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1 Independence and product
measures
In this section we study the concept of independence in a general form: independence of random variables and
independence of -algebra. This leads to the concept of product measures and the classic Fubini Theorem. We illustrate

these ideas with vector valued random variables and some simulation algorithm. Dependent random variables will be
considered in next section.

σ
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1.1 Independence
Two events  are independent if  or equivalently  and this

generalizes to arbitrary collection of events.

For two random variable  and  to be independent it should means that any information or knowledege derived

from the RV  should not in�uence the RV . All the information encoded in the RV  taking values in  is the

-algebra generated by  that is . This motivates the following.

De�nition 1.1 (Independence) Let  be a probability space.

1. Independence of -algebras: Two sub- -algebra  and  are independent if

A collection (not necessarily countable) of -algebras  is independent if, for any �nite subset ,

2. Independence of random variables: The collection of random variables  for  are

indedpendent if the collection of -algebras  are independent.

A,B ∈ A P (A∣B) = P (A) P (A ∩ B) = P (A)P (B)

X Y

Y X X (E, E)
σ X σ(X) = X (E) =−1 X (B),B ∈ E{ −1 }

(Ω, A,P )

σ σ A  ⊂1 A A  ⊂2 A

P (A  ∩1 A  ) =2 P (A  )P (A  )  for all A  ∈1 2 1 A  ,A  ∈1 2 A  .2

σ A   { j}j∈J I ⊂ J

P  A  =(
i∈I

⋂ i)  P (A  )  for all A ∈
i∈I

∏ i i A  .i

X  :j (Ω, A,P ) → (E  , E  )j j j ∈ J

σ σ(X  )j
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We consider from now on only two random variables  and  but all of this generalizes easily to arbitrary �nite

collections. Our next theorem makes the de�nition of indepdence a bit more easy to check.

Theorem 1.1 (Characterization of independence) Two random variables  (taking values in ) and  taking

values in ) to be independent if and only if any of the following equivalent conditions holds.

1.  for all  and for all .

2.  for all  and for all  where  and  are -systems

generating  and .

3.  and  are independent for any measurable  and .

4.  for all bounded and measurable (or all non-negative) .

5. If  (or ),  for all bounded and continuous functions .

Proof.

 Item 1. is merely a restatement of the de�nition and clearly item 1.  item 2.

X Y

X (E, E) Y

(F , F)

P (X ∈ A,Y ∈ B) = P (X ∈ A)P (X ∈ B) A ∈ E B ∈ F

P (X ∈ A,Y ∈ B) = P (X ∈ A)P (X ∈ B) A ∈ C B ∈ D C D p

E F

f(X) g(Y ) f g

E[f(X)g(Y )] = E[f(X)]E[g(Y )] f , g

E = F = R Rd E[f(X)g(Y )] = E[f(X)]E[g(Y )] f , g

∙ ⟹
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To see that Item 2.  item 1. we use the monotone class theorem. Fix  then the collection

contains the -system  and is a -system (contains , closed under complement, closed under increasing limits,

check this yourself please). Therefore by the monotone class theorem it contains . Analgously �x now , then

the set
 contains .

To see that item 3.  item 1. take  and . If these two random variable are

independent, this simply means that the event  and  are independent. Conversely we note that 

 is measurable with respect to : since  this shows that

. Likewise .

Since  and  are independent so are  and .

To see that item 4.  item 1. take  and . To show that item 1.  item 4. note that item 1. can be

rewritten that . By linearity of the expectation then item 4. holds for all

simple functions  and . If  and  are non negative then we choose sequences of simple functions such that 

anf . We have then  and using the monotone convergence theorem twice we have

⟹ B ∈ D

A ∈ E : P (X ∈ A,Y ∈ B) = P (X ∈ A)P (Y ∈ B){ }

p C d Ω
E A ∈ E

B ∈ F : P (X ∈ A,Y ∈ B) = P (X ∈ A)P (Y ∈ B){ } F

⟹ f(X) = 1  (X)A g(Y ) = 1  (Y )B

X ∈ A Y ∈ B V =
f(X) σ(X) V (B) =−1 X (f (B)) ∈−1 −1 σ(X)
σ(f(X)) ⊂ σ(X) σ(g(Y )) ⊂ σ(Y )

σ(X) σ(Y ) σ(f(X)) σ(g(Y ))

⟹ f = 1  A g = 1  B ⟹
E[1 (X)1  (Y )] =A B E[1  (X)]E[1  (Y )]A B

g g f g f  ↗n f

g  ↗n g f  g  ↗n n fg

  

E[f(X)g(Y )] = E[  f  (X)g  (Y )] =  E[f  (X)g  (Y )] =  E[f  (X)]E[g  (Y )]
n

lim n n
n

lim n n
n

lim n n

=  E[f  (X)]  E[g  (Y )] = E[f(X)]E[g(Y )]
n

lim n
n

lim n
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If  and  are bounded and measurable then we write  and . Then  and  are bounded

and measurable and thus the product of  and  are also integrable. We have

 Clearly item 1  item 4  item 5 For the converse we show that item 5.  item 2. Given an interval 

consider an increasing sequence of piecewise linear function continuous function .

Let us consider the -system which contains all intervals of the form  and which generate the Borel -algebra . By

using a monotone convergence argument like for item 1.  item 4. we see that for  and 

and so item 2. holds.
For separable metric space, the so-called  can be used to prove the same results. 

f g f = f  −+ f  − g = g  −= g  − f  ± g  ±

f  (X)± g  (Y )±

  

E[f(X)g(Y )] = E[(f  (X) − f  (X))(g  (Y ) − g  (Y ))]+ − + −

= E[f  (X)g  (Y )] + E[f  (X)g  (Y )] − E[f  (X)g  (Y )] − E[f  (X)(g  (Y )]+ + − − + − − +

= E[f  (X)]E[g  (Y )] + E[f  (X)]E[g  (Y )] − E[f (X)]E[g  (Y )] − E[f  (X])E[g  (Y )]+ + − − + − − +

= E[f  (X) − f  (X)]E[g  (Y ) − g  (Y )]+ − + −

∙ ⟹ ⟹ ⟹ (a, b)
f  ↗n 1  (a,b)

f  (t) =n    ⎩⎨
⎧ 0

1
linear

t ≤ a +   or t ≥ b −  

n
1

n
1

a +  ≤ t ≤ b −  

n
1

n
1

otherwise 

p (a, b) σ B

⟹ f  ↗n 1  (a,b) g  ↗n 1  (c,d)

E[f  (X)g  (Y )] =n n E[f  (X)]E[g  (Y )] ⟹n n P (X ∈ (a, b))P (Y ∈ (c, d))

Urysohn lemma □
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1.2 Independence and product measures
While we have expressed so far independence of  and  as a property on the probability spacew  we can

also view it as a property of the distributions  and .

Example: Suppose  and  are discrete random variables then if they are independent we have

and thus . That is the distribution of the random variable  factorizes into

the product of  and .

Product spaces. In order to build-up more examples we need the so-called Fubini theorem. Given two measurable
spaces  and  we consider the product space  where  is the sigma-algebra

generated by the rectangles  (see ?@exr-45)

Measurable functions on product spaces. As we have seen in ?@exr-45 for any measurable function 

the sections  (for any ) and  (for any ) are measurable.

X Y (Ω, A,P )
PX P Y

X Y

P (X = i,Y = j) = P (X = i)P (Y = j)

P (i, j) =(X,Y ) P (i)P (j)X Y Z = (X,Y )
PX P Y

(E, E) (F , F) (E × F , E ⊗ F) E ⊗ F

A × B

f : E × F → R
g(y) = f(x, y) x h(x) = f(x, y) y
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Theorem 1.2 (Tonelli-Fubini Theorem) Suppose  is a probability on  and  is a probability on .

1. The function  de�ned by

extends to a unique probability measure on . This measure is denoted by  and is called the product

measure of  and .

2. Suppose  is measurable with respect to , either non-negative, or integrable with respect to . Then

the functions

are integrable with respect to  and  respectively and we have

P (E, E) Q (F , F)

R : E × F

R(A × B) = P (A)Q(B)

E ⊗ F P ⊗ Q

P Q

f E ⊗ F P ⊗ Q

x ↦ f(x, y)dQ(y)  and  y ↦∫ f(x, y)dP (x)∫
P Q

 f(x, y)d(P ⊗∫
E×F

Q)(x, y) =   f(x, y)dQ(y) dP (x) =∫
E

(∫
F

)   f(x, y)dP (x) dQ(y)∫
F

(∫
E

)
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Proof. For item 1. we need to extend the  to arbitray element in . For  consider the slice of  along 

given by

If , then  for all  and  for  and we have then

Now we de�ne

it is not dif�cult to check that  is a -algebra and  and therefore .

We now de�ne, for any ,

and we check this is a probability measure. Clearly . Let  be pairwise

disjoint and . Then the slices  are pairwise disjoint and by the monotone convergence theorem

.

R E ⊗ F C ∈ E ⊗ F C x

C(x) = y ∈ F : (x, y) ∈ C .{ }

C = A × B C(x) = B x ∈ A C(x) = ∅ x ∈/ A

R(C) = P (A)Q(B) =  Q(C(x))dP (x)∫
E

H = C ∈ E ⊗ F : x → Q(C(x)) is measurable{ }

H σ H ⊃ E × F H = E ⊗ F

C ∈ H = E ⊗ F

R(C) =  Q(C(x))dP (x)∫
E

R(E × F ) = P (E)Q(F ) = 1 C  ∈n E ⊗ F

C = ∪  C  n=1
∞

n C  (x)n

Q(C(x)) =  Q(C  (x))∑n=1
∞

n
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Applying MCT again to the function  we �nd that

and this shows that  is a probability measure. Uniqueness of  follows from the monotone class theorem.

For item 2. note that in item 1, we have proved it in the case where . By linearity the result then

holds for simple functions. If  is nonnegative and measurable then pick an increasing sequence such that . Then

by MCT

But the function  is increasing in  and by MCT again, and again.

Simlarly one shows that . The result for integrable  follows

by decomposing into postive and negative part. 

g  (x) =n  Q(C  (x))∑k=1
n

n

 R(C  ) =
n=1

∑
∞

n   Q(C  (x))dP (x) =
n=1

∑
∞

∫
E

n   Q(C  (x))dP (x) =∫
E n=1

∑
∞

n  Q(C(x))dP (x) =∫
E

R(C).

R R

f(x, y) = 1  (x, y)C

f f  ↗n f

f(x, y)dP ⊗∫ Q(x, y) =  f  (x, y)dP ⊗
n

lim ∫ n Q(x, y) =   (  f  (x, y)dQ(y))dP (x)
n

lim ∫
E

∫
F

n

x →  f  (x, y)dQ(y)∫
F n n

  

f(x, y)dP ⊗ Q(x, y)∫ =   (  f  (x, y)dQ(y))dP (x) =  (   f  (x, y)dQ(y))dP (x)∫
E

n
lim ∫

F
n ∫

E

∫
F

n
lim n

=  (  f(x, y)dQ(y))dP (x)∫
E

∫
F

f(x, y)dP ⊗∫ Q(x, y) =  (  f(x, y)dP (x))dQ(y)∫
F
∫
E

f

□
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Applying this to random variables we get

Corollary 1.1 Suppose . Then the random variables  and  are

independent if and only if the distribution  of the pair  is equal to .

Proof. The random variables  and are independent if and only if

This is equivalent to saying that

By the uniqueness in Fubini Theorem we have . 

Z = (X,Y ) : (Ω, A,P ) → (E × F , E ⊗ F) X Y

P (X,Y ) (X,Y ) P ⊗X P Y

X Y

P ((X,Y ) ∈ A × B) = P (X ∈ A)P (X ∈ B) .

P (A ×(X,Y ) B) = P (A) ×X P (B)Y

P =(X,Y ) P ⊗X P Y □

12

Measures on Product Spaces and Conditional Expectation



1.3 Constructing a probability space for independent random
variables
We can construct a probability model for  which are independent (real-valued) random variables with given

distribution .

We know how to construct the probability space for each random variable separately, for example,

where ,  is Lebesgue measure on  and  where  is a quantile function for .

We know take

and de�ne the map  by .

Fubini-Tonelli Theorems shows that  is the distribution of  on  with the product

-algebra and that the random variables are independent

X  , ⋯ ,X  1 n

P , ⋯ ,PX  1 X  n

X  :i (Ω  , B  ,P  ) →i i i (R, B)

Ω  =i [0, 1] P  i [0, 1] X  =i Q  i Q  i X  i

Ω =  Ω  =
i

∏ i [0, 1] , B =n ⊗  B  , P =i=1
n

i ⊗  P  i=1
n

i

X : Ω → Rn X = (X  , ⋯X  )1 n

P =X P ∘ X−1 X = (X  , ⋯X  )1 n Rn

σ
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Fubini-Tonelli for countably many RV:

We extend this result to countable many independent random variables: this is important in practice where we need such
models: for example �ipping a coin as many times as needed!

