .

μ μ

​ ​X ​ →
n

1

k=1

∑
n

i μ  and  ​ ​Y ​ →
n

1

k=1

∑
n

i μ

μ

Example: comparing estimator to compute integrals Given a function  (without loss of generality with  and

defined on ) we have the estimators for 

and

h 0 ≤ h ≤ 1
[0, 1] μ = ​ h(x)dx∫0

1

​ ​h(U ​) →
n

1

k=1

∑
n

i ​ h(x)dx  where U ​ uniform on[0, 1]∫
0

1

i

​ ​X ​ →
n

1

k=1

∑
n

i ​ h(x)dx  where X ​ =∫
0

1

i ​ ​  where U ,V  uniform on[0, 1]{ 1
0

if U ≤ f(V )
if U > f(V )
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Computing the variances we find

and

and since  we have  and thus .

Var(h(U)) = ​ h(x) dx −∫
0

1
2

​ h(x)dx(∫
0

1 )
2

Var(X) = μ(1 − μ) = h(x) −∫ ​ h(x)dx(∫
0

1 )
2

0 ≤ h(x) ≤ 1 h (x) ≤2 h(x) Var(h(U)) ≤ Var(X)

Importance sampling: Suppose we are trying to compute with a Monte-Carlo method (using a RV  with density )

the integral .

Suppose for example that  and  is standard normal. Then  which

is tiny. To have a meaningful estimate for , the CLT gives  we must have  or .

The naive estimator using the Bernoulli RV  has variance

and so we need  samples.

X f ​(x)X

E[h(X)] = h(x)f ​(x)dx∫ X

h(x) = 1 ​{x≥4} X E[h(X)] = P (X < 4) = 0.00003
μ S ​/n ≈n μ + ​Z

​n
σ

​ ≪
​n

σ μ n ≫ ​

μ2
σ

2

Y = 1 ​{X≥4}

Var(Y ) = P (X ≥ 4)(1 − P (X ≥ 4)) ≈ P (X ≥ 4) = μ

n ≫ μ−1
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The idea behind importance sampling is that in the previous estimator most samples are “lost”. Indeed most samples gives

 where . Instead we should change the sampling distribution so that most samples are greater than .

The general principle is to use another density  for another random variable  and write

which gives us another estimator whose variance is

The potential gain is in the first term. For the example at hand we pick  to be a shifted exponential with pdf 

 for  which ensures that all samples are exceeding  and thus will contribute something. To see if we gain

something let us estimate

so we gain a factor . Impressive!

X < 4 h(x) = 0 4
g ​(y)Y Y

E[h(X)] = h(x)f ​(x)dx =∫ X ​g ​(x)dx =∫
g ​(x)Y

h(x)f ​(x)X
Y E ​[

g ​(Y )Y

h(Y )f ​(Y )X ]

E ​ −[(
g ​(Y )Y

h(Y )f ​(Y )X )
2] E ​ =[

g ​(Y )Y

h(Y )f ​(Y )X ]
2

E ​ −[(
g ​(Y )Y

h(Y )f ​(Y )X )
2] E h(X)[ ]2

Y g ​(x) =Y

ex−4 x ≥ 4 4

​

E ​[(
g ​(Y )Y

h(Y )f ​(Y )X )2] = h(x) ​dx = ​ ​e e dx∫ 2

g ​(x)Y

f ​(x)X
2 ∫

4

∞

2π
1 −x /22 −x /2+x−42

= ​ ​e ​e e dx ≤ ​ ​ ​e dx = ​∫
4

∞

​2π

1 −x /22

​2π

1 −(x−1) /22 −7/2

​2π

e e−7/2 −9/2 ∫
4

∞

​2π

1 −x /22

​2π

e−8

​ =
​2π

e−8
0.0000133..
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4.6 Slutsky theorem and applications
Slutsky is a very useful theorem with many applications. First we need a technical result (useful in its own right) which
tells us that we only need to consider Lipschitz bounded functions to check for convergence in distribution.

Recall  is Lipschitz continuous if there exists a constant  such that {  for all . Lipschitz

functions are uniformle continuous and, functions which are differentiable with a bounded derivative 

are Lipschitz continuous.

Theorem 4.4 (Portmanteau Theorem) The sequence  converges to  in distribution if and only if

 for all functions  which are bounded and Lipschitz continuous.

Proof. Suppose  is bounded with  so that . Then consider the functions

The functions  and  are bounded and increasing/decreasing sequences. We hav

and therefore we have .

g k ∣g(x) − g(y)∣ ≤ k∥x − y∥ x, y
sup ​ ∣g (x)∣ <x

′ ∞

X ​n X

lim ​ E[f(X ​)] =n→∞ n E[f(X)] f

f α = sup ​ ∣f(x)∣x −α ≤ f(x) ≤ α

h ​(x) =k ​{f(y) +
y

inf k∥x − y∥}  and  H ​(x) =k ​{f(y) −
y

sup k∥x − y∥}

h ​k H ​k

−α ≤ ​f(y) ≤ ​{f(y) + k∥x − y∥} = h ​(x) ≤ f(x) ≤ ​{f(y) − k
y

inf
y

inf k
y

sup

−α ≤ h ​ ≤k h ​ ≤k+1 f(x) ≤ H ​ ≤k+1 H ​ ≤k α
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Theorem 4.5 (Slutsky’s Theorem) If  converges to  in distribution and  converges to  in probability

then  converges to  in distribution.

Proof. Use  consider a bounded Lipschitz function  with  and 

 for all .

For any  we have

Consequently

As  the right hand side converges to  since the second term goes to  since  converges to  in

probability and  converges to 0 since  converges to  in distribution. Since  is arbitary this

concludes the proof.

X ​n X ∣Y ​ −n X ​∣n 0
Y ​n X

Theorem 4.4 f sup ∣f(x)∣ ≤x M ∣f(x) − f(y)∣ ≤ K∣x −
y∣ x, y

ϵ > 0

​ ​

∣E[f(X ​)] − E[f(Y ​)]∣n n ≤ E[∣f(X ​) − f(Y ​)∣1 ​] + E[∣f(X ​) − f(Y ​)∣1 ​]n n {∣X ​−Y ​∣<ϵ}n n n n {∣X ​−Y ​∣≥ϵ}n n

≤ Kϵ + 2MP (∣X ​ − Y ​∣ ≥ ϵ)n n

​ ​

∣E[f(Y ​)] − E[f(X)]∣n ≤ ∣E[f(Y ​)] − E[f(X ​)]∣ + ∣E[f(X ​)] − E[f(X)]∣n n n

≤ Kϵ + 2MP (∣X ​ − Y ​∣ ≥ ϵ) + ∣E[f(X ​)] − E[f(X)]∣n n n

n → ∞ ϵ 0 ∣Y ​ −n X ​∣n 0
∣E[f(X ​)] −n E[f(X)]∣ X ​n X ϵ

□
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In many applications the following result, also called Slutsky Theorem, is very useful.

Theorem 4.6 (Slutsky’s Theorem) Suppose  converges to  in distribution and  converges to  in probability.

Then

1.  in distribution.

2.  in distribution.

3.  in distribution (provided )

Proof.

Consider the random variables . We show that  converges to  in distribution. Indeed for any

bounded continous function  consider the function . Since  converges to  in distribution

then  converges to .

Now . So if  converges to  in probability then  converges to 

in probability.

Using  we conclude that  converges to  in distribution.

We now can use the continuity theorem for convergence in distribution (see ) using the continuous
functions  or  or .

X ​n X Y ​n c

X ​ +n Y ​ →n X + c

X ​Y ​ →n n cX

X ​/Y ​ →n n X/c c = 0

(X ​, c)n (X ​, c)n (X, c)
f(x, y) g(x) = f(x, c) X ​n X

E[g(X ​)] =n E[f(X ​, c)]n E[g(X)] = E[f(X, c)]

∣(X ​,Y ​) −n n (X ​, c)∣ =n ∣Y ​ −n c∣ Y ​n c (X ​,Y ​)n n (X ​, c)n

Theorem 4.5 (X ​,Y ​)n n (X ​, c)n

Exercise 3.1
h(x ​,Y ​) =n n X ​ +n Y ​n X ​Y ​n n X ​/Y ​n n
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The central limit theorem states that  converges to a standard normal . If  is not known can we replace it by the

estimator for the variance estimator ? The answer is yes, by applying Slutsky theorem

Theorem 4.7 (CLT using the empirical variance) Suppose the random variables  are IID RVs with  and

 for all . Then

converges in distribution to a standard normal random variable .

Proof. This follows from  since  converges to  in probability by the law of large numbers (and continuity

theorem) and  converges to  in distribution.

This is the standard way the CLT is used in statistical applications. For example……

​

​nσ
S ​−nμn Z σ

V ​ =n ​ ​(X ​ −
n
1 ∑

k k ​ )
n
S ​n 2

X ​i E[X ​] =i μ

Var(X ​) = σi
2 i

Y ​ =n ​

​nV ​n

S ​ − nμn

Z

Theorem 4.5 ​V ​n σ

​

​nσ
S ​−nμn Z
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4.7 The -method
Another nice application is the so-called -method which is some kind of non-linear version of the CLT. To this it is

convenient to rewrite the CLT as

where  is normal with variance . By the continuity theorem if  is a continuous function then  converges to

 almost surely and it is natural to ask whether we have a central limit theorem. The answer is yes provided  is

differentiable and it is provided by the following theorem. We only show the 1d version.

Theorem 4.8 ( -method) Suppose  is normal with mean  and variance  and we have

Assume  is continuously differentiable with  then

where  is normal with mean  and variance .

δ
δ

​ ​ − μ →n(
n

S ​n ) Y  in distribution 

Y σ2 g g ​(
n
S ​n )

g(μ) g

δ Y 0 σ2

​ ​ − μ →n(
n

S ​n ) Y  in distribution.

g : R → R g (μ)′ = 0

​ g ​ − g(μ) →n( (
n

S ​n) ) Y  in distribution,′

Y ′ 0 σ g (μ)2 ′ 2

87

Convergence of random variables



Proof. Taylor expansion around  gives

Applying this to  we find

Here comes Slutsky’s Theorem in action. On one hand  converges to  in probability and since  is continuous at 

then  converges to  in probability as well by . Since  converges to  in

probability  implies that the last term converges to  in distribution. But as we have seen in 

convergence to a constant in distribution implies convergence in probability. We can now apply : the first
term on the right hand side of  converegs in distribution to a normal with variance  and the

second term converges in probability to , therefore the left hand side of  converges in distribution a normal

with variance . .

μ

g(μ + h) = g(μ) + g (μ)h +′ hr(h)  with  ​r(h) =
h→0
lim 0

h = ​ −
n
S ​n μ

​ g ​ − g(μ) =n( (
n

S ​n) ) ​g (μ) ​ − μ +n ′ (
n

S ​n ) ​ ​ − μ h ​ − μn(
n

S ​n ) (
n

S ​n ) (4.1)

​ −
n
S ​n μ 0 h 0

h ​ − μ(
n
S ​n ) 0 Theorem 1.4 ​ ​ − μn (

n
S ​n ) Y

Theorem 4.6 0 Theorem 3.1

Theorem 4.5
Equation 4.1 σ ∣g (μ)∣2 ′ 2

0 Equation 4.1

σ ∣g (μ)∣2 ′ 2 □
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Example
Suppose we are interested in the distribution of , a type of model used in financial

applications. Then we have  and the delta method gives

with  is normal with zero mean and variance .

Example
Suppose we have Bernoulli random variables  and we are interested in the odds of success that is the

ratio . (For gambling, often the odds of sucess are given instead of the probability of success). An estimator for the

odds is given by

so we can apply the  method with  so . The delta methods tells us that

where  is normal with variance .

Y ​ =n e =S ​/nn
​ e(∏k=1

n X ​k)
n

g (μ) =′ eμ

​ e − e →n( n
Sn μ) Y  in distribution′

Y ′ σ e2 2μ

X ​,X ​, ⋯ ,X ​1 2 n

​1−p
p

Y ​ =n ​

1 − ​

n
S ​n

​

n
S ​n

δ g(x) = ​1−x
x g (x) =′

​(1−x)2
1

​ Y ​ − ​ →n( n 1 − p

p ) Y  in distribution

Y p(1 − p)g (p) =′ 2
​(1−p)3

p
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4.8 Exercises
Exercise 4.1 Let  be independent, double exponential random variables with parameter  (that is, the common

density is  for . Show that

where  is normal with mean  and variance .

Exercise 4.2 Suppose  are IID random variables with  and . Show that

converge, in distribution, to a standard nornal random variables.
Hint: .

(X ​) ​j j≥1 1
​e2

1 −∣x∣ −∞ < x < ∞

​ ​ ​ =
n→∞
lim n(

​ X ​∑j=1
n

j
2

​ X ​∑
j=1
n

j ) Z  in distribution 

Z 0 ​2
1

X ​i E[X ​] =i 1 V [X ​] =i σ2

​ ​ − ​

σ

2 ( S ​n n)

a −2 b =2 (a + b)(a − b)
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Exercise 4.3 Show that

Hint: Let  be i.i.d. Poisson random variables with parameter . Let  and apply the Central

limit theorem

​e ​ ​ =
n→∞
lim −n(

k=0

∑
n

k!
nk) ​ .

2
1

(X ​)j λ = 1 S ​ =n ​ X ​∑j=1
n

j
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