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1 Dynkin systems

Proving that a property holds for all measurable sets in a o-algebra may seem a-priori very difficult, often because o-
algebra are defined in aindirect manner, for example the Borel o-algebra is the smallest o-algebra generated by open

sets. The Dynkin theorem(s) is a technical tool to accomplish this.
If you need to remember only one thing of this section: a probability measure on R is uniquely determined by its value on

the intervals (a, b|.
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1.1 p-systems and d-systems

Definition 1.1 (p-systems and d-systems)

® AcollectionofsetsCisa p-system it is closed under (finite) intersections.
® A collection of sets D is a d-system if
1.QeD
2.A\BeDandADB = A\BeD
3.A;,Ay,---cDwithA, "A — AcD

The p stands for product (= intersection) and d stands for Eugene Dynkin who introduced that concept.

It is obvious that a o-algebra is both a p-system and a d-system. The next proposition shows the converse.

Proposition 1.1 £ is a o-algebra if and only if £ is a p-system and a d-system.

Proof. If £ is a p-system and a d-system then £2 and () are in € and £ is closed under complement. All this follows from
properties 1. and 2. for d-system. Furthermore £ is then closed under union since A U B = (A° N B¢)°.Finally to

extend this to countable unions for pairwise disjoiont A; define B,, = ?:1AZ~ and use the property 3. of d-systems.
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1.2 Monotone Class Theorem

The next theorem is a version of many theorems of the same type in probability and measure theory.

Theorem 1.1 (Monotone Class Theorem) If a d-system contains a p-system C then it contains the o-algebra generated
by C.

Proof. Consider the smallest d-system D containing C (intersections of d-systems are d-sytems). It is enough to prove the
statement for D, thatis, D D o (C).Since o(C) is the smallest o-algebra containing C it is enough to show that Dis a o-
algebra itself. By Proposition 1.1 we thus only need to show that D is a p-system.

Fix B € CandconsiderD; ={A €D : AN B < D}.

Note that B belongs to D. We claim that Dy is a d-system. Clearly 2 € D;. Furtherif A; C A, withboth 4,45 inD;
then (4Ay \ A1) N B = (A2 N B) \ (A1 N B) which belongs to D. Similarly if A, € Dy and A,, ,/* Athen (A, N
B) /" (ANB)andsoANB € Dandso A € D;.

D; is thus a d-system and it contains C since B € C and C is a p-system. Therefore D1 O D and we have shown that if
AcDandB € CthenAN B € D.

We now define for fixed A € DthesetDy = {B € D : AN B € D}.

One verifies that Dy = is a d-system (just like for D) and thus Dy D D. This proves that D is a p-system. [
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1.3 Uniqueness of Measures

It is usually impossible to compute P(A) for all sets. An important appliction of the the monotone class theorem is that
knowing the values of P on p-system generating A determines P uniquely.

Theorem 1.2 (Uniqueness of probability measures) Suppose P and () are two probability measures on (Q, A). If
P(A) = Q(A)forall Ainap-systemC generating Athen P = Q).

Proof. We know that P(A) = Q(A)forall A € Cand.LetusconsiderD ={B € A : P(A) =Q(A)}.
Clearly D D C so to use the Monotone Class Theorem we need to show that D is a d-system.
® Since P(Q2) = Q(Q2) = 1then € D and so property 1. holds.
® For property 2.suppose A, B € Dwith A D Bthen B\ A € D since
P(B\ A)=P(B) - P(A)=Q(B) - Q(A) =Q(B\ 4)

® Forproperty 3.if {A,} C Dand A,, /" A, Then P(A,) = Q(Ay) for alln and by sequential continuity they must
have the same limits and thus P(A) = Q(A) andso A € D.

Corollary 1.1 If two probability P and () coincide on the sets of the form (—oo, a] then they are equal.
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2 Measurable maps and random
variables
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2.1 Motivation

® Given a probability space (Q, A, P) we think of A € A as anevent and P(A) is the probability to the event A
occurs. Think of this an “observation”: how likely is it that the A occurs.

® Arandom variable is a more general kind of observation. Think for example that you are performing some
measurement: to an outcome w € {2 you associate e.g. number X (w) € R. It could also be a vector or even some
more general object (e.g. a probability measure!)

® Consider another state space (F', F) (often we will take (R, B) where B is the Borel o-algebra) and a map
X: Q= F
We will want to compute
P({w,X(w) € A}) = P(X € A) = P(X"'(4))
forsome A € F.

® Thenotation X 1(A) = {w : X(w) € A} isforthe inverse image and for this to make sense we will need
X1(A) e Q.

All of this motivates the following definitions.
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2.2 Measurable functions and random variables

Givenafunction f : E — Fand B C F we write

f'(B)={z€cE; f(z) € B}

for the inverse image. The following properties are easy to verify

°
s
L
=
N—"
|
=

(
fH(A\NB) = fA)\ f(B)
U A) =U; £ (4)
FHNA) =N (4)

Definition 2.1 (Measurable and Borel functions) Given measurable spaces (E, £) and (F', F),afunction f : E —
F' is measurable (with respect to £ and F) if

f(B)c&forall Bc F.

If F' = R (equipped with the Borel o-algebra B) a measurable functions is often called a Borel function.
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Definition 2.2 (Random variable) A random variable is a measurable function

X: Q- F

from a probability space (€2, A, P) to some measurable space (F', F).
Convention: If F' = R then we always take the Borel o-algebra.

Remarks:

® Using the letter X for arandom variable is standard convention from elementary probability.

® Theterm “random variable” is maybe a bit unfortunate but it is standard. The word “variable” means we have a
function and the word “random” means it is defined on some probability space,

® Compare this to the definition of continuity. A function is continuous if, for all open set, f_l (O) is open.

® \We just say measurable if there is no ambiguity on the choice of £ and F.
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Fortunately it is enough to check the condition for a few sets

Proposition2.1 f : £ — F'is measurable with respect to £ and F if and only if

fi(B)c& forall BeC

where C generates F (i.e.o(C) = F).