This can be seen as an extension of Fubini theorem and is also a specical case of the so-called 
 which us used to construct general probability measures on in�nite product space. No proof is given here.

In�nite product -algebras

Given -algebras  on  we set  and de�ne rectangles for  and  �nite but

arbitrary

where . The product -algebra  the -algebras generated by all the rectangles.

Theorem 1.3 Given probaility spaces  and with  and  there exists a unique

probability  on  such that

for all , all  and all .

Kolmogorov extension
theorem

σ

σ A  j Ω  j Ω =  Ω  ∏j=1
∞

j n  <1 n  <2 ⋯ < n  k k

A  ×n1 A  ×n  2 ⋯ × A  =n  k
{ω = (ω  ,ω  ,ω  , ⋯ ) ∈1 2 3 Ω : w  ∈n  j

A  }n  j

A  ∈n  j
A  n  j

σ A =  A  ⨂j=1
∞

j σ

(Ω  , A  ,P  )i i i Ω =  Ω  ∏j=1
∞

i A =  A  ⨂j=1
∞

j

P Ω(A)

P (A  ×n  1 ⋯ × A  ) =n  k
 P  (A  )

j=1

∏
k

n  j n  j

A  ∈n  j
A  n  j

n  <1 ⋯ < n  k k
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If we have a RV  then we de�ne its extension to  by

and the distribution of  is the same as the distribution of  because

and thus

A similar computation shows that  and  are independent for  or more generally any �nite collection of 

are independent.

X  :n Ω  →n R Ω

 (ω) =X  n
~

X  (ω  )n n

 X  n
~

X  n

 (B  ) =X  n
~ −1

n Ω  ×1 ⋯ × Ω  ×n−1 X  (B  ) ×n
−1

n Ω  ×n+1 ⋯

P (  ∈X  n
~

B  ) =n P  (X ∈n n B  ) .n

 X
~
n  X

~
m n = m X  sj

′
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1.4 Kolmogorov zero-one law
We consider  to be RVs de�ned on some probability space . We may think of  as “time” and we consider the

following -algebras

Theorem 1.4 (Zero-one law) Suppose  is a sequence of independent random variables and let  be the

corresponding tail -algebra. Then we have

Proof. The  algebras  are independent and therefore  are independent for every

 since . Therefore  and  are independent. So for  and  we have 

. This holds also for  since . Therefore we have  which is possible

only if  or  .

(X  )  n n=1
∞ Ω n

σ

   

B  n

C  n

C  ∞

= σ(X  )n
= σ ∪  B  ( p≥n n)

= ∩  C  n=1
∞

n

the σ-algebra generated by X  n

the σ-algebra describing the "future" after time n

the "tail" σ-algebra or σ-algebra "at infinity"

X  n C  ∞

σ

C ∈ C  ⟹∞ P (C) = 0 or P (C) = 1

σ {B  , ⋯ , B  , C  }1 n n {B  , ⋯ , B  , C  }1 n ∞

n C  ⊂∞ C  n C  =0 σ ∪  B  ( n≥0 n) C∞ A ∈ C  0 B ∈ C  ∞ P (A ∩
B) = P (A)P (B) A = B C  ⊂∞ C  0 P (A) = P (A)2

P (A) = 0 1 □
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Examples Given independent random variable  we de�ne .

The event  belongs to every  and thus belong to . Therefore  either converges

a.s or diverges a.s.

A random variable which is measurable with respect to  must be constant almost surely. Therefore

are all constant almost surely.

The event  (also called ) is in .

The event  is not in .

X  ,X  , ⋯1 2 S  =n X  +1 X  +2 ⋯ + X  n

{ω : lim  X  (ω) exists }n n C  n C  ∞ X  n

C  ∞

 X  ,  X  ,   S  ,   S  

n

lim sup n
n

lim inf n
n

lim sup
n

1
n

n
lim inf

n

1
n

lim sup  {X  ∈n n B} {X  ∈n B infinitely often } C  ∞

lim sup  {S  ∈n n B} C  ∞
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1.5 Exercises
Exercise 1.1  

Suppose  is a non-negative random variable and . Show that

In particular .

Hint: Use Fubini on the product measure  times Lebesgue measure on .

Deduce from this that if  takes non-negative integer values we have

Exercise 1.2 Find three random variable , , and  taking values in  which are pairwise independent but

are not independent.

X ≥ 0 p > 0

E[X ] =p
 pt (1 −∫

0

∞
p−1 F (t))dt =  pt P (X >∫

0

∞
p−1 t)dt

E[X] = P (X >∫ t)dt
P [0, ∞)

X

E[X] =  P (X >
n>0

∑ n) , E[X ] =2 2  nP (X >
n>0

∑ n) + E[X] .

X Y Z {−1, 1}
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Exercise 1.3  

A random variable is a Bernoulli RV if  takes only values  or  and then  (alternatively you

can think of  for some measurable set .) Show that  is also Bernoulli and that the

product of two Bernoulli random variables is again a Bernoulli RV (no independence required).

Suppose  are Bernoulli random variables on some probability space  (they are not

assumed to be independent) and let . Show that

and

Show that the Bernoulli random variables  are independent if and only 

 for all subset  of .

X 0 1 E[X] = P (X = 1)
X(ω) = 1  (ω)A A Y = 1 − X

X  ,X  , ⋯ ,X  1 2 n (Ω, A,P )
Y  =k 1 − X  k

P (X  =1 0,X  =2 0, ⋯ ,X  =n 0) = E  Y  [
i=1

∏
n

i]

P (X  =1 0, ⋯ ,X  =k 0,X  =k+1 1, ⋯ ,X =n 1) = E   Y   X   ⎣
⎡
i=1

∏
k

i

j=k+1

∏
n

j⎦
⎤

X  , ⋯ ,X  1 n E[  X  ] =∏j∈J j

 E[X  ]∏
j∈J j J {1, ⋯ ,n}
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Exercise 1.4 Consider the probability space  where  is the Borel -algebra and  is the uniform

distribution on . Expand each number  in  in dyadic expansion (or bits)

For certain numbers the dyadic expansion is not unique. For example we have

Show that  almost surely a number  has a unique dyadic expansion.

Prove that each  is a random variable and that they are identically distributed (i.e. each  has the same

distribution).

Prove that the ,  are a collection of independent and identically distributed random variables.

Remark: this problem shows that you can think of the Lebesgue measure on  as the in�nite product measure of

independent Bernoulli trials.

([0, 1), B,P ) B σ P

[0, 1) ω [0, 1)

ω =   =
n=1

∑
∞

2n
d  (ω)n 0.d  (ω)d  (ω)d  (ω) ⋯  with  d  (ω) ∈1 2 3 n {0, 1}

 =
2
1

0.100000 =  +
4
1

 +
8
1

 +
16
1

⋯ = 0.01111111111 ⋯

P ω

d  (ω)n d  n

d  n n = 1, 2, 3, ⋯

[0, 1)
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Exercise 1.5 Suppose  and  are RV with �nite variance (or equivalently . The covariance of  and  is

de�ned by

1. Show that  is well de�ned and bounded by .

2. The correlation coef�cient  measure the correlation between  and . Given a number

 �nd two random variables  and  such that .

3. Show that .

4. Show that if  and  are independent then  and so .

5. The converse statement of 3. is in general not true, that is  does not imply that  and  are

independent. ` Hint For example take  to be standard normal  discrete with  (  is sometimes

called a Rademacher RV) and .

X Y X,Y ∈ L2 X Y

Cov(X,Y ) = E[(X − E[X])(Y − E[Y ])] = E[XY ] − E[X]E[Y ]

Cov(X,Y )   VarX VarY

ρ(X,Y ) =  

  VarX VarY
Cov(X,Y ) X Y

α ∈ [−1, 1] X Y ρ(X,Y ) = α

Var(X + Y ) = Var(X) + Var(X + Y ) + 2Cov(X,Y )

X Y Cov(X,Y ) = 0 Var(X + Y ) = Var(X) + Var(Y )

Cov(X,Y ) = 0 X Y

X Z P (Z = ±1) =  2
1 Z

Y = ZX
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2 Probability kernels and
measures on product spaces
In this section we introduce the concept of probability kernels to construct probability measures on product spaces and
we give several examples and applications of distributions on product spaces.
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2.1 Probability kernels
How do we build “general” measures on some product space  (e.g.   or )?

De�nition 2.1 Given 2 measurable spaces  and  a probability kernel  from  into

 (also often called a Markov kernel) is a map

such that

1. For any  the map  is a measurable map.

2. For any  the map  is a probability measure on .

Examples

E × F R2 Rn

(E, E) (F , F) K(x,B) (E, E)
(F , F)

K : E × F → R

B ∈ F x → K(x,B)

x ∈ E B → K(x,B) (F , F)

24
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The following theorem is a generalization of Fubini-Tonelli

Theorem 2.1 Let  be a probability measure on  and  a probability kernel from  into .

Then a probability measure  on  is de�ned by

for any measurable non-negative . In particular we have for any  and 

We write

Proof. The proof is very similar to Fubini-Tonelli theorem and is thus omitted.

This theorem is intimately related to the concepts of conditional probability and conditional expectations which we
will study later.

Roughly speaking, on nice probability space (e.g. separable metric spaces), every probaility measure on the product
space  can be constructed in the way described in  (this is a deep result).

P (E, E) K(x,B) (E, E) (F , F)
R (E × F , E ⊗ F)

f(x, y)dR(x, y) =∫  f(x, y)K(x, dy) dP (x)∫
X

(∫
F

)
f A ∈ E B ∈ F

R(A × B) = 1  (x)1  (y)dR(x, y) =∫ A B 1  (x)K(x,B)dP (x) =∫ A  K(x,B)dP (x) .∫
A

R(dx, dy) = P (dx)K(x, dy)

E × F Theorem 2.1
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De�nition 2.2 (marginals of a probability measure) Given a probability measure  on the product space 

 the marginals of  are on  and  are de�ned de�ned to be the measures given by

Alternatively we can think of the marginals as the image measure

where  and  are the projection maps  and 

If  is a product measure then the marginal of  are  and . This is for the kernel .

If  then we have

so its marginals are  and and  given by .

R (E ×
F , E ⊗ F) R E F

  

P (A)

Q(B)

= R(A × F ) A ∈ E

= R(E × B) B ∈ F

P = R ∘ π  , P =E
−1 R ∘ π  

F
−1

π  E π  F π  (x, y) =E x π  (x, y) =F y

R = P ⊗ Q R P Q K(x,A) = Q(A)

R(dx, dy) = P (dx)K(x, dy)

R(A × F ) =  K(x,F )dP (x) =∫
A

P (A) R(E × B) =  K(x,B)dP (X)∫
E

P Q Q(B) =  K(x,B)dP (x)∫
E
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2.2 Conditional distributions
On nice probability space (e.g when  and  are separable metic spaces like ) one can show that every probability

measure  can be written using a kernel. There exists probability spaces where the conclusions of the following theorem

do not hold but in practice most examples are covered.

Theorem 2.2 (Existence of conditional distributions) Suppose  and  are separable metric spaces equipped with

their respective Borel -algebra  and . Suppose  is probabilty measure on the product space 

with marginals  and . Then there exists a kernel  such that

The kernel  is unique  a.s.

Proof. The proof has technical dif�culties and we only content ourselves with some comments on the proof. Consider the
marginal measure on 

and for �xed given  with  consider the probability measure on  given by

E F Rn

R

E F

σ E F R (E × F , E ⊗ F

P Q k(x,B)

R(A × B) = K(x,B)dP (x)∫
K(x,B) P

E

P (A) = R(A × F )

B ∈ F Q(B) > 0 E

P  (A) =B  =
R(E × B)
R(A × B)

 

Q(B)
R(A × B)

27

Measures on Product Spaces and Conditional Expectation



It is easy to verify that if  then  and so  and by Radon-Nikodym theorem there exists a

random variable  such that

It is important to note that for any choice of ,  is de�ned  almost surely. The technical issue is that for a

kernel we want  to be de�ned for all , -almost surely! If we ignore this point we note that we have

and thus , for  almost all . We also have for pairwise disjoint , using the monotone convergence

theorem

and since  is abribtrary this shows that  for  almost all . The rest of the proof

consists in showing �rst for  that we can de�ne the kernel -almost surely. This uses the fact the the Borel -

algebra is countably generated, the monotone class theorem, and that the CDF is right-continuous. The general case is
then proved by using the fact that complete separable metric spaces are isomorphic (in the sense of measure theory) to
subsets of .

P (A) = 0 P  (A) =B 0 P ≪B P

Y  B

P  (A) =B 1  (x)Y  (x)dP (x) ⟹∫ A B R(A × B) = 1  (x)  dP (x)∫ A

≡K(x,B)

 Y  (x)Q(B)B

B K(x,B) P

K(x,B) B P

R(A × F ) = P (A) = 1  (x)K(x,F )dP (x)∫ A

K(x,F ) = 1 P x B  i

  

1  (x)K(x, ∪  B  )dP (x) = R(A × ∪  B  )∫ A n=1
∞

n n=1
∞

n

=  R(A × B  ) =  1  (x)K(x,B  )dP (x) = 1  (x)  K(x,B  )dP (x)
n=1

∑
∞

n

n=1

∑
∞

∫ A n ∫ A

n=1

∑
∞

n

A K(x, ∪  B  ) =n=1
∞

n  K(x,B  )∑
n=1
∞

n P x

F = R P σ

R
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2.3 Lebesgue measure on  and densities
In previous chapter we have constructed the Lebesgue probability measure  on  as the unique measure such that

. Using this and other uniformly distributed random variables we de�ne the Lebesgue measure on

 and on 

De�nition 2.3 The Lebesgue measure on  is a set function  such that

1. .

2. 

3.  for any .

The Lebsgue measure on  is not a probability measure since , it is an example of an in�nite measure. We

can easily construct it using uniform random variables on  with distribution  namely we set

The uniqueness of the measure  implies that the measure  is unique as well.

Rn

P  0 [0, 1]
P  [(a, b]] =0 (b − a)
R Rn

R m

m(∅) = 0

m  A  =(⋃i=1
∞

i)  m(A  )∑i=1
∞

i

m((a, b]) = b − a a < b

R m(R) = +∞
(n,n + 1] P  n,n+1

m(A) =  P  (A)
n=−∞

∑
∞

n,n+1

P  n,n+1 m
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By doing a Fubini-Tonelli theorem type argument one can construct the Lebesgue measure on .

De�nition 2.4 If we equip  with the product -algebra  the Lebesgue measure  on  is the

product of  Lebesgue measure on . We have

Notations we often use the notation  or  for integration with respect to .

De�nition 2.5 A probability measure on  (where ) has a density  if  is a nonnegative

Borel measurable function and

Rn

Rn σ B ⊗ ⋯ ⊗ B m  n Rn

n R

m   [a  , b  ] =n(
i=1

∏
n

i i )  (b  −
i=1

∏
n

i a  )i

dx dx  ⋯ dx  1 n m  n

(R , B  )n
n B  =n B ⊗ ⋯ ⊗ B f f

P (A) =  f(x)dx =∫
A

1 (x)f(x)dx =∫ A f(x  , ⋯ ,x  )1  (x  , ⋯ ,x  )dx  ⋯ dx  ∫ 1 n A 1 n 1 n
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Theorem 2.3 A non-negative Borel measurable function  is the density of a Borel probability measure if and only

if  and it determines the probability . Conversely the probability measure determines its density (if it

exists!) up to a set of Lebesgue measure .

Proof. Given  it is easy to check that

de�nes a probbaility measure (same proof as in ?@exr-63).
Conversely assume that  and  are two densities for the measure , then for any measurable set  we have 

. Consider now the set

Then we have

and therefore  and since  increases to  we have shown that . By

symmetry we have  a.s. .

f(x)
f(x)dx =∫ 1 P

0

f ≥ 0

P (A) = 1  f(x)dx∫ A

f f ′ P A P (A) =
 f(x)dx =∫

A
 f (x)dx∫

A
′

A  =n x : f (x) ≥ f(x) +  { ′

n

1 }

P (A  ) =n  f (x)dx ≥∫
A  n

′
 f(x) +  dx =∫

A  n

(
n

1 ) P (A  ) +n  m(A  )
n

1
n

m(A  ) =n 0 A  n A = {f < f }′ m({f < f }) =′ 0
f = f ′ □
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Theorem 2.4 Suppose the random variable  has a probability distribution  with density .

Then

1. Both  and  have densities given respectively by

2.  and  are independent if and only if

3. If we set

and this de�nes a kernel  and the probability distribution  is given by

.

Remark It does not matter how  is de�ned for such  where  and so we have left it unde�ned. There

are in general many kernels densities which will give the same probability aloowing for changes on sets of zero
probbaility.

(X,Y ) R(dx, dy) f(x, y)

X Y

f  (x) =X f(x, y)dy , f  (y) =∫ Y f(x, y)dx .∫

X Y

f(x, y) = f  (x)f  (y) .X Y

k(x, y) =   if f  (x)
f  (x)X

f(x, y)
X = 0

K(x,B) =  k(x, y)dy∫
B

(X,Y )
R(dx, dy) = f  (x)k(x, y)dxdyX

K(x,B) x f  (x) =X 0
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Proof.

1. For  we have

and since this holds for all ,  is a density for the distribution of .

2. If  then

Conversely assume that  and  are independent. Consider the collection of sets

The independence and Fubini Theorem implies that any set  belongs to . Since this is a -system

generating the -algebra the monotone class theorem shows that .

A ∈ B

P (X ∈ A) = P (X ∈ A,Y ∈ R) =   f(x, y)dy dx =∫
A

(∫
R

)  f  (x)dx∫
A

X

A f  (x)X X

f(x, y) = f  (x)f  (y)X Y

  

P (X ∈ A,Y ∈ B) = 1  (x, y)f  (x)f  (y)dxdy = 1  (x)f  (x)dx 1  (x)f  (y)dy∫ A×B X Y ∫ A X ∫ B Y

= P (X ∈ A)P (Y ∈ B)

X Y

H = C ∈ B ⊗ B :  f(x, y)dxdy =  f  (x)f  (y)dxdy{ ∫
C

∫
C

X Y }
C = A × B H p

σ H = B ⊗ B
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To prove item 3, we have

and thus  is a density. Furthermore we have

and this concludes the proof since the measure is uniquely determined by its value on rectangles (by a monotone class
theorem argument).

k(x, y)dy =∫  dy =∫
f  (x)X

f(x, y)
 =

f  (x)X

f  (x)X 1

k(x, y)

 

P (X ∈ A,Y ∈ B) =  K(x,B)dP (x) =  f  (x)  k(x, y)dy dx =  f  (x)   dy dx∫
A

∫
A

X (∫
B

) ∫
A

X (∫
B f  (x)X

f(x, y) )
=   f(x, y)dxdy∫

A

∫
B

□
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2.4 Example: Box Muller algorithms
We derive here a method to generate two independent normal random variables using two independent random number.
This is a different algorithm that the one using the quantile for the normal RV which is known only numerically.

Theorem 2.5 Suppose that  and  are two independent random numbers then

are two independent normal random variables with mean  and variance .

Proof. We use the expectation rule together with polar coordinates. For any nonnegative function  we have,

using polar coordinate  and  and then the change of variable 

This computation shows that if  is exponential with parameter  and  is uniform on  then  and

 are independent standard normal. But we can write also  and . .

U  1 U  2

 

X  =  cos(2πU  ) X  =  cos(2πU  )1 −2 ln(U  )1 2 2 −2 ln(U  )1 2

0 1

h(x  ,x  )1 2

x  =1 r cos θ x  =2 r sin θ s = r /22

  

E[h(X  ,X  )]1 2 = h(x  ,x  )f(x  ,x  )dx  dx  =  h(x  ,x  )  e dx  dx  ∫ 1 2 1 2 1 2 ∫
R2

1 2 2π
1 −  2

x  +x  1
2

2
2

1 2

=  h(r cos θ, r sin θ)  dθre dr∫
(0,∞]×[0,2π] 2π

1 −  2
r2

=  h(  cos θ,  sin θ)  dθe ds∫
(0,∞]×[0,2π]

2s 2s
2π
1 −s

S 1 Θ [0, 2π]  cos(Θ)2S
sin(Θ)2S S = − ln(U  )1 Θ = 2πU2 □
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2.5 Exponential mixture of exponential is polynomial
Let us consider an exponential random variable  whose parameter is itself an exponential random variable  with

parameter . That is  has density

and consider the kernel  with

Thenthe random variables  have the joint density

Then, using that the mean of an exponential RV is the reciprocal of the paramter, the density of  is

which decays polynomially! In particular .

Y X

λ > 0 X

f(x) =   { λe−λx

0
x ≥ 0
else

K(x, dy) = k(x, y)dy

k(x, y) =   { xe−xy

0
x > 0, y > 0
 else 

(X,Y )

f(x, y) =   { λe xe = λxe−λx −xy −(λ+y)x

0
x > 0, y > 0
 else 

Y

f(y) =  f(x, y)dx =∫
0

∞

  x(λ +
λ + y

λ ∫
0

∞

y)e =−(λ+y)x
 

(λ + y)2

λ

E[Y ] = ∞
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2.6 gamma and beta random variables
Recall that a gamma RV has density  for .

Consider now two independent gamma random RV  and  with paramters  and . We prove the

following facts

1.  is a gamma RV with parameters 

2.  is a beta distribution with paramters  and  which has the density

3.  and  are independent RV

We use the expectation rule ?@thm-expectationrule and the change of variable  and  or 

 and . This maps  to  and the Jacobian of this transformation is equal

.

 x eΓ(α)
β
α

α−1 −λx x ≥ 0

X  1 X  2 (α  ,β)1 (α  ,β)2

Z = X  +1 X  2 (α  +1 α  ,β)2

U =  

X  +X  1 2

X  1 α  1 α  2

f(u) =  u (1 −
Γ(α  )Γ(α  )1 2

Γ(α  + α  )1 2 α  −11 u) 0 ≤α  2 u ≤ 1

X  +1 X  2  

X  +X  1 2

X  1

z = x  +1 x  2 u =  

x  +x  1 2

x  1 x  =1

uz x  =2 (1 − u)z [0, ∞) × [0, ∞) [0, 1] × [0, ∞)
z
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We have then for any nonnegative 

and this proves all three statements at once.

Remark This is a nice, indirect way, to compute the normalization for the density of the  distribution which is

proportional to .

h

  

E[h(Z,U)] = E h (X  + X  ,  [ ( 1 2
X  + X  1 2

X  1 )]
=   h x  + x  ,   x  x  e dx  dx  ∫

0

∞ ∫
0

∞ ( 1 2
x  + x  1 2

x  1 )
Γ(α  )Γ(α  )1 2

βα  +α  1 2

1
α  −11

2
α  −12 −β(x  +x  )1 2

1 2

=   h(z,u)  (uz) ((1 − u)z) e zdudz∫
0

1

∫
0

∞

Γ(α  )Γ(α  )1 2

βα  +α  1 2
α  −11 α  −12 −βz

=  h(z,u)  u (1 − u) du   z e dz∫
0

1

Γ(α  )Γ(α  )1 2

Γ(α  + α  )1 2 α  −11 α  −12 ∫
0

∞

Γ(α  + α  )1 2

βα  +α  1 2
α  +α  −11 2 −βz

β

u (1 −α  −11 u)α  −12
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2.7 The beta binomial model and a whi� of Bayesian statistics
A beta random variable  has mean

and proceeding similarly one �nds that

U

E[U ] =  u  u (1 −∫
0

1

Γ(α  )Γ(α  )1 2

Γ(α  + α  )1 2 α  −11 u) du =α  −12
 =

Γ(α  )Γ(α  )1 2

Γ(α  + α  )1 2

Γ(α  + α  + 1)1 2

Γ(α  + 1)Γ(α  )1 2

α  + α1 2

α  1

Var(U) =  =
(α  + α  ) (α  + α  + 1)1 2

2
1 2

α  α  1 2
   

α  + α  1 2

α  1

α  + α  1 2

α  2

α  + α  + 11 2

1
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There is a natural connection between a binomial random variable (discrete) and the beta random variable (continuous)
(let us call it  for a change). The pdf looks strangely similar

But  is a parameter for the binomial while it is a variable for the second!

Model:

Make  independent trials, each with a (random) probability .

Take  to have a beta distribution with suitably chosen parameter .

The mean  is your average guess for the “true” probability  and by adjusting the scale you can adjust the

variance (uncertainty) associated with your guess.

This leads to considering a random variable  taking value in  with a “density”

which is normalized 

P

 p (1 −(
j

n) j p)  versus   p (1 −n−j

Γ(α  )Γ(α  )1 2

Γ(α  + α  )1 2 α  −11 p)α  −12

p

n P

P α  ,α  1 2

 

α  +α  1 2

α  1 p

(X,P ) {0, 1, ⋯ ,n} × [0, 1]

f(j, p) =   

=k(p,j) kernel 

  p (1 − p)(
j

n) j n−j

=f(p)

  p (1 − p)
Γ(α  )Γ(α  )1 2

Γ(α  + α  )1 2 α  −11 α  −12

  f(k, p)dp =∑j=0
n ∫0

1 1
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The beta-binomial distribution with parameters  is the marginal distribution of  on  given by

Bayesian statistics framework

We interpret the distribution  with parameter  and  as the prior distribution which describe our beliefs

before we do any experiment. For example  correspond to a uniform distribution on  (that is we are

totally agnostic, a �ne choice if you know nothing).

The beta-binomial which is the marginal  describe the distribution of the independent trials

under this model. It is called the evidence.

The kernel  is called the likelihood which describes the number of success, , given a certain probability of

success, . It is called the likelihood when we view it as a function of  and think of  as a parameter.

Now we can write the distribution using kernels in two ways:

and the kernel  is called the posterior distribution. It is interpreted as the distribution of  given that  trials

have occured.

(n,α ,α  )1 2 X {0, 1, ⋯ ,n}

  

f(j) =  f(j, p)dp∫
0

1

=    p (1 − p)(
j

n)
Γ(α  )Γ(α  )1 2

Γ(α  + α  )1 2 ∫
0

1
α  +n−11 α  +n−k−12

=    (
j

n)
Γ(α  )Γ(α  )1 2

Γ(α  + α  )1 2

Γ(α  + α  + n)1 2

Γ(α  + j)Γ(α  + n − j)1 2

f(p) α  1 α  2

α =1 α  =2 1 p

f(j) =  f(j, p)dp∫0
1

k(p, j) j

p p j

f(j, p) = k(p, j)f(p) = k(j, p)f(j)

k(j, p) p j
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We can rewrite this (this is just a version of Bayes theorem) as

For the particular model at hand

and therefore  has a binomial distribution with parameter  and .

This is special: the prior and posterior distribution belong to the same family. We say that we have conjugate priors
and this is a simple model to play. with. In general we need Monte-Carlo Markov chains to do the job.

Example: Amazon seller ratings You want to buy a book online

Vendor 1 has 151 positive rating and 7 negative rating (95.5%).
Vendor 2 has 946 positive ratings and 52 negative ratings (94.7%).
Uniform prior with  gives two beta posterior with

 and  and  and .

posterior = k(j, p) =  =
f(j)

k(p, j)f(p)
 .

evidence
likelihood × prior

k(j, p) ∝ p (1 −j p) p (1 −n−j α  −11 p) ∝α  −12 p (1 −α  +j−11 p)α  +n−j−12

k(j, p) α  +1 j α  +2 n − j

α  =1 α  =2 1
α  =1 152 α  =2 8 α  =1 947 α  =2 53
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2.8 Exercises
Exercise 2.1  

1. Suppose that  is a gamma RV with parameter  and  and  is an exponential RV with parameter  and suppose

further that  and  are independent. Find the CDF (and then the PDF) of .

2. Proceeding as in  consider an exponential RV  whose parameter  has a gamma distribution with

parameters  and . Find the marginal distribution of .

3. Compare 1. and 2. and explain why they give the same result.

Exercise 2.2 (Poisson-Gamma model) Consider a Poisson RV  with a random parameter  which itself has a gamma

distribution (for some parameters .)

1. What are the joint density and the kernel, , for the pair .

2. What is the density  of ? (the “evidence”)?

3. What is the “posterior distribution” (that is what is the kernel  if we write )?

X α β Z 1
Z X Y =  

X
Z

Section 2.5 Y X

α β Y

X Λ
(α,β)

f(j,λ) = k(λ, j)f(λ) (X, Λ)

f(j) X

k(j,λ) f(j,λ) = k(j,λ)f(j)

43

Measures on Product Spaces and Conditional Expectation



Exercise 2.3 (Ratio distribution) Suppose  have a joint pdf . We want to compute the distribution of

the ratio . Show that  has the pdf given by

Hint; Consider the transformation  and  and then compute either  (the expectation rule) or

 (the CDF) using this change of variables.

Use this to show that the ratio of standard normal random variable has a Cauchy distribution.

Exercise 2.4 ( )  

1. Suppose  is a real-valued random variable with pdf . Let  be a random variable taking value in

 with . Show that the random variable  has a density and compute it.

2. Same setting as part 1. except that . What is the CDF of ?

(X,Y ) f(x, y)
Z =  

Y
X Z

f(z) =  ∣v∣f(zv, v)dv∫
−∞

∞

Z =  

Y
X V = Y E[h(Z)]

P (Z ≤ t)

Z = XY

X f(x) Y

{1, 2, 3, ⋯ } P (Y = k) = p  k Z

P (Y = 0) = p  >0 0 Z
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Exercise 2.5 (Order statistics) Suppose  are independent random variables, each with common

density . The order statistics of  is given by

that the  are the same as  but arranged in increasing order.

Show that the joint density of  is given by

Show that the density of  is given by

where  denotes the CDF of .

What is the distribution of  if the  are uniform on ?

(X  ,X  , ⋯ ,X  )1 2 n

f(x) (X  , ⋯ ,X  )1 n

 

X  =  X  , X  =  second smallest of X  , ⋯ ,X  , ⋯⋯X  =  X  (1)
k

min k (2) 1 n (n)
k

max k

X  (k) X  k

(X  ,X  , ⋯ ,X  )(1) (2) (n)

g(x  , ⋯ ,x  ) =1 n   { n!f(x  ) ⋯ f(x  )1 n

0
 if x  ≤ x  ≤ ⋯ ≤ x  1 2 n

 else

X  (k)

g  (x) =(k) k  f(x)(1 −(
k

n) F (x)) F (x)n−k k−1

F X  i

X  (k) X  i [0, 1]
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3 Conditional expectation
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3.1 Conditioning on a random variable
Recall the de�nition of conditional expectation for discrete random variables . We de�ne for integrable function

and de�ne  has the random variable of the form  such that .

It is not dif�cult to check that for any  which is bounded and non-negative we have

This property of the conditional expectation  will be our starting point

to de�ne the conditional expectation.

X,Y
g(X,Y )

E[g(X,Y )∣Y = j] =  g(i, j)P (X =
i

∑ i∣Y = j)

E[g(X,Y )∣Y ] ψ(Y ) ψ(j) = E[g(X,Y )∣Y = j]

h

  

E[E[g(X,Y )∣Y ]h(Y )]] =
 
h(j)E[g(X,Y )∣Y = j]P (Y = j)

j

∑
=

  
h(j)g(i, j)

 

j

∑
i

∑
=P (X=i,Y =j)

 P (X = i∣Y = j)P (Y = j)

= E[g(X,Y )h(Y )]

E[E[g(X,Y )∣Y ]h(Y )] = E[g(X,Y )h(Y )]
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First we prove a simple but important result

Theorem 3.1 Suppose  is random variable taking value in . A random variable  taking value in  is

measurable with respect to  if and only if  for some measurable function .

Proof. If  then since ,  is measurable with respect to .

Let us now consider a set  then  for some . Then . Therefore

any simple function, measurable with respect to  has the form  with

.

Suppose  is measurable with respect to . Then we can write  where  are non-negative and

measurable with respect to  so without loss of generality we can assume  is non-negative. We can write then

 where  is an increasing sequence of simple function which are measurable with respect to .

To conclude we have  and so with  we can write .

Y (E, E) Z (R, B)
σ(Y ) Z = h(Y ) h : E → R

Z = h(Y ) σ(Z) = σ(h(Y )) ⊂ σ(Y ) Z σ(Y )

A ∈ σ(Y ) A = Y (B)−1 B ∈ E 1  =A 1  =Y (B)−1 1  (Y )B

σ(Y )  a  1  =∑k=1
M

k A  k
 a  1  (Y ) =∑k=1

M
k B  k

h(Y )
h =  a  1  ∑k=1

M
k B  k

Z σ(Y ) Z = Z  −+ Z  − Z  ±

σ(Y ) Z

Z = sup  Z  n n Z  n σ(Y )

Z  (ω) =n h  (Y (ω)) ≤n Z  =n+1 h  (ω))n+1 h = sup  h  n n Z = h(Y )
□
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De�nition 3.1 (Conditional expectation) Suppose that either  or  and let be  some random

variable. The conditional expectation expectation  is a random variable which is measurable with respect to

 (i.e. it can be written as  for some measurable ) such that

for all bounded and -measurable function .

The random variable  is essentially unique in the sense that if both  and  satisfy the

requirements then  almost surely.

We have the following theorem which shows that the previous de�nition makes sense.

Theorem 3.2 For  or  the conditional expectation  exists and is essentiall unique.

Proof. The existence will be established later in a slighlty more general framework. As for uniqeness let us assume that

 and  do satisfy the requirement. Then any bounded function of ,  we have we have

We now pick  and thus we obtain .

Therefore the random variable , which is non-negative, must be equal to , almost

surely and thus , almost surely. By symmetry , almost surely. .

Z ≥ 0 Z ∈ L (P )1 Y

E[Z∣Y ]
σ(Y ) ψ(Y ) ψ

E[E[Z∣Y ]U ] = E[ZU ] (3.1)

σ(Y ) U

E[Z∣Y ] ψ  (Y )1 ψ  (Y )2

ψ  (Y ) =1 ψ  (Y )2

Z ≥ 0 Z ∈ L (P )1 E[Z∣Y ]

ψ  (Y )1 ψ  (Y )2 Y U = h(Y )

E[ψ  (Y )U ] =1 E[ψ  (Y )U ]2

U = 1  {ψ  (Y )>ψ  (Y )∣}1 2 E[(ψ  (Y ) −1 ψ  (Y ))1  ] =2 ψ  (Y )ψ  (Y )>01 2 0
(ψ  (Y ) −1 ψ  (Y ))1  2 ψ  (Y )ψ  (Y )>01 2 0

ψ  (Y ) ≤1 ψ  (Y )2 ψ  (Y ) =1 ψ  (Y )2 □
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3.2 Examples of conditional expectations: conditional distributions
Theorem 3.3 Suppose  are random variables talking values in  with probability distribution  on

. Write  using a probability  on  and a kernel . Then, if  is integrable,

we have

For example if  has a joint density  then .

Proof. Let . Since  is integrable we have

and thus the RV  is integrable.

If  to be bounded, then  is integrable. We have

and this proves that . 

(X,Y ) E × F P (X,Y )

(E × F , E × F) P (X,Y ) P (A) E K(x,B) g(Y )

E[g(Y )∣X] =  g(y)dK(X, y)∫
F

P (X,Y ) f(x, y) E[g(Y )∣X] =  g(y)  dy∫
E f(X)

f(X,y)

ψ(x) =  g(y)dK(x, y)∫
F

g ∈ L1

E[∣ψ(X)∣] =  ∣  g(y)dK(x, y)∣dP (x) ≤∫
E

∫
F

  ∣g(y)∣dK(x, y)dP (x) =∫
E

∫
F

E[∣g(Y )∣] < ∞

ψ(X)

U = h(X) ψ(X)h(X)

E[ψ(X)h(X)] =   g(y)dK(x, y)h(x)dP (x) =∫
E

∫
F

g(y)h(x)dP (x, y)∫ (X,Y )

ψ(X) = E[g(Y )∣X] □
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3.3 More examples
Example Suppose  is a discrete random variable taking value in  with pdf  and  is a real-valued continous

random variable with density  and  is independent of . Let

You can think of  has the discrete random variable  corrupted by the “noise” . We want to compute .

We can apply . We compute the kernel

so that the kernel is described by the density . Therefore

and thus  where the expectation on the r.h.s is with respect to .

Y N p(n) Z

f(z) Z Y

X = Y + Z

X Y Z E[h(X)∣Y ]

Theorem 3.3

K(n,A) = P (X ∈ A∣Y = n) = P (Y + Z ∈ A∣Y = n) = P (Z + n ∈ A) = P (Z ∈ A − n) =  f(z +∫
A

n

k(n,x) = f(n + x)

E[h(X)∣Y = n] = h(x)f(n +∫ x)dx = h(x −∫ n)f(x)dx = E[h(Z − n)]

E[h(X)∣Y ] = E[h(Z − Y )] Z
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3.4 Properties of conditional expectations
Here are the basic rules to manipulate conditional expectations

Theorem 3.4 (rules of conditional expectation) Suppose  are random variables and  are non-

negative or integrable random variables. Then we have

1. Linearity:  almost surely.

2. Independence: If  is independent of  then  almost surely.

3. Y-measurability: If  is measurable with respect to  then  almost surely.

4. Monotonicity: If  then  almost surely. In particular if  then 

almost surely.

5. Tower property: We have  almost surely.

6. Conditional Jensen: If  is a convex function then  almost surely.

7. Product property : If  where  is integrable (resp. non-negative) and  is bounded (resp. non-

negative) then  almost surely.

Proof. All these proofs are similar and follow from the fact the conditional expectation is the (essentially) unique random
variable satisfying 

Y ,Y  ,Y  1 2 Z,Z  ,Z  1 2

E[α  Z  +1 1 α  Z  ∣Y ] =2 2 α  E[Z  ∣Y ] +1 1 α  E[Z  ∣Y ]2 2

Z Y E[Z∣Y ] = E[Z]

Z σ(Y ) E[Z∣Y ] = Z

Z  ≤1 Z  2 E[Z  ∣Y ] ≤1 E[Z  ∣Y ]2 Z ≥ 0 E[Z∣Y ] ≥ 0

E[E[Z∣(Y  ,Y  )]∣Y  ] =1 2 2 E[Z∣Y  ]2

ϕ E[ϕ(Z)∣Y ] ≥ ϕ(E[(Z)∣Y ])

Z = h(Y )Z
~

Z
~

h(Y )
E[ h(Y )∣Y ] =Z

~
h(Y )E[ ∣Y ]Z

~

Equation 3.1
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Item 1. (Linearity): By de�nition  is the unique,  measurable RV such that for 

But by linearity of expectation and using the de�nition of conditional expectation  we have

From the uniqueness of condtional expectation we have  almost

surely.

Item 2. (Independence): If  and  are independent then  and  are also independent and so

From the uniqueness of condtional expectation we obtain that .

Item 3. ( -measurability): If  is measurable with respect to  then  by de�nition.

E[α  Z  +1 1 α  Z  ∣Y ]2 2 σ(Y ) U = h(Y )

E E[α  Z  + α  Z  ∣Y ]U =[ 1 1 2 2 ] E[(α  Z  +1 1 α  Z  )U ]2 2

E[Z ∣U ]i

  

E[(α  Z  + α  Z  )U ] = α  E[Z  U ] + α  E[Z  U ]1 1 2 2 1 1 2 2 = α  E[E[Z  ∣Y ]U ] + α  E[E[Z  ∣Y ]U ]1 1 2 2

= E[(α  E[Z  ∣Y ]U + α  E[Z  ∣Y ])U ]1 1 2 2

E[α  Z  +1 1 α  Z  ∣Y ] =2 2 α  E[Z  ∣Y ]U +1 1 α  E[Z  ∣Y ]2 2

Z Y Z U = h(Y )

E[E[Z∣Y ]U ] = E[ZU ] = E[Z]E[U ] = E[E[Z]U ]

E[Z∣Y ] = E[Z]

σ(Y ) Z σ(Y ) E[Z∣Y ] = Z
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Item 4. (Montonicity): If  take . We have then

Take now  and so we have

which implies that  almost surely and thus 

almost surely.

Item 5. (Tower property): If  is measurable with respect to  then  and thus  is also measurable with

respect to . Then we have, using the de�nition of conditional expectation three times,

and thus  almost surely.

Item 6. (Conditional Jensen): Left as a homework. Revisit the roof of Jensen inequality.

Item 7. (Product) If  is integrable and  is bounded then  is integrable and using the de�nition with 

and thus  almost surely.

Z  ≤1 Z  2 U = h(Y ) ≥ 0

E[E[Z  ∣Y ]U ] =1 E[Z  U ] ≤1 E[Z  U ] =2 E[E[Z  ∣Y ]U ]2

U = 1  {E[Z  ∣Y ]<E[Z  ∣Y ]}2 1

E[(E[Z  ∣Y ] −2 E[Z  ∣Y ])1  ] ≥1 {E[Z  ∣Y ]<E[Z  ∣Y ]}2 1 0

(E[Z  ∣Y ] −2 E[Z  ∣Y ])1  =1 {E[Z  ∣Y ]<E[Z  ∣Y ]}2 1 0 E[Z  ∣Y ] >2 E[Z  ∣Y ]1

U σ(Y  )2 U = h(Y  )2 U

(Y  ,Y  )1 2

 

E[E[E[Z∣(Y  ,Y  )]∣Y  ]h(Y  )] = E[E[Z∣(Y  ,Y  )]h(Y  )] = E[Zh(Y  )] = E[E[Z∣Y  ]h(Y  )]1 2 2 2 1 2 2 2 2 2

E[E[Z∣(Y  ,Y  )]∣Y  ] =1 2 2 E[Z∣Y  ]2

Z
~

g(Y ) g(Y )Z
~

U =
g(Y )h(Y )

E[E[ g(Y )∣Y ]h(Y )] =Z
~

E[ g(Y )h(Y )] =Z
~

E[E[ ∣Y ]g(y)h(Y )] =Z
~

E[g(y)E[ ∣Y ]h(Y )]Z
~

E[ g(Y )∣Y ] =Z
~

g(Y )E[g(Y )∣Y ]
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3.5 Conditioning on a -algebra
The general theory deals with conditional expectation with respect to -algebra.

De�nition 3.2 Let  be an integrable (resp. �nite non-negative) random variable, and let  be a sub- -algebra of .

A version of the conditional expectation of  given  is any integrable (resp. �nite non-negative) -measurable

random variable, denoted by  such that

for all bounded (resp. bounded non-negative) -measurable random variables .

Theorem 3.5 Let  be an integrable (resp. �nite non-negative) random variable, and let  be a sub- -algebra of . The

the conditional expectation  exists and is essentially unique, that is, two versions of the conditional

expectation of  given  are equal, almost surely.

σ
σ

Z F σ A

Z G G

E[Z∣G]

E[ZU ] = E[E[Z∣G]U ]

G U

Z G σ A

E[Z∣G]
Z G
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Proof. The uniqueness part of the statement is proved as in  and will not be repeated. The existence part,
which we had not been proved in  is now established as a consequence of Radon-Nikoym theorem.

To do this we consider �rt the case where  is non-negative and integrable. De�ne now the measure

on the measure space . Clearly  is absolutely continuous with respect to  (more properly the restriction of 

on the sub- -algebra ) and therefore there exists a random variable on , we we which denote by  such

that

Using the two representations of  we see that for any non-negative  measurable with respect to  we have

This is extended to integrable random variables by decomposing  into positive and negative part and for general non-

negative random variable by a monotone convergence argument.

Theorem 3.2
Theorem 3.2

Z

Q(A) =  ZdP  for A ∈∫
A

G

(Ω, G) Q P P

σ G) (Ω, G) E[Z∣G]

Q(A) =  E[Z∣G]dP∫
A

Q(A) U G

UdQ =∫ E[UZ] = E[E[Z∣G]U ]

Z
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Theorem 3.6 (rules of conditional expectation) Let  are non-negative or integrable random variables and 

and  some sub- -algebras.

Then we have

1. Linearity:  almost surely.

2. Independence: If  is independent of  then  almost surely.

3. Y-measurability: If  is measurable with respect to  then  almost surely.

4. Monotonicity: If  then  almost surely. In particular if  then 

almost surely.

5. Tower property: If  we have  almost surely.

6. Conditional Jensen: If  is a convex function then  almost surely.

7. Product property : If  where  is integrable (resp. non-negative) and  is bounded (resp. non-

negative)and measurable with respect to  then  almost surely.

Proof. Same as before.

Z,Z  ,Z  1 2 G

H σ

E[α  Z  +1 1 α  Z  ∣G] =2 2 α  E[Z  ∣G] +1 1 α  E[Z  ∣G]2 2

Z G E[Z∣G] = E[Z]

Z G E[Z∣G] = Z

Z  ≤1 Z  2 E[Z  ∣G] ≤1 E[Z  ∣Y ]G Z ≥ 0 E[Z∣Y ] ≥ 0

H ⊂ G E[E[Z∣G]∣H] = E[Z∣H]

ϕ E[ϕ(Z)∣G] ≥ ϕ(E[(Z)∣G])

Z = VZ
~

Z
~

V

G E[ V ∣G] =Z
~

V E[ ∣G]Z
~
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3.6 Example
Suppose  is a sequence of IID random variables where  are integrable with  and let .

We now consider the -algebras

and the -algebras  are increasing .

Let us compute .

We have

since  is measurable with respect to  and  are independent of .

This shows that

This is the martingale property which we will explore later on. If set  then we have

X  i X  i E[X  ]  i μ̄ S  =n X  +1 ⋯ + X  n

σ

F  =n σ(X  , ⋯ ,X  )1 n

σ F  n F  ⊂n F  n+m

E[S  ∣F  ]n+m n

  

E[S  ∣F  ] = E[S  + X  + ⋯ + X  ∣F  ]n+m n n n+1 n+m n = E[S  ∣F  ] + E[X  + ⋯ + X  ∣F  ]n n n+1 n+m n

= S  + E[X  + ⋯ + X  ] = S  + mμn n+1 n+m n

S  n F  n X  , ⋯ ,X  n+1 n+m F  n

E[S  −n+m (n + m)μ∣F  ] =n S  −n nμ.

M  =n S  −n nμ

E[M  ∣F  ] =n+m n M  .n
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3.7 Conditional expectation as a projection
Another way to think of the conditional expectation is to see it as acting on vector space of random variables (de�ned
almost surely). For example let us consider the vector spaces

We can think as the conditional expectation as a map. For example

which projects  to its linear subspace .

Here the meaning of projection means that  is a linear map and satis�es . The range of  is the space onto

which it projects, in this case .

  

L (Ω, A,P )+

L (Ω, A,P )1

L (Ω, A,P )2

= {X : Ω → [0, ∞) measurable}

= {X : Ω → R measurable : E[X] < ∞)}

= {X : Ω → R measurable : E[X ] < ∞)}2

  

Π  :G L (Ω, A,P ) → L (Ω, G,P )1 1

Z ↦ E[Z∣G]

L (Ω, A,P )1 L (Ω, A,P )1

Π  G Π  =G
2 Π  G Π  G

L (Ω, G,P )1
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Let us consider the (smaller) space  which is equiped with the inner product . We can

give a proof of the existence of conditional expectation (for ) using Riesz-Fisher Theorem (the same theorem we

used to prove Radon-Nokodym theorem). The agument goes as follows: �x  and consider the map 

acting on .

We have, by Cauchy-Schwartz, in the space ,

where we have used that  is a linear subspace of .

We can now apply Riesz-Fisher theorem, in  to conclude that there exists an element  such

that

In that case the map  is an orthogonal projection in . Indeed using the property of

conditional expectation we �nd that

L (Ω, A,P )2 ⟨X , Y ⟩ = E[XY ]
Z ∈ L2

Z ∈ L (Ω, A,P )2 ϕ  Z

L (Ω, G,P )2

  

ϕ  :Z L (Ω, G,P ) → R2

U ↦ ϕ  (U) = E[ZU ]Z

L (Ω, A,P )2

∣ϕ  (U)∣ =Z ∣E[ZU ]∣ = ⟨Z , U⟩  ≤L (Ω,A,P )2 ∥Z∥  ∥U∥  =L (Ω,A,P )2 L (Ω,A,P )2 ∥Z∥  ∥U∥  L (Ω,A,P )2 L (Ω,G,P )2

L (Ω, G,P )2 L (Ω, A,P )2

L (Ω, A,P )2 L (Ω, G,P )2

E[ZU ] = E[E[Z∣G]U ]  for all U ∈ L (Ω, G,P )2

Z ↦ Π  (Z) =G E[Z∣U ] L (Ω, G,P )2

 

⟨Π  (Z) , Z ⟩  = E[Z E[Z∣G]] = E[E[Z ∣G]E[Z∣G]] = E[ZE[Z ∣G]] = ⟨Z , Π (Z )⟩  .G
′
L (Ω,G,P )2

′ ′ ′
G

′
L (Ω,G,P )2
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3.8 Rejection sampling
The rejection sampling is a basic simulation method to generate random variables taking values in  (discrete or

continuous). We will prove the continuous case but the discrete case is similar and is left to the reader. The basic insight is
that you assume that there exists a random variable  with density  that you already know how to simulate. You use

this simulate a random variable with density  by suitable reweighting.

Theorem 3.7 (Rejection Method) Suppose that the random variable  has pdf  and  has pdf , both taking

values in , and that there exists a constant  such that

To generate a sample from  do

Step 1: Generate the random variable .

Step 2: Generate a random number .

Step 3: If  set  otherwise reject and go back to Step 1.

The number of times the algorithm runs until a value for  is accepted is geometric with parameter .

Rn

X f(x)
g(y)

X f(x) Y g(x)
Rn C

 ≤
g(y)
f(y)

C  for all y

X

Y

U

U ≤  

g(Y )C
f(Y )

X = Y

X  

C
1
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Proof. To obtain one value of  we need iterate the algorithm a random number of times, let us call it , until the value is

accepted. That is we generate independent random variables  until  is accepted and then set .

Let us compute the CDF of . We have, by conditioning on , for any measurable 

If we take  we �nd that the denominator is  and thus, as desired, that  has the same

distribution as .

The above argument also shows that at each iteration, a value for  is accepted with probability 

independently of the other iterations. Therefore the number of iterations needed is a geometric random with mean .

.

X N

Y  , ⋯ ,Y  1 N Y  N X = Y  N

Y  N Y A

  

P{Y  ∈ A}N = P Y ∈ A ∣U ≤  =  {
Cg(Y )
f(Y ) }

P U ≤  {
Cg(Y )
f(Y ) }

P Y ∈ A ,U ≤  {
Cg(Y )
f(Y ) }

=  =  =  

P U ≤  {
Cg(Y )
f(Y ) }

E[E[1  1  ∣Y ]]{Y ∈A} {U≤  }
Cg(Y )
f(Y )

P U ≤  {
Cg(Y )
f(Y ) }

E[1  E[1  ∣Y ]]{Y ∈A} {U≤  }
Cg(Y )
f(Y )

P U ≤  {
Cg(Y )
f(Y ) }

E[1   ]{Y ∈A} Cg(Y )
f(Y )

=  =  =  

CP U ≤  {
Cg(Y )
f(Y ) }

 g(y)dy∫
A Cg(y)

f(y)

CP U ≤  {
Cg(Y )
f(Y ) }

 f(y)dy∫
A

CP U ≤  {
Cg(Y )
f(Y ) }

P (X ∈ A)

(1)

(2)

(3)

A = Rn CP U ≤  =(
Cg(Y )
f(Y ) ) 1 Y  N

X

X P U ≤  =(
Cg(Y )
f(Y ) )  

C
1

C

□
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3.9 Example
Suppose  has pdf  for . Since  is supported on  we pick  uniform on 

with . Then . So generate two random numbers  and 

and if  set . The average proportion of accepted values is 

Code

X f(x) = 20x(1 − x)3 0 ≤ x ≤ 1 X [0, 1] Y [0, 1]
g(y) = 1 C = max  =

g(x)
f(x) max  20x(1 −x∈[0,1] x) =3

 64
135 U  1 U  2

U  ≤1  U  (1 −27
256

2 U  )2
3 X = U  2  =135

64 .4747..

import numpy as np1
import matplotlib.pyplot as plt2
def accept_reject(N):   # Generate N sampl3
    n_accept=04
    x_list = [] 5
    while n_accept < N:6
        a=np.random.rand(2)7
        if a[0] < (256/27)*a[1]*(1-a[1])**8
            n_accept += 19
            x_list.append(a[1])10
    return x_list11
plt.figure(figsize=(5,3))  12
plt.hist(accept_reject(100000), bins=100, 13
t = np.arange(0., 1., 0.02)14
plt.plot(t, 20*t*(1-t)**3, 'r--' )15
plt.xlabel('x')16
plt.ylabel('f(x)')17
plt.title('Histogram vs the exact pdf')18
plt.show()  19
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3.10 Exercises
Exercise 3.1 (Conditional Jensen inequality)  

Show that if  is a convex function and  is integrable then

almost surely.

Show that  de�nes is a projection on  for any , i.e.   maps

 into  with  and .

Exercise 3.2 (Monotone convergence)  

Show that if the random variables  are non-negative and  converges to  almost surely then

 almost surely.

Formulate a conditional version for Fatou’s Lemma and the Dominated convergence theorem. You do not need to
prove them, as they are derived from the monotoneconvergence theorem exactly as their non-conditioned
counterpart.

ϕ Z

E[ϕ(Z)∣Y ] ≥ ϕ(E[(Z)∣Y ])

Π  :σ(Y ) Z ↦ E[Z∣Y ] L (Ω, A,P )p 1 ≤ p ≤ ∞ Π  σ(Y )

Lp Lp ∥E[Z∣Y ]∥  ≤p ∥Z∥  p Π  =
σ(Y )
2 Π  σ(Y )

Z  n Z  n Z

lim  E[Z  ∣Y ] =n n E[Z∣Y ]
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Exercise 3.3  

Suppose the random variable  has a density . What is the density of ?

Show that 

Exercise 3.4 (More on -projections) All random variables are in  so all the expectations make sense.

X f(X) X2

E[X∣X ] =2 ∣X∣  

f(−∣X∣)+f(∣X∣)
f(−∣X∣)−f(∣X∣)

L2 L2
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Exercise 3.5 (Generating uniform RV on the unit ball and the unit sphere) We denote by  a RV uniformly distributed

on the  sphere . We denote by  a RV uniformly distributed on the  unit

ball . We want to write algorithms to generate  and , in an ef�cient manner.

1. Show that to generate  it is enough to generate  IID standard normal  (e.g using the Box-

Muller algorithm) and set .

2. Build a rejection algorithm for  by using the random variable  where  are IID uniform on

.

Compute and analyze the acceptance rate. Show that this algorithm is totally useless in practice if  is not very very

small. Hint: The volume of the -unit ball is .

3. Show  can be generated in a rejection-free in the following manner. Generate  as in 1., pick a random number 

and set . Hint: What is the distribution of ?

Y

(n − 1) S  =n−1 {x  +1
2 ⋯ + x  =n

2 1} X n

B  =n {x  +1
2 ⋯ + x  ≤n

2 1} X Y

Y n Z = (Z  , ⋯ ,Z  )1 n

Y =  ∥Z∥
Z

X V = (V  , ⋯ ,V  )1 n V  i

[−1, 1]
n

n  

nΓ(n/2)
π
n/2

X Y U

X = U Y1/n ∥X∥
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Exercise 3.6 The beta random variable with parameter  has the pdf

It is a good model of a unimodal distribution supported on .

1. Write down a rejection algorithm (with a uniform ) to simulate a beta random variable. Compute the acceptance

probability.

2. Consider the results in . Use this to write down an algorithm to generate beta random variables.

3. Which one of the two algorithms is more ef�cient? To do this compare the number of random numbers needed to
generate one sample and use Stirling formula to obtaimn a large  asymptotics

(n,m)

f(x) =  x (1 −
(n − 1)!(m − 1)!

(n + m − 1)! n−1 x)  for 0 ≤m−1 x ≤ 1

[0, 1]

Y

Section 2.6

n
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4 The characteristic and moment
generating function for a random
variable
One of the oldest trick in the mathematician toolbox is to obtain properties of a mathematical object by perfomring a
transformation on that object to map it into another space. In analysis (say for ODE’s and PDE’s) the Fourier transform
and the Laplace transform play a very important role. Both play an equally important role in probability theory!

Fourier transform of a probbaility measure leads to a proof of the central limit theorem!

Laplace transform (via Chernov bounds) leads to concentration inequalities and performance guarantees for Monte-
Carlo methods and statistical learning.
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4.1 Fourier transform and characteristic function
Notation For vectors  we use the notation

for the scalar product in 

De�nition 4.1 (Fourier transform and characteristic function)  

For a probability measure  on  the Fourier transform of  is a function  given by

For a random variable  taking value in  the characterictic function of  is the Fourier transorm of  (the

distribution of ): we have

x, y ∈ Rn

⟨x, y⟩ =  x  y  

i=1

∑
n

i i

Rn

P Rn P (t) :P R →n C

(t) =P  e dP (x)∫
Rn

i⟨t,x⟩

X Rn X PX

X

ϕ  (t) =X E e =[ i⟨t,x⟩]  e dP (x)∫
Rn

i⟨t,x⟩ X

71

Measures on Product Spaces and Conditional Expectation



Remarks

We have not talked explicitly about integration of complex valued function  where  and  are the real

and imaginary part. It is simply de�ned as

provided  and  are integrable. A complex function  is integrable iff and only if  is intergable if and only if  and 

are integrable. (The only thing a bit hard to prove is the triangle inequality .)

The function

is integrable since  and  are bounded function (thus in ) or by noting that 

.

Suppose the measure  has a density  then we have

which is simply the Fourier transform (usually denoted by ) of the function . (Diverse conventions are used

for the Fourier, e.g. using  instead  but these differ only by trivial rescaling).

h = f + ig f g

(f +∫ ig)dP = fdP +∫ i gdP∫
f g h ∣h∣ f g

∣ hdP ∣ ≤∫ ∣h∣dP∫

e =i⟨t,x⟩ cos(⟨t,x⟩) + i sin(⟨t,x⟩)

sin(⟨t,x⟩) cos(⟨t,x⟩) L ⊂∞ L1 ∣e ∣ =i⟨t,x⟩

1

P f(x)

(t) =P e f(x)dx∫ i⟨t,x⟩

 (t)f f(x)
e−i2π⟨k,x⟩ ei⟨t,x⟩
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4.2 Analytic properties of the Fourier transform
We turn next to the properties of the Fourier transform. A very useful thing to remember of the Fourier transform

The next two theorem makes this explicit in the context of measures. The �rst one is very general and simply use that we
dealing with probaility measure

Theorem 4.1 The Fourier transform  of a probability measure  is uniformly continuous on , and satis�es

 and .

Proof. Clearly  since  is a probability measure and since , by the triangle

inequality .

For the uniform contintuity we have

The right hand side is independent of  which is going to show uniformity. To conclude we need to show that the right

hand-side goes to  as . We can use dominated convergence since

 the smoother the Fourier transform is the faster the function (or the measure) decay and vice versa

(t)P P R
(0) =P 1 ∣ (t)∣ ≤P 1

(0) =P  dP (x) =∫Rn 1 P ∣e ∣ =i⟨t,x⟩ 1
∣ (t)∣ ≤P 1

 

∣ (t + h) − (t)∣ ≤ ∣e − e ∣dP (x) = ∣e ∣∣e − 1∣dP (x) = ∣e − 1∣dP (x)P P ∫ i⟨(t+h),x⟩ i⟨t,x⟩ ∫ i⟨t,x⟩ i⟨h,x⟩ ∫ i⟨h,x⟩

t

0 h → 0

 e =
h→0
lim i⟨h,x⟩ 1 for all x  and  ∣e −i⟨h,x⟩ 1∣ ≤ 2 □
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As we have seen the  spaces are form a dcereasing sequence  and the next theorem show that if

some random variable belongs to  (for some integer ) then its chararcteristic function will be -times continuously

differentiable.

Theorem 4.2 Suppose  is RV taking value in  and is such that . Then the characteristic function

 has continuous partial derivative up to oder , and for any ,

Proof. We will prove only the  case, the rest is proved by a tedious induction argument. Denoting by  the basis

element

To exchange the limit and expectation we use a DCT argument and the bound

From this we see that  which is integrable and independent of . The DCT concludes the proof.

Lp L ⊃1 L ⊃2 ⋯L∞

Lm n m

X Rn E[∣X∣ ] <m ∞
ϕ  (t) =X E[e ]i⟨t,X⟩ m k ≤ m

 (t) =
∂x  ⋯ ∂x  i  1 i  k

∂ ϕ  

k
X

i E X  ⋯X  ek [ i  1 i  k

i⟨t,X⟩]

m = 1 e  i

 

 (t) =   =  E  e − e =  E e  

∂x  i

∂ϕ  X

h→0
lim

h

ϕ  (t + he  ) − ϕ  (t)X i X

h→0
lim [

h

1 ( i⟨t+he  ,X⟩i i⟨t,X⟩)]
h→0
lim [ i⟨t,X⟩

h

e − 1ihX  i ]

∣e −iα 1∣ =    e  ≤
∣

∣∫
0

α

ds

d is

∣

∣
 ∣ie ∣ ≤∫

0

α
is ∣α∣ .

 e   ≤
∣
∣ i⟨t,X⟩

h
e −1ihX  i

∣
∣ ∣X  ∣i h

□
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4.3 More properties
Two simple but extremly useful properties:

Theorem 4.3 If  takes value in ,  and  is a  matrix then

Proof. This simply follows from the equality

Theorem 4.4 Suppose  and  are independent RV taking values in  then

Proof. By independence

X Rn b ∈ Rm A m × n

ϕ  (t) =AX+b e ϕ  (A t)i⟨t,b⟩
X

T

e =i⟨t,AX+b⟩ e e . □i⟨t,b⟩ i⟨A t,X⟩T

X Y Rn

ϕ  (t) =X+Y ϕ  (t)ϕ  (t)X Y

E e =[ i⟨t,X+Y ⟩] E e e =[ i⟨t,X⟩ i⟨t,Y ⟩] E e E e □[ i⟨t,X⟩] [ i⟨t,Y ⟩]

75

Measures on Product Spaces and Conditional Expectation



4.4 Examples
Bernoulli with parameter :

Binomial with paramters : using the binomial theorem

Poisson with paramters :

Normal with paramters : We start with the special case  and  and we need to compute the complex

integral

You can do it via contour integral and residue theorem (complete the square!). Instead we use an ODE’s argument.

p

ϕ  (t) =X E[e ] =itX e p +it e (1 −i0 p) = (1 − p) + e p .it

(n, p)

ϕ  (t) =X E[e ] =itX
  e p (1 −

k=0

∑
n

(
k

n) itk k p) =n−k (e p +it (1 − p))n

λ

ϕ  (t) =X E[e ] =itX e  e  =−λ

k=0

∑
∞

itk

k!
λk

eλ(e −1)it

μ,σ2 μ = 0 σ =2 1

ϕ  (t) =X E[e ] =itX
 e e 2dx
 2π

1 ∫ itx −x2
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First we note that by symmetry

By  we can differentiate under the integral and �nd after integrating by part

a separable ODE with initial condition . The solution is easily found to be  and thus we have

Finally noting that  is a normal is with mean  and  we �nd by  that

 Exponential with parameter : For any (complex)  we have . From this we deduce that

ϕ  (t) =X  cos(tx)e dx
 2π

1 ∫ −x /22

Theorem 4.2

ϕ  (t) =X
′

 −x sin(tx)e dx =
 2π

1 ∫ −x /22
 −t cos(tx)e dx =
 2π

1 ∫ −x /22
−tϕ  (t)X

ϕ  (0) =X 1 e−t /22

ϕ  (t) =X E e =[ itX] e .−t /22

Y = σX + μ μ σ Theorem 4.3

ϕ  (t) =Y e E e =iμt [ iσtX] e .iμt−σ t /22 2

∙ β z  e dx =∫
a

b zx
 

z
e −ezb za

ϕ  (t) =X β  e dx =∫
0

∞
(it−β)x

 

β − it

β
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4.5 Uniqueness Theorem
We show now that the Fourier transform determines the probability measures uniquely, that is if two probability
measures  and  have the same Fourier transforms  then they must coincide . For simplicity we only

consider the -d case but the proof extends without problem.

There exists several version of this proof (see your textbook for one such proof). We give here a direct proof which also
gives an explcit formula on how to reconstruct the measure from the its Fourier transform.

Our proof relies on the following computation of the so-called Dirichlet integral

Lemma 4.1 (Dirichlet integral) For  let . We have then

This is a fun integral to do and can be done using a contour integral in the complex plane, or by a Laplace transform trick,
or by the so-called Feynmann trick (add a parameter and differentiate). See for example .

We will take this result for granted and note that we have

where  is  or  is  is positive, , or negative.

P Q =P  Q P = Q

1

T > 0 S(T ) =   dt∫0
T

t
sin t

 S(T ) =
T→∞
lim  

2
π

the Wikipedia page

  dt =∫
0

T

t

sin(θt)
sgn(θ)S(∣θ∣T)

sgn(θ) +1, 0 −1 θ 0
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Theorem 4.5 (Fourier inversion formula) If  and  are not atoms for  we have

In particular distinct probability measures cannot have the same characteristic function.

Proof. The inversion formula implies uniqueness. The collections of  such that  and  are not atoms is a -system

which generates  so the monotone class theorem implies the result, see ?@thm-uniquenesspm. (See exercise for more

on atoms).

Let  denote the integral in . Using the bound s we see that that the integrand is

bounded and thus by Fubini’s theorem we have

Using Euler formula and the fact that  is even  is odd we �nd

a b P

P ((a, b]) =     (t) dt
T→∞
lim

2π
1 ∫

−T

T

it

e − e−ita −itb

P (4.1)

(a, b] a b p

B

I  T Equation 4.1 ∣e −iz e ∣ ≤iz′
∣z − z ∣′

I  =T     dt dP (x)
2π
1 ∫

−∞

∞ (∫
−T

T

it

e − eit(x−a) it(x−b) )
cos sin

  

I  T =    dt dP (x)∫
−∞

∞ (∫
0

T

πt

sin(t(x − a)) − sin(t(x − b)) )
=   S(T ∣x − a∣) −  S(T ∣x − b∣)dP (x)∫

−∞

∞

π

sgn(x − a)
π

sgn(x − b)
(4.2)
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The integrand in  is bounded and converges as  to the function

By DCT we have that  if  and  are not atoms. 

You can use the Fourier inversion formula to extract more information.

Theorem 4.6 Suppose the Fourier transform  is integrable,  then  has a density 

.

Proof. Using that  the fact that  is integrable means we can extend the integral in

 to an integral from  to . As a consequence we get  and thus 

has no atoms. Furthermore for the CDF  of  we have for  negative or positive

The integrand is dominated by  and by DCT  is differentiable and  has density 

. 

Equation 4.2 T → ∞

ψ  (x) =a,b    

⎩
⎨
⎧ 0

 2
1

1
 2

1

0

x < a

x = a

a < x < b

x = b

x > b

I  →T ψ  dP =∫ a,b P ((a, b]) a b □

(t)P ∣ (t)∣dt <∫ P ∞ P f(x) =
e (t)dt∫ −itxP

∣  ∣ ≤
it

e −e−ita −itb
∣b − a∣ ∣ (t)∣P

Equation 4.1 −∞ ∞ P ((a, b)) ≤ ∣b − a∣  ∣ (t)∣ dt∫−∞
∞

P P

F (t) P h

 =
h

F (x + h) − F (x)
   (t)dt

2π
1 ∫

−∞

∞

ith

e − e−itx −it(x+h)

P

∣ (t)∣P F P F (x) =′ f(x) =
  e (t)dt2π

1 ∫−∞
∞ −itxP □
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4.6 Gaussian vectors
First we recall some basics about random vectors

De�nition 4.2 (mean and covariance of a random vector) For random vector  where 

 we de�ne

The mean  of  is the vector

The covariance matrix  of  is the  matrix

Theorem 4.7 The covariance matrix  is symmetric ( i.e.  ) and positive de�nite, i.e., for any 

X = (X  ,X  , ⋯ ,X  )1 2 n X  ∈i
L2

μ = μ  X X

μ = E[X] ≡ (E[X  ], ⋯ ,E[X  ]) .1 n

Σ = Σ  X X n × n

Σ  =ij Cov[X  X  ] =i j E[(X  −i E[X  ])(X  −i j E[X  ])]j

Σ Σ =T Σ α ∈ Rn

⟨α, Σα⟩ ≥ 0
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Proof.

A positive de�ne symmetric matrix has non-negative eigenvalues and can be diagonalized by an orthonormal matrix. If
the matrix  is degenerate (i.e. some eigenvalues are ) or equivalently  for some . Then  almost

surely lies in some hyperplane of  of dimension strctly less than . Indeed by the previous calculation 

implies that

In that case  certainly cannot have a density.

  

⟨α , Σα⟩ =   α  α  E[(X  − E[X  ])(X  − E[X  ])]
i=1

∑
n

j=1

∑
n

i j i i j j

= E   α  α  (X  − E[X  ])(X  − E[X  ])[
i=1

∑
n

j=1

∑
n

i j i i j j ]
= E  α  (X  − E[X  ])  α  (X  − E[X  ]) = E ⟨α, (X − E[X]⟩ ≥ 0.[(

i=1

∑
n

i i i )(
j=1

∑
n

j j j )] [∣ ∣2]

□

Σ 0 ⟨α, Σα⟩ = 0 α ∈ Rn X

Rn n ⟨α, Σα⟩ = 0

⟨α, (X − E[X]⟩ = 0 almost surely 

X
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De�nition 4.3 (Gaussian vectors)  

A (extended) Gaussian random variable  is a real random variable with the charatceristic function, if for some

 and 

Note  is allowed which correspond to  a.s.

A -dimensional random vector  is called a Gaussian random vector if for any  the random variable

 is a (extended) Gaussian random variable

Another, common way to de�ne Gaussian vectors in terms of their characteristic functions.

Theorem 4.8 (Characterization of Gaussian vectors) A random vector is Gaussian if and only its characteric function is
of the form

and  is the mean vector for  and  is the covariance matrix of .

X

μ ∈ R σ ≥2 0

ϕ  (t) =X eiμt−  σ t2
1 2 2

σ = 0 X = μ

n X α ∈ Rn

⟨α,X⟩

ϕ  (t) =X ei⟨μ  ,t⟩−  ⟨t,Σ  t⟩X 2
1

X (4.3)

μ  =X E[X] X Σ  X X
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Proof. If  is gaussian vector then  is Gaussian random variable and then we have

where

and

where, in the last equality, we have repeated to computation done in the proof of . This proved the desired
formula for the characteristic function of .

Conversely suppose  is a random vector with characteristic function given in  then for  we

have

which is the characteristic function of Gaussian random variable. 

X Z = ⟨t,X⟩

ϕ  (1) =Z E[e ] =iZ E[e ] =i⟨t,X⟩ eiμ  −  σ  Z 2
1

Z
2

μ  =Z E[⟨t,X⟩] = ⟨t,E[X]⟩ = ⟨t,μ  ⟩X

σ  =Z
2 E[(⟨t,X⟩ − E[⟨t,X⟩]) ] =2 E[⟨t,X − E[X]⟩ ] =<2 t, Σ  t >X

Theorem 4.7
X

X Equation 4.3 Z = ⟨α,X⟩

ϕ  (u) =Z E[e ] =iuZ E[e ] =i⟨uα,X⟩ e =i⟨uα,μ  ⟩−  ⟨uα,Σ  uα⟩X 2
1

X eiu⟨α,μ  ⟩−  u ⟨α,Σ  α⟩X 2
1 2

X

□
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Constructing and simulating a Gaussian random vector: We can construct a Gaussian random vector with prescribed
mean  and covaraince  as followed. Since  is symmetric and non-negative de�nite we can write it as

If  is a vector of  independent standard normal then we set  and since 

 by  we have  as desired.

Density of a non-generate gaussian random vector: Using the same notation as above, if  is invertible then

the matrix  is also invertible and consider the vector . It is also a Gaussian vector with 

and . Therefore the

characteristic function of  is  which is the characteristic function for a vector or  independent

standard normal whose density is

Using the expectation rule and the change of variable  we �nd

μ  X Σ  X Σ

Σ = Q       Q ≡

⎣
⎡σ  1

2

0

⋮
0

0
σ  2

2

⋮
0

…
…

⋱
…

0
0

⋮
σ  n

2⎦
⎤

T AA  with  A =T
      Q

⎣
⎡σ  1

0

⋮
0

0
σ  2

⋮
0

…
…

⋱
…

0
0

⋮
σ  n
⎦
⎤

Z = (Z  , ⋯ ,Z  )1 n n X = μ  +X AZ ϕ  (t) =Z

e−  ⟨t,t⟩2
1

Theorem 4.3 ϕ  (t) =X e ϕ  (A t) =i⟨t,μ  ⟩X
Z

T ei⟨t,μ  ⟩−  ⟨t,Σ  t⟩X 2
1

X

Σ  =X AAT

A Z = A (X −−1 μ  )X μ  =Z 0
Σ  =Z E[ZZ ] =T E[A (X −−1 μ  )(A (X −x

−1 μ  )) ] =x
T A Σ  (A )(−1) =−1

X
T I

Z ϕ  (t) =Z e−  t  2
1 ∑

i=1
n

i
2

n

f  (z) =Z  e
(2π)  2

n

1 −  ⟨z,z⟩2
1

x = Az + μ  X

f  (x) =X  f  (A (x −
∣det(A)∣

1
Z

−1 μ  )) =X   e
 det(Σ  )X

1
(2π)  2

n

1 −  ⟨x,Σ  x⟩2
1

X
−1
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2d gaussian vector For  we can write the positive de�nite covariance matrix as

for some . The case  corresponds to two independent and the case  corresponds to the

degenerate case  ( e.g. take . For , the density is then given by

The marginal  and  are normal with mean  and variance  and  and the density of  conditioned on 

(i.e. the kernel ) is given by

which is a Gaussian vector with mean  and variance .

In the degenerate case, using the notation  for the probability measure concentrated at  we have the kernel

.

n = 2

Σ =   [ σ  1
2

ρσ  σ  1 2

ρσ  σ  1 2

σ  2
2 ]

0 ≤ ρ ≤ 1 ρ = 0 ρ = 1
det(Σ  ) =X 0 X  =2  X  

σ  1

σ  2
1 ρ < 1

f(x  ,x  ) =1 2  exp −   − 2ρ  +  .
2πσ  σ   1 2 1 − ρ2

1 {
2(1 − ρ )2

1 (
σ  1

2
x  1

2

σ  σ  1 2

x  x  1 2

σ  2
2
x  2

2 )}
X  1 X  2 0 σ  1 σ  2 X  1 X  =2 x  2

k(x  ,x  )2 1

k(x  ,x  ) =2 1 f  (x  ) =X  ∣X  =x  1 2 2 1  
exp −  x  − ρ  x  

 2πσ   1 1 − ρ2

1 {
2σ  (1 − ρ )1

2 2

1 ( 1
σ  2

σ  1
2)2}

ρ  x  

σ  2

σ  1
2 σ  (1 −1

2 ρ )2

δ  x x

K(x  , ⋅) =2 δ  (⋅)
 x  

σ  2

σ  1
2
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4.7 Examples
We can use the inversion theorem in creative ways.

Examples:

1. The Laplace RV  is a two-sided version of the exponential RV. Its density is . You can think of the

Laplace distribution as the mixture (with mixture parameters ) of an exponential RV  and  where  is

exponential. Its characteristic function is then

2. The Cauchy RV  had density  and its characteristic function is given by

a priori not an easy integral. However notice that the Fourier transform of the Laplace looks (up to constants) exactly
like the density of a Cauchy! So we using  for the Laplace distribution shows that

from which conclude that .

Y f(x) =  e2
β −β∣x∣

,  2
1

2
1 X −X X

ϕ  (t) =Y E[e ] =itY
 E[e ] +

2
1 itX

 E[e ] =
2
1 −itX

  +
2
1
β − it

β
 =

β + it

β
 

β + t2 2

β2

Z f(x) =  

π(x +β )2 2
β

ϕ  (t) =Y E[e ] =itY
 e  ∫

∞

∞
itx

π(x + β )2 2

β

Theorem 4.6

 e =
2
β −β∣x∣

 e ϕ  (t)dt =
2π
1 ∫ −itx

Y  e  dt =
2π
1 ∫ −itx

β + t2 2

β2

 e  dt =
2
β ∫ itx

π(β + t )2 2

β
 ϕ  (x)

2
β

Z

ϕ  (t) =Z e−β∣t∣
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4.8 Sum of independent random variables
Suppose  and  are independent random variables. We wish to understand what is the distribution of . The

�rst tool is to use the characteristic function and the fact that if  and  are independent

together with the uniquness theorem.

Examples

1. Suppose  is normal with paramter  and  and  normal with paramter  and . Then if  and  are

independent then  is normal with paramter  and . This follows form the uniqueness theorem

and

2. Suppose  are independent Bernoulli RV with paramters  then  is a binomial RV. Indeed

we have

X Y X + Y

X Y

E[e ] =it(X+Y ) E[e ]E[e ]itX itY

X μ σ2 Y ν η2 X Y

X + Y μ + ν σ +2 η2

E[e ] =it(X+Y ) E[e ]E[e ] =itX itY e e =iμt−σ t /22 2 iνt−η t /22 2
ei(μ+ν)t−(σ +η )t /22 2 2

X  , ⋯ ,X  1 n p X  +1 ⋯ + X  n

E[e ] =it(X  +⋯+X )1 n E[e ] ⋯E[e ] =itX  1 itX  n (e p +it (1 − p))n
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Another tool is the following convolution theorem

Theorem 4.9 (Convolution of probability measures) Assume  and  are independent random variables.

If  and  have distribution  and  then  has the distribution

If  and  have densities  and  then  has the density

Proof. For the �rst part let us take a non-negtive function  and set . We have then

Taking  give the result.

X Y

X Y PX P Y X + Y

P ⋆X P (A) =Y 1  (x +∫∫ A y)dP (x)dP (y)  convolution productX Y

X Y f  (x)X f  (y)Y X + Y

f  (z) =X+Y f  (z −∫ X y)f  (y)dy =Y f  (x)f  (z −∫ X Y x)dx

h Z = X + Y

E[h(Z)] = E[h(X + Y )] = h(x +∫ y)P (dx)P (dy)X Y

h = 1A
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For the second part if  and  have a density we have

and since this holds for all ,  has the claimed density. The second formula is proved in the same way. .

Example: triangular distribution
Suppose  and  are independent and uniformly distributed on . Then  is between  and  for

 we have

X Y

  

P (Z ∈ A) = E[1  (Z)]A = 1  (x + y)f  (x)f  (y)dxdy∫∫ A X Y

= 1  (z)f  (z − y)f  (y)dzdy  change of variables z = x + y, dz = dx∫∫ A X Y

= f  (z − y)f  (y)dy 1  (z)dz  Fubini ∫ (∫ X Y ) A

A Z □

X Y [−  ,  ]2
1

2
1 Z = X + Y −1 +1

z ∈ [−1, 1]

f  (z) =Z  f  
(z −∫

−∞

∞

X y)f  (y)dy =Y    = 1 − ∣z∣⎩⎨
⎧

 dy∫
−  2

1
z+  2

1

 dy∫
z−  2

1
 2

1

−1 ≤ z ≤ 0

0 ≤ z ≤ 1
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4.9 Moment and moment generating functions
The moment problem is the question whether a probability distribution  is uniquely determined by all its moments

. It is in general not true as the following examples shows.

Recall the log-normal distribution is the distribution of  is  is a normal distribution. Its pdf is given, for  and

and all moments exists .

Now consider

Then for  we have with the change of variable 

This shows that  is the density of a RV  and that all moments of  coincide with the moments of the log-normal!

P

E[X ]n

eX X μ = 0
σ =2 1

f(x) =  e
x  2π

1 −  2
ln(x)2

E[X ] =r
 x f(x)dx =∫0

∞ k er /22

g(x) = f(x)(1 + sin(2π ln(x)))

k = 0, 1, 2, ⋯ ln(x) = s + k

 x f(x) sin(2π ln(x))dx =∫
0

∞
k

 e  e sin(2πs)ds =
 2π

1 k /22 ∫
−∞

∞
−s /22

0 .

g Y Y
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A stronger condition on the moments do imply uniqueness: if all moments exists and  do not grow to fast with 

then the moments do determine the distribution. This use a analytic continuation argument and relies on the uniqueness
theorem for the Fourier transform.

Theorem 4.10 Suppose  and  are RV such that the moment generating functions  in 

and are �nite in that interval. Then  and  have the same distribution.

Proof.

Since  and the right hand-side is integrable, the function  is integrable. By the

DCT (for sums of RVs, in the form of ?@exr-62) we have .

This implies that  as  (for ). We claim that this implies that  as 

as long as . If  is even  and there is nothing to do. For  odd we use on one hand that

 as well that  we have (for  suf�ciently large) . Together this shows

E[X ]n n

X Y M  (t) =X M  (t)Y [−t  , t  ]0 0

X Y

e ≤t∣x∣ e +tx e−tx e =t∣X∣
  ∑

k=0
∞

k!
s∣X∣k

E[e ] =tX
  ∑k=0

∞
k!

t E[X ]k k

 →k!
t E[X ]k k k

0 k → ∞ ∣t∣ ≤ t  0  →k!
s E[∣X∣ ]k k k

0 k → ∞
s < t  0 k E[∣X∣k] = E[X ]k k

∣X∣ ≤2k−1 1 + ∣X∣ k2 s < t k 2ks <2k−1 t k2

 ≤
k!

s E[∣X∣ ]2k−1 k k

  for k large enough.
k!

t E[X ]2k k k
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The next piece is the  with reminder for function which are -times continuously

differentiable

from which we obtain

Integrating with respect to  and taking  together with  gives

for .

Now suppose  and  have the same moment generating function in a neighborhood of . Then all their moments

coincide and thus by  (with ),  on the interval . By  their

derivatives must also be equal on . Using now  (with  and  shows that

 on the interval . Repeating this argument  for all  and thus by

  and  must have the same distribution. 

Taylor expansion theorem n

f(x) =  f (x  )  +
k=0

∑
n

(k)
0

k!
(x − x  )0

k

  (x −∫
x  0

x

n!
f (t)(n+1)

s) dtn

 e e −    ≤
∣

∣
itx( ihx

k=0

∑
n

k!
(ix)k)

∣

∣
 

(n + 1)!
∣hx∣n+1

P n → ∞ Theorem 4.2

ϕ  (t +X h) =  ϕ  (t)
k=0

∑
∞

X

(k) (4.4)

∣h∣ < t  0

X Y 0
Equation 4.4 t = 0 ϕ  (t) =X ϕ  (t)Y (−r  , r  )0 0 Theorem 4.2

(−t  , t  )0 0 Equation 4.4 t = −t  +0 ϵ t = t  −0 ϵ

ϕ  (t) =X ϕ  (t)Y (−2t  , 2t  )0 0 ϕ  (t) =X ϕ  (t)Y t

Theorem 4.5X Y □

93

Measures on Product Spaces and Conditional Expectation

https://en.wikipedia.org/wiki/Taylor%27s_theorem


4.10 Exercises
Exercise 4.1  

Show that a characteristic function  sati�es  (complex conjugate).

Show that a characteristic function  is real if and only if the random variable  is symmetric (i.e  and 

have the same distribution)

Show that if  is the characteristic function for some RV  then  and  are characteristic function

as well. What are the corresponding RVs?

ϕ  (t)X  =ϕ  (t)X ϕ  (−t)X

ϕ  (t)X X X −X

ϕ  X X ϕ  (t)X
2 ∣ϕ  (t)∣X

2
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Exercise 4.2 (Independence and correlation for Gaussian random vectors)  

Consider two Gaussian random vectors  and  (of dimension  and ) which are jointly Gaussian, that is 

 is also a Gaussian random vector. Show that  and  are independent if and only they are uncorelated

that is

Hint: Use the characteristic function.

Suppose  are IID normal RV with mean  and variance  and let  be the emprical

mean. Show that

are independent. Hint: Use part 1.

The empirical variance of IID RV  is given by . Show that if the ;s are

IID normal RV with mean  and variance  then  and  are independent random variable

X Y n m Z =
(X,Y ) X Y

E[(X − μ  )(Y −X μ  ) ] =Y
T 0

X  , ⋯ ,X  1 n μ σ2
 =Xn  

n
X  +⋯+X  1 n

  and (X  −Xn 1  ,X  −Xn 2  , ⋯ ,X  −Xn n  )Xn

X  , ⋯ ,X  1 n V  =n   (X  −
n
1 ∑j=1

n
j  )Xn

2 X  i

μ σ2
 X  n V  n
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Exercise 4.3 In this problem we study the characteristic function for a Gamma random variable with parameter  and

 and density . In particular you will prove that .

First show that it is enough to consider the case  (change scale.)

Use the moments  to show that  and use then the  for 

.

Use your result to show that

The sum of two independent gamma random variables with parameters  and  is a gamma

random variable.

If  are independent normal random variable with mean  and variance . show that 

 is a gamma random variable and �nd the parameters.

α

β  x eΓ(α)
βα α−1 −βx ϕ  (t) =X  (

β−it
β )α

β = 1

E[X ]n ϕ  (t) =X  (it)  ∑
n=0
∞ n

Γ(α)n!
Γ(α+n) binomial series (1 −

it)−α

(α  ,β)1 (α  ,β)2

X  ,X  , ⋯ ,X  1 2 n 0 σ2 X  +1
2

⋯ + +X  n
2
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Exercise 4.4 Show that if  and  are RV values taking in the positive integers with distributions  and 

and are independent then  has distribution  (this is called the

convolution product of the two sequences  and ).

Exercise 4.5  

In , modify the statement of the theorem if  or  are atoms.

Show that

Hint: Imitate the proof of the inversion formula in 

Suppose a RV  takes integer values in , show that

Hint: Show that  is periodic

X Y P (n)X P (n)Y

X + Y P (n) =X+Y
 P (k)P (n −∑k=0

k X Y k)
PX P Y

Theorem 4.5 a b

P ({a}) =    e (t)dt
T→∞
lim

2T
1 ∫

−T

T
−itaP

Theorem 4.5

X Z

P (X = n) =   e ϕ  (t)dt
2π
1 ∫

−π

π
−itn

X

ϕ  (t)X
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