Proof. Consider the family of sets
D={BeF: f(B)eé&}
We now that D O C andthato(C) = F.

To conclude it is enough to show that D is a o-algebra because if this true D D C implies D D U(C) = F.

Showing that D is a o-algebra is easy using the rules for inverse images in Section 2.2.

Corollary 2.1 A function from (E, ) to (R, B) is measurable if and only if
f((-o0a)={z€E: f(z)<a}e&

that this, all the level sets of the function f need to be measurable sets

Probability Measures and Expectation




13

2.3 Operations on measurable functions

Composition of functions
f:E—F, g: F — G, gof:EFE—G

Like continuity is preserved by composition so is measurability.

Theorem 2.1 (Composition preserves measurability) If f : E — F'is measurable (w.rt.€ and F)andg : F' — G'is
measurable (w.r.t. F and G) then the composition h = g o f is measurable (w.r.t £ and G).

Proof.1f C € Gthen(go f) 1(C) = f1(g71(C)). By the measurability of g, g1 (C') € F and so by the
measurability of f, f (g~ (C)) € &.

Given afunction f : E — R we define positive/negative parts

fe=fVO0, fo=—(fA0) = f=fi—f, |fl=f+]

Theorem 2.2 f : EE — Ris measurable iff and only if f, and f_ are measurable.

Proof. It is enough to consider sets of the form {x, f(x) < a}.Proof in your homework.
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2.4 Simple functions

Definition 2.3 (Simple functions)

® Givenaset A € &, theindicator function 1 4 is defined as

1A(37):{ 1 ifxc A

0 otherwise

® Asimple function f is a function of the form

for some finite 1, real numbers a;, and measurable sets A;.

Remarks

® The A, are not necessarily disjoint.

® A functionis simple if and only if it takes finitely many different values (at most 2N values including 0)

® The decomposition is not unique.

Probability Measures and Expectation
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Definition 2.4 A simple function is in canonical form if
m
f(@) =" bilg ()
i=1

where b; are all distinct and (B;)™ ; form a partition of E.

Remark: One can always rewrite a simple function in canonical form if needed. Just make a list of the values the function

takes by, by, - - - , by, andset B; = {z, f(x) = b;}.

Proposition 2.2 If f and g are simple function then so are

f+9, f—9, fg, flg, fVg=max{f,g}, fAg=min{f,g}

Proof. The simplest way to see this is to note that each of these functions takes at most finitely many values if f and g does
and therefore they must be simple functions.
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2.5 Supremum, infimum, limits

As we see next measurability is preserved by basic operations, in particular taking limits.
Refresher on lim sup and lim inf of sequences: Recall the definitions of lim inf and lim sup for sequences of real

numbers (they always exists if we allow the values £00.)

hm inf a,, = sup inf a,, = lim inf a,, = smallest accumulation point of {a, }
n m>n n m>n

lim sup a,, = inf sup a,, = lim sup a,, = largest accumulation point of {a, }
n n m>n n m>n

lim a,, exists <= liminf a, = limsup a,
n n n

We have then

Theorem 2.3 Suppose f,, : £ — ﬁ, n = 1,2, - - -isasequence of measurable functions (with respect to £ and the
Borel o-algebra). Then the functions

inf f,, sup fn, lim inf f, , lim sup fp,
n n n

n

are measurable.
If f = lim,, f,, exststhen f is measurable
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Proof.

® |etuswrite g = sup,, f,.Itisenoughtocheckthat {g < a}is measurable for any a. We have

{gga}:{fnSaforalln}zm{fnga}.

Soinf,, f,, is measurable if each f,, is measurable.

® For g = inf,, f,, we could use that the Borel o-algebra is generated by the collection {[a, +00) : a € R} and

{gZa}:{fnZaforalln}zm{fnza}.

® Since lim sup and lim inf are written in terms of inf and sup they do preserve measurability.

® If f =lim, f,existsthen f = lim,, f,, = limsup,, f,, = liminf,, f,, and thus is measurable.
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2.6 Approximation by simple functions

The following theorem is very important, because it reduces many a computation about measurable functionto a
computation about a simple function and then taking a limit. In that context one also uses all the time that any measurable
f is the difference of two non-negative measurable functions.

Theorem 2.4 (Approximation by simple functions) A nonnegative function f : E — R__ is measurable <= fis
the limit of an increasing sequence of positive simple functions.

4ﬂlr1cr».*=::—.\sing approximation of the identity n2" k1
i p— d1(x) d, = E on 1[%,2%) +n1[n,oo)
3537 — dilx) ' k=1
s0d d3(x)
flx) =x Simple function, right continuous, d,(z) ,* « on [0, 0)
2.5 -
> 2.0 1
1.5
1.0
0.5 '—rl:
0.0 I_’_E T T T
0 1 2 3 4
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Proof. It is not difficult to see that that the function d,, given in the previous page is increasing (due to the dyadic
decomposition) and d,, () ,* xasn — ocosinceifx € [kzjll, 2%) then | — d,(z)| < 2%

Let f be a non-negative measurable function then the function

gn:dnof

is a measurable functions (as a composition of measurable functions) and it is a simple function because d,, o f takes only
finitely many values. Since d,, is increasing and f(z) > 0,d,,(f(x)) ~ f(z). O

Corollary 2.2 (Approximation by simple functions) A function f : E — R is measurable if and only if it can be
written as the limit of sequence of simple functions.

Proof. Write f = f,. — f_ and apply Theorem2.4to f. [

Theorem 2.5 Suppose f and g are measurable then

f+9 f—-g9, fg, f/g(ifg(z)+#0)

are measurable

Proof. Homework.
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2./ Extended real-valued function

® WriteR = RU {—00, 00}.

® Oftenitis useful to consider function which are allowed to take values ==o0.

® The Borel o-algebra on R consists of all sets of the form A, A U {—o0}, AU {o0}, A U {—00, o0}.
® This Borel o-algebra is generated by the intervals of the form {[—o0, 7] }.

® All properties of measurable functionson f : E — R extend to functions f : E — R: approximation by simple
functions, supremeum, infimum, etc...

® We will use all this whenever we need it.
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2.8 Homework problems

Exercise 2.1 Show that f is measurable if and only if f+ and f_ are measurable.

Exercise 2.2 A function f : R — Ris continuous at « if for any € > 0 there exists d > 0 such that

z -yl <d = [f(z) - f(y)| <e.

A function f : R — Ris continuous if it is continuous at all x € R.

® Show that f is continuous if and only if for every open set O, f_l (O) is open.

® Show that every continuous function is measurable if we equiped IR with the Borel o-algebra.

Remark: This also holds for any continuous function between arbitrary metric space.
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Exercise 2.3

® Suppose f : R — IR (both equipped with Borel o algebra) is a right-continuous step function, if there exists a
(finite or countable) collection of intervals I,, = [t,, $,,) such that f is constant on I, and U,, I,, = R. Show that
such a function is measurable.

e Afunction f : R — Risright continuous if f(z,) — f(x) for any decreasing sequence ,, \,  and this holds

for every x. Show that such a function is measurable.
. © k
Hint:Setc, = ) ;4 ﬁl[%’%)and fn = focn.

Exercise 2.4 Suppose f : R — Risincreasing. Show that f is measurable.

Exercise 2.5 Given two measurable function f, g from (E, £) to (R, B). Show that the sets

{f<g}, {f<g}, {f=g} {f#g}

are all measurable.

Probability Measures and Expectation
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Exercise 2.6 Suppose (E, £) and (F', F) are two measurable spaces. A (measurable) rectangle in E X Fis a set of
the form

AxB Ace&, BeF.

The product o-algebra £ ® G is defined as the o-algebra generated by all measurable rectangles.

® Suppose f : E — F'is measurable (with respectto £ and F)and g : E — G is measurable (with respect to £
and G). Show that the function h : E — F' x G givenby h(x) = (f(x), g(x)) is measurable (with respect to £
and F ® G).

® Suppose f : E X F' — (G ismeasurable (with respect to £ ® F and G). For any fixed g € E define the section
of f as the function

h:F — G withh(y) = f(z0,y)

Show that h is measurable. Hint: Show first thatthemap g : Y — X X Y givenby g(y) = (0, y) is measurable.

Probability Measures and Expectation
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3 Distribution functions and
quantile functions
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3.1 Random variables

Let us apply what we have learned in the last sections to random variables

X: Q=R

where (2, A, P) is a probability space.

Theorem 3.1 Suppose f : 2 — F'is ameasurable map between the measurable spaces (E, £) and (F', F) and P a
probability measure on (E, £). Then

1. 7-Y(F) = {f1(B), B € F}isao-algebra,ingeneral asub o-algebraof £.

2. Po f~1(B) whichisdefinedhas P o f1(B) = P(f 1(B)) = P({z : f(z) € B})isaprobability
measure on (F', F).

Proof. Check the axioms.

Definition 3.1 (Image of a measure) The measure P o f_l is called the image of the measure P under f. Various
other notations are used (such as f#P, etc...)

Probability Measures and Expectation
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Adding some terminology

Definition 3.2 (The o-algebra generated by a random variable X) Given a random variable X : {2 — R defined on
the probability space ({2, A, P), the o-algebra generated by a random variable X is the o-algebra X ~!(B) C A.

The interpretation is that this o-algebra contains all the “information” you can extract from the probability measures P
simply by using the random variable X . This will play an increasingly important role in the future!

Definition 3.3 (Distribution of a random variable X') Given a random variable X : {2 — R defined on the probability
space (Q, A, P), the distribution of the random variable X is the probability measure pPX given by

PY¥=PoX!
defined on (IR, B). That is we have

P*(B) = P(X € B).

Probability Measures and Expectation
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3.2 Cumulative distribution function

By Corollary 1.1, probability on R are uniquely defined by their values on the intervals (—oo, x], this justify the following
definition

Definition 3.4 (Cumulative distribution function) The cumulative distribution function (CDF) of a random variable X
is the function F' : (—o0, 00) — [0, 1] defined by

Fy(t) = P{X < t} = PX (o0, 1)

Theorem 3.2 (Properties of CDF) If the function F'(t) is the CDF for some random variable X, then F" has the
following properties

1. Fisincreasing.
2.limy o F(t) = 0andlimy o0 F(t) = 1

3. F isright-continuous: for every t, F'(t) = F(t+) = lims + F(s).

Proof. Item 1. is the monotonicity property for the probability measure PX Item 2. follows from sequential continuity

and from the fact that (—oo, t] \ B ast \, —ooandso F'(t) \, P*(0) = 0.Asimilar argument works fort  oo.
Item 3. follows also from sequential continuity since as s \ ¢, (—00, s] \, (—o0, t|.
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Remarks:

Note that F'is in general not (left)-continuous. Indeed if s " t then (—o0, 5] ,* (—00,t) and PX ((—o0,t]) =
PX((—o00,t)) + PX({t}). We denote the left limit by F'(t—).

® One can compute probabilities using the CDF. For example CDF for the Binomial
" Pla< X <b) = F(b) - F(a) =
" Pla< X <b)=F(b)— Fla—) ) ]
" P(X = b) = F(b) — F(b-) —
® A atom for a probability measure P onaset (2isanelementw € {2 . ol
suchthat P({w}) > 0. |
® The distribution P%X of the random variable X has atoms whenever Oloiﬁ 2 : 6 8

the CDF is discontinuous (i.e. Fx (t—) # Fx(t)).

® Thedistribution PX of the random variable X has at most countably
many atoms. (Why? see homework)

® Adiscrete random variable X taking values {mn} has a purely
atomic distribution P The CDF Fx (t) is piecewise constantand we

have Fix(t) = >, ., - P({Zn})
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3.3 Continuous random variables

Another way to define a CDF is to use a PDF (=probability density function).

Definition 3.5 (Probability density function) A probability density function (PDF) is a function f : R — IR such that

® f(t) > 0, fisnon-negative

o ffooo f(t)dt = 1, f is normalized

The corresponding CDF is then given by the integral

F(t) = /_ ; f(z)dz

For now think of the integral as a Riemann integral (e.g. f is piecewise continuous). In particular by the fundamental
theorem of Calculus we have

F'(t) = f(t)

We will revisit this later when equipped with better integration tools. Many of the classical distributions in probability are
given by densities. Here are some examples which will come back.
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Examples of PDF:

1. Uniform RV on [a, b]: Wikipedia page on uniform distribution.
This random variable takes values uniformly distributed in the interval [a, b]. It has a density given by

0 zz<a

1 ag<z<bd
— b—a — 7 = — T—a < r<
f(a:) { 0 otherwise F(a:) o =T b
1 x>0b

2. Exponential RV with parameter 3: Wikipedia page on exponential.
The distribution is parametrized by A > 0 and the ODF and CDF are given by

0 z <0
l—e P >0

0 <0

f@)={ ple 230 F@-

3. Gamma RV with parameters (a, B) Wikipedia page on gamma distribution.
The random variables is parametrized by o > 0 and 8 > 0 and the density is given by

B 0 x <0
f(w) _ Fﬂ(a) wa—le—ﬁx T Z O
where I'(«) is the gamma function given by I'(ar) = [~ 2% e *d.
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4. Weibull distribution with parameters (a, 3):

5. Normal distribution with parameters (4, 02 ): The normal distribution has parameter . € R

1 (&—p)?

f(LE) — We_ 202 F(w):[wf(t)dt

6. Log-normal distribution parameters (1, o%):

/. Laplace distribution with parameters (c, 3): This is a 2-sided and shifted version of the exponential distribution.

f(z) = ée—ﬁlw—a\
2
8. Cauchy distribution with parameters (a, ﬁ) This is an example of distribution without a finite mean
1 1 1 r— 1
T) = F(x) = — arctan —
0= g e PO =g (T57) 4

9. Pareto distribution with paramters (zg, a):

Probability Measures and Expectation
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It is always a good idea to map the density of a random variables (ask ChatGPT for help). Note that the Gamma random
variables is often paramterized by 8 = 1/5.

v Code

import numpy as np )
import matplotlib.pyplot as plt
from scipy.stats import gamma

# Fixed scale parameter
scale = 2.0 # Scale parameter (theta)

# Define a range of shape parameters
shape parameters = [1.0, 2.0, 5.0]

# Generate x values (range)
X = np.linspace(0, 20, 1000)

# Plot PDFs for different shape parameters
plt.figure(figsize=(8, 6))
for shape in shape parameters:
pdf values = gamma.pdf(x, a=shape, sca
plt.plot(x, pdf values, label=f'Shape=

# Add labels and title

plt.
plt.
plt.
plt.
plt.
plt.

title( 'Gamma Distribution with Fixed S
xlabel('x")

ylabel( 'PDF')

legend()

grid(True)

show ()

PDF

Gamma Distribution with Fixed Scale and Varying Shape Parameters

0.51

0.4 1

0.3 1

0.2 1

0.11

0.0 1

—— Shape=1.0, Scale=2.0
= Shape=2.0, Scale=2.0
— Shape=5.0, Scale=2.0

0.0 25 5.0 15 10.0 125 15.0 175 20.0
X
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3.4 Random variables with mixed distribution.

It easy to build a random variable whose distribution is neither discrete nor continous.

Example: Flip a fair coin. If the coins lands on tail you win a prize X uniformly distributed on [0, 1] and if the coins lands
on tail you loose. Then X has an atom at 0 and

0 x <0
Fz)=<¢ s+3z 0<z<1
1 rz>1

More generally we can use the concept of mixture

Definition 3.6 (Mixtures of Random variables) Suppose X1, X5, - - - , X,,, are random variables with CDF F'y, (t)
anda = (ag,- -+ ,04,)issuchthata; > 0and ) " | @; = 1.Then

Z aiFXi (t)
=1

is a CDF of a random variable X which is called the (aq, - - - , ;) mixture of X1, Xo, -+ -, X,

In the previous example we had a (1/2, 1/2) mixture of X; = 0 (a discrete RV) and X a uniformRV on [0, 1] (a
continuous RV).
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3.5 Devil’s staircase

We construct here a CDF with remarkable properties

e [F'(t) has no discontinuities (no atoms)

® F(t) doesnot have a density, that is F'(t) cannot be writtenas F'(t) = [i° f(t)dt.

The construction is based on the Cantor set and F' is defined iteratively.

® Set Fo(t) =1

® Define the function F} to be equal to 3 on [1/3, 2/3] continuous and linear [0, 1] with F(0) = Oand F'(1) = 1.
Then we have | Fi () — Fy(t)| < 3.

® Inthe second step, let F to be equal to § on [1/9,2/9], unchanged on [1/3,2/3], 3 on [1/9, 2/9], continuous and
piecewise linear [0, 1] with F(0) = 0and F(1) = 1.Wehave | F>(t) — Fi(t)| < 3.

® Repeat the procedure now on the interval [1/27,2/27],[7/27,8/27],[19/27,20/27],[25/27,26 /27]....

® Itis not diificult to see, by induction, that | F, () — Fj,_1(t)| < 5 and thus the sequence F;, converges uniformly to
a continuous function F'(t) which is increasing on [0, 1]

Probability Measures and Expectation
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.I: 5/8
1
1/2 =g I

4/8

1/2
) 3/8

2/8

1/4

1/8

—

179 2/9 39 4/9 5/9 6/9 7/9 89 9/9

W | -
W N

=
L

0| o 29 173 243 79 89 1
The iterative construction The function F'(t)

The functions Fy, F1, Fy, F3

The function F'(t) is CDF in good standing. We have P([1/3,2/3]) = Oaswellas P([1/9,2/9]) =P([7/9,8/9]1)=0%
and so on. In particular there are 2" Lintervals of lengths 3% whose probability vanishes. The total lenghts of all the

n—1
interval on which the probability vanishes is thus % + 2 X % + 42% = ZOO 2

n—o 3~ = L. Thusit cannot have a density!

A random variable X with CDF F'(t) is neither continuous (in the sense of having a density), nor discrete and it is called

sometimes a singular continous dostribution. The CDF is called the Cantor’s function or sometime, more poetically, the
devil’s staircase.
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3.6 Quantile functions

Intuitively a p-quantile for aRV X, where p € (0,1),isavaluet € R where the probability that Fix (¢) = P(X < t)
reaches (or crosses over) p. For p = % it is usually referred to as the median. More formally

Definition 3.7 (Quantiles of aRV X.) For p € (0, 1), a p-quantile for the RV X isavalue t € R such that

P(X <t)=Fx(t—)<p and P(X <t)=Fx(t)>p

Remark: Various cases are possible

Quantiles of various orders

F(x)

® qistheunique p-quantile for p (F'x is strictly 1+ 'ﬁ
increasing at a)

® )isthe unique g-quantile (but there is an whole
interval of ¢ which share the same quantile b!).

® Theinterval [c, d] are all - quantiles (because F'x el ! :
is locally constant). 23 R ;
el |
G : | ‘
O—J' . —— . —
a b
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We now make a choice to make it unique (other conventions occur in the literature).

Definition 3.8 (Quantile function for a random variable X) For a RV X with CDF F'(t) we define the quantile function
of X,Q :[0,1] — Ras

Q(p) = min{t : F(t) > p}

with the convention that inf ) = +oc0

Remark:

® () iswell defined since F’ being increasing and right-continuous implies that

{t : F(t) > p} = [a,00)

and thus the mimimum exists.

® (Q(p)isap-quantilesinceif s = Q(p) then F'(s) > pand,foranyt < s, F(t) < p.Therefore F'(s—) < p.Infact
this shows that Q(p) is the smallest p-quantile of X.

e Ifwehad picked Q(t) = inf{t : F(t) > p} this would have given us the largest p-quantile (a fine, and common,
choice as well).

Probability Measures and Expectation
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F(x)

Theorem 3.3 (Properties of the quantile function) The 11 /-—
qguantile function Q(p) satisfies the following properties

p) isincreasing.

Q
QF () < /
F(

QW) 2 2SR
4' Q(p_) = Q(p) and Q(p—l—) exists. That is Q is left Figure 3.6.7: Graph of the distribution function
continuous. 2

1
Proof. K

1. 1fp < gthen Fincreasing impliesthat {¢ : F(t) > q} C
{t : F(t) > p}andthisimpliesthat Q(q) > Q(p).

2. By definition Q(F (t)) is the smallest s such that F'(s) > N —l
F(t).Thus Q(F(t)) < t. o

Figure 3.6.8: Graph of the quantile function
3. Q(p) isavalue s such that F'(s) > pandthus F(Q(p)) >
D. Flat portions of F'(t) become jump for Q(p)
and vice-versa.

4. This holds because F'is right-continuous.
Probability Measures and Expectation
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3.7 Application: Construction of probability measures on IR

The most important property of quantile is the following property which shows that () is a form of functional inverse for

F.

Theorem 3.4 We have

Proof.

e IfQ(p) < tthensince Fisincreasing F'(Q(p)) < F(t).But by Theorem 3.3,item 2. F'(Q(p)) > pandthus p <
F(t).

® Converselyifp < F(t) then,since @ isincreasing, Q(p) < Q(F'(p)) < pwhere the last inequality is from
Theorem 3.3, item 3.

L],
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We turn next to constructing all probabilities on IR. To do this we first need to construct at least one.

Theorem 3.5 (Lebesgue measure on [0, 1]) There exists a unique probability measure Py on [0, 1] with its Borel o-
algebra such that

P(la,b])) =b—a

The measure P, is the distribution of the uniform random variable on [0, 1] with PDF

f(t):{ 1 0<z<1

0 otherwise

and CDF
0 =<0
Fit)=< =z 0<z<1
1 z>1

Proof. Go and take Math 623....
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Equipped with this we can now prove

Theorem 3.6 Any probability measure P on R has the form
P == PO O Q_l

where P, is the Lebesque measure on [0, 1] and @ is the quantile function for F'(t) = P((—o0,t]).

Proof. By definition of the image measure (see Theorem 3.1), P is a probaility measure, and from the fact that
Py(]0,a]) = awe get, using Theorem 3.4

and we are done since the CDF determines the measure P uniquely. [l

Another way to interpret this result is that we have constructed a probability space for any RV with a given CDF. Namely
we constructed a probability space (here (2, A, P) = (|0, 1], B, Py)) (here P) is the Lebesgue measure on [0, 1] and

amap X = @ (the quantile function) with @ : [0, 1] — R.
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3.8 Simulation

In computers are built-in random number generators which generate a uniform RV on [0, 1], that a RV whose distribution
is Po.

Inverse method to generate Random Variables:

To generate a RV X with PDF F'(t):

® GeneratearandomnumberU.IfU = u

o IfU = uset X = Q(u)where @ is the quantile function for X

Example:
® |f X hasan exponential distribution, then F'(t) = f(f de Mds=1—eMandQ(p) = —+ In(1 — p)
® If X isuniformon{1,2,--- ,n} thenthe quantile function is the function Q(p) = [np|.Recall [z] is the smallest

integer equal or greater than .

® |f X isanormal RV thenthe CDF |sF f \/_

exists excellent numerical routine to compute it. This can be used to generate normal random variables.

—1 has no closed form, but there

The inverse methods has its limitation and we will learn other simulation methods later on.
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v Code

import numpy as np B
import matplotlib.pyplot as plt
from scipy.special import ndtri # quantile

uniform = np.random.rand(1000000) # gener
dataexponential = - np.log(l-uniform) # qu
datanormal = ndtri(uniform) # quantile
datadiscreteuniforml0 = np.ceil (1l0*unifor

# Create a histogram
hist, bin edges = np.histogram(dataexponen
# Adjust the number of bins as needed

# Calculate the PDF from the histogram
bin width = bin edges[1l] - bin edges[0]
pdf = hist * bin width

# Plot the empirical PDF
plt.bar(bin edges[:-1], pdf, width=bin wid
plt.xlabel('X-axis')
plt.ylabel( 'PDF')

plt.title('Empirical Probability Density F
plt.show()

Probability Measures and Expectation
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Empirical Probability Density Function
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3.9 Homework problems

Exercise 3.1

1. Suppose Y is a real-valued random variable with a continuous cdf Fy- (t) and probability distribution PY on
(R, B). Show that the random variable U = Fy (Y") has a uniform distribution Py on [0, 1] (i.e. Lebesgue
measure).

2. In Theorem 3.6, using the quantile function () for a given a CDF F’ we constructed a random variable X :
(10,1], A, Py) — (R, B) (P, is Lebesgue measure) whose CDF is F'. In other words we showed Q (U ) has CDF
F.
Use this fact and part 1. to construct a random variable X' : ([0, 1], B, Py) — (R, B) such thatis CDF is F..

Exercise 3.2 Show that the function X(w) = {%—‘ defines a geometric random variable with success probability
p on the probability space (2, A, Py) (where P is Lebsegue measure. (Or in other words if U is uniformon [0, 1]

then {1;((11__5))-‘ has a geometric distribution, which provides an easy way to generate geometric random variables on a

computer). Provide a code toillustrate this, including the empirical distribution.

Hint: There is a natural relation between the CDF of exponential and geometric random variables.
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Exercise 3.3 Some notations:

® A probability measure P on the measurable space (Q, .A) is called diffuse if P has no atoms.

® Two probability measures P and ) on (2, .A) are called singular if we can partition 2 = Qp U Qg (with Qp N
Q) = 0)suchthat P(Qp) = 1land Q(Qg) = 1.

® The set of all probbaility measures on (€2, .A) is denoted by P(£2). Itis a convex set: if P, Q € P(£2) then R =
aP + (1 — a)Q € P(Q)forany a € [0, 1]. We say then that R is a mixture of P and Q.

Show the following

1. Show that any probability measure P can be decomposed as a mixture of two singular atomic measure P, and
diffuse measure P;.

2. Suppose P is a probability measure on (IR, B) with CDF F(t). Describe the decomposition of the measure P into
an atomic and diffuse measure in terms of the CDF F', thatis write F' = F,, + Fj.

3. Suppose P is a diffuse measure on (R, B)and A C Ris any subset with P(A) > 0.Show thatforany0 < ¢ <1
there exists aset By C A suchthat P(B;) = tP(A).
Hint: Let B; = A N (—o0, t]. Study the function h(t) = P(B).

Probability Measures and Expectation
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Exercise 3.4

® Prove that the Cantor function (a.k.a devil’s staircase) given in Section 3.5 is continuous and that this defines a
diffuse probability measure P.

® |et C be the Cantor set obtained by removing from [0, 1] the intervals (1/3,2/3) and (1/9,2/9) (7/9,8/9)
and so on. If Py is the Lebesgue measure on [0, 1], show that Py(C') = 0 and that yet C has the same cardinality
as [0, 1]. Hint: One option is to use the Cantor function.

® Show that the Lebesgue measure on [0, 1], the Cantor measure, and any atomic measure are all singular.

Probability Measures and Expectation




Exercise 3.5 In this problem you should write a code, run it, including a visualization of your result. (The use of
ChatGPT or similar tools to help you wirte the code is encouraged.) We suppose the quantile function of the normal

random variable with parameter (,u, 0‘) = (O, 1) is known. For example in python

from scipy.special import ndtri # quantile for the normal RV

Calling random numbers (as many as needed) and using the quantile function ndtri write a code which generates a
mixture of 3 normal random variables with parameters

(H1,01) = (=2,.4), (p2,02) =(0,.3), (ps,03) =(3,1)

with mixing parameters (2/7,4/7,1/7).
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4 Integration with respect to a
probability measure

Given a probability space (€2, A, P) and arandom variable X : 2 — R how do we define the expectation of X for
general random variables?

There are 2 parts in the theory. A general theory using the measure P from which we deduce a more practical way which
uses the probability PXonR (the only thing we really know how to handle...)

Probability Measures and Expectation



4.1 Definition of the expectation (a.k.a the integral)

We start by giving a definition of expectation for an arbitrary random variables. The definition is a bit rigid and may seem
at first sight slighlty arbitrary but subsequent analysis will show that this is a good choice.

Definition 4.1 (Definition of expectation) Let (Q, A, P) be a probability space.

1. Suppose X is asimple RV (i.e., it takes finitely many values) then X = Z;‘il bj 1Bj (in canonical form!). We define
M

E[X] =) b;P(B)) (4.1)
j=1

2. Suppose X is an arbitrary non-negative RV (i.e. X(w) > Oforallw € ). Then using the functions d,, given in
Theorem 2.4 consider the simple RV X,, = d,, o X and define

E[X] = lim E[X,] where the limit allowed to be + oo (4.2)

n—oo
3. For an arbitrary RV X, write X = X, — X_ and define

EX{|-FE[X_ ] fEXi|<xorE[X_|<oo
-]

ElX] = { undefined if F|X,] =ocand E[X_] = (4.3)
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Remarks Let us make a number of comments on the definition.

1. if the simple RV is not in canonical form, i.e. X = Zf\il a;14,,then B[ X] = > a;P(A;). The argument is tedious
but not difficult, take N = 2 then consider the sets

By=ATNAS, By =A1NAS, By = AN Ay, B3 = A1 N A,
and the values
bp =0,b; = ay,by = as,b3 = a; + as
Then

E[X] = blp(Bl) + b2P(Bz) + bzP(Bg)
= a1P(A1 M Ag) —+ CL2P(A§ M Ag) + (a1 —+ CL2)P(A1 M A2) = alP(Al) = CL2P(A2)

You can do a similar proof for arbitrary IV by an inductive argument.

2. The preceeding remark implies that if X and Y are simple random variables then E[X + Y] = E[X] + E[Y], this

is immediate form the the formula which does not use the canonical form and so we have linearity of expectation at
least for simple random variables.

3. If Z is a nonnegative random variable then Z > 0 implies that E[Z] > 0.Indeed if Z = >, bilp, isin canonical
formthenb; > Oandto E[Z] > 0.

Probability Measures and Expectation




53

4. 1f X and Y are simple and nonnegative and X < Y then E[X] < E[Y]. This follows from the linearity by writing
Y=X+(Y—-X)andsoE|Y| = E[X]| + E[Y — X|.SinceY — X > 0then E[Y — X] > 0andso
E[X] < E}Y].

5. The function d,, are increasinginn, d,,(z) < d,,1(z) and this implies that X,, < X, and thus by monotonicity
BX,] < X,

Therefore the limit in Equation 4.2 always exists but could well be equal to 4-00.

6. The definition in item 2. seems somewhat arbitrary since it is using a particualr choice of simple function d,,. We will
show soon that this choice actually does not matter.

/. For general X we allow the expectation to equal to +o0 (if E[X ] = oo]and E[X_] < oo])or (—ocoif B[ X, ] <
ooland E[X | = o0|).Ifboth E[X ;| = oo]and E| X _| = oo| the expectation is undefined.

8.1f X : Q — Risisextended real-valued (the values =00 are aalso allowed) we can still define expectation in the

same way. If X is infinite on a set of positive measure then expectation will be infinite or not defined.

Definition 4.2 A measurable function is integrable if E[X | is finite or equivalently if E[| X'|] < oo or equivalently if

The set of integrable RV is denote by £ = L1 (2, A, P).

Probability Measures and Expectation




54

4.2 Monotone Convergence

We extend monotonicity to general non-negative RVs.

Theorem 4.1 (Monotonicity) If X > Othen E[X] > 0.1f0 < X < Y then E[X]| < E[Y].

Proof. If X > 0sois X,, = d,, o X and therefore E|X| > 0.1f0 < X < Y then X,, < Y, andso E[X,,]| < E|Y,]
andthus E[X| < E[Y].

The next theorem (Monotone convergence Theorem) is very useful in itself and, in addition, the other convergence
theorems for expectations derive fromit.

Theorem 4.2 (Monotone Convergence Theorem) Suppose X, are non-negative and increasing: 0 < X, (w) <
Xni1(w). Then X (w) = lim,, ,, X, (w) exists and

lim E[X,] = E[X] = E[lim X,,]

n—oo n—oo

Proof. Since X, (w) is an increasing the sequence, the limit X (w) € R exists and E[X| exists. By monotonicity, see
Theorem 4.1, we have X, < X, 1 < X and therefore lim,, ., F[X,,] exists and we have

lim E[X,] < E[X].

n—oo

We need to show the reverse inequality: lim,, ,., F[X,,] > E[X].To prove this we need to show the following claim.
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Claim: Suppose Y issimpleand Y < X thenlim,, .., E[X,] > E[Y].
Indeed if the claim is true lim,, .o, E[X,] > E[d}, o X] forall k and taking the limit K — oo concludes the proof.

To prove the claim take b > 0 and consider theset B = {X > b} andset B,, = {X,, > b}.Since B,, /' B we have
P(B,) — P(B) by sequential continuity. Furthermore

Xplp > X,1p, > blp,
which implies, by monotonicity, that E[ X, 15] > bP(B,,) and takingnn — 00 we obtain

lim E[X,15] > bP(B). (4.4)

n—oo

Now this inequality remains true if we consider the set B = {X > b} instead of B. To see this, take an increasing
sequence b,, / bsothat{X > b,,}  {X > b}.Indeed apply Equation 4.4 (with b replaced by b,,,) and then used
monotonicity.

To conclude note thatif Y = Zﬁl a;1 4, (in canonical form) and X > Y then X > a; on A;. By finite additivity, using
Equation 4.4, we have

lim B[X,] =Y lim E[X,14] > Y a,P(4) = E[Y]
n—oo

n—o0

and this concludes the proof. [
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4.3 Further properties of the expectation

Remark: The monotone convergence theorem shows that if X, is any sequence of simple function increasing to X then

E[X] = lim, E[X,,].

Theorem 4.3 (Linearity of Expectation) If X and Y are integrable nonnegative random variable then foranya > 0
and b > 0 we have

E[aX +bY] = aE[X] + bE[Y]

Proof. If X and Y are simple this is true by the remarks after Definition 4.1. For general X and Y pick X, and Y,, simple
functions which increase to X and Y respectively (e.g. X,, = d,, c X orY,, = d,, o X).Then

ElaX, + bY,] = aE[X,] + bE[Y,].

Now by the Monotone Convergence Theorem aX,, + bY,, increasestoaX + bY and thus takingm — oo concludes
the proof. [

We will extend the linearity of expectation to general function later after we have developed more theory.
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4.4 Negligible sets and completion of a measure space

Let us discuss here a bit carefully sets of probability 0.

Definition 4.3

® Ameasurableset A € Ais negligible with respect to P (or a null set for P) if P(A) = 0.

® Aset A (not necessarily measurable) is negligible with respect to P if there exists B € A such that
A C Band P(B) = 0(i.e. Ais asubset of set of meaasure 0).

It is a fine point of measure theory that negligible set need not be measurable. This is true for example for the Borel o-
algebra and Lebesgue measure (see your Math 623 class for more details) and this related to the existence of non- Borel
measurable sets.

There is a standard procedure, which is called the completion of a probability space to deal with such issue. The ideais to
extends the o-algebra and the probability measure P in such a way all negligible sets are measurable and without

changing the probability assigned to sets of positive probability.
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The idea is to define, with A/ denoting all the null sets of A, a new o-algebra

A={AUN : Ac A N c N}

and a new probability measure

P(AUN) = P(A).

It is not terribly difficult to check that Aisa o-algebra and Pisa probability measure. The probability space (Q, A, 1_3)
is called the completion of (€2, A, P).

For example the completion of the Borel o-algebra on [0, 1] with the Lebesgue measure is called the Lebesgue o-algebra.

This does not play much of a practical role in probability, but at a few occasions it may be convenient to assume that the
space is complete.
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4.5 Almost sure properties

Generally speaking, almost sure properties are property which are true except possibly on a set of measure 0 (or on a
neglgible set).
For example

® Wesaythattwo RVs X and Y are equal almost surely if
PX=Y)=P{w : X(w)=Y(w)}) =1
thatis X and Y differ on a negligible set. We write X = Y a.s.

® If X = Y almostsurely then E[X]| = E[Y].Indeed then the simple approximations satisfies X,, = Y, almost

surely. If two simple random variables are equal almost surely then their expectations are equal (use their canonical
form to see this).

® We say, for example, that X > Yasif P{w : X(w) > Y(w)} = 1.

® Wesay X, converges to X almost surely if there exists a set of measure 0, IV, such that forallw € \ N we have

lim, X, (w) = X (w).
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An example where almost sure property occur naturally is the follwoing result

Theorem 4.4 Suppose X > 0.Then E|X| = Oifandonly X = Qa.s

Proof.1f X = O as.then E[X] = Obecause E[0] = 0.Converselylet A, = {w : X (w) > 1}.Then X > X1, >
%11471 and thus by monotonicity

0=E[X] > B[X1,] > P(4,)

and thus P(A,,) = Oforalln.But A,, /* {X > 0} and thus by sequential continuity P(X = 0) =1. [

Some other examples will be used later, see in particular Exercise 4.1.
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4.6 Fatou's Lemma

Our first convergence theorem was the monotone convergence theorem Theorem 4.2. Our second convergence theorem
still deals with non-negative function random variables and is called the Fatou’s lemma.

Theorem 4.5 (Fatou’s Lemma) Suppose X, are non-negative random variables. Then

Eliminf X,,| < liminf E[X,,]

Proof.Set Y,, = inf,,,~,, X,,. ThenY,, <Y, ; andliminf,, X, = lim, inf,,>,, X,, = lim,, Y,,. We can use the
monotone convergence theorem for the sequence Y, to get

Elliminf X,,| = lim E[Y,,] . (4.5)

Also form > nwe have Y,, = infy-,, X} < X, and so by monotonicity E|Y,,| < E|X,,] and thus

E[Y,] < inf E[X,,]. (4.6)

m>n
Combining Equation 4.7 and Equation 4.6 we find
Elliminf X,,] < lim inf E[X,,] = liminf E[X,] (4.7)

n m>n
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Variation on Fatou’s Lemma: One can deduce directly from Fatou’s Lemma the following results

1.1f X,, > Y andY isanintegrable RV then E[lim inf, X,] < liminf, E[X,].
Proof: Apply Fatou’s Lemmatothe RVY,, = X,, — Y whichis nonnegative.

2.1f X,, <Y andY isanintegrable RV E[lim sup,, X,] > lim sup, E[X,]. Proof: Apply Fatou’s Lemma to the RV
Y, = Y — X,, whichis nonnegative.

3. We shall use these versions of Fatou’s Lemma to prove our next big result, the Dominated Convergence Theorem.

n»

4, Intuitively the Fatou’s Lemma tells us that “probability can leak away at infinity”” but you can never “create” it. For
example cosnider the following example with 2 = [O, 1] and P the Lebesgue measure.

Then we have X,, — 0 a.s. but also
1
E[X,| =nP(]0, ﬁ]) = 1 for all n.

and thusso E[lim,, X,,] = 0 # 1 = lim, E[X,,].
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4.7 Dominated convergence Theorem

Theorem 4.6 (Dominated convergence theorem) Suppose { X, } is a collection of random variable such that

1.lim, X, (w) = X (w) forallw
2. There exists an integrable random variable Y such that | X,,| < Y for all n. Then

lim E[X,] = B[X] = B[lim X,

Proof. We derive it from Fatou’s Lemma. The condition | X,,| < Y meansthat —Y < X,, <Y
Applying Fatou’'slemmato Y — X,, > 0 we find that

Elliminf(Y — X,))] <liminf E]Y — X,;]

Using thatlim inf,,(—a,) = — lim sup,, a,, andlim,, X, = X we find

Elliminf(Y — X,,)] = E|Y] + E|liminf(—X,)] = E|Y] — E|limsup X,,)] = E|Y] — E|X]
andliminf F|Y — X,;,] = E[Y]| — limsup,, E|X,,] and thus we have lim sup,, E'| X,,| < E[X]. Applying Fatou’s
to X, + Y > Oyieldsinasimilar manner E[X] < lim inf, E[X,,] (check this). Therefore we have
limsup, E|X,| < E[X]| < liminf, E|X,]. Thisprovesthatlim, £ X, | = E[X]|. [.
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A special case of the dominated convergence theorem is frequently used

Theorem 4.7 (Bounded convergence theorem) Suppose {Xn} is a collection of random variable such that

1.lim, X, (w) = X (w) forallw
2. There exists an integrable random variable ¢ such that | X,,| < cfor all nn. Then

lim E[X,] = B[X] = B[lim X,

Proof. Y = cisintegrable so the result follows from the dominated convergence theorem. L.

Remark on almost sure versions:

Monotone convergence theorem, Fatou’s lemma and dominated convergence theorem has also almost sure versions.
For example if Y is integrable and | X, | < Y almost surely and X,,(w) — X almost surely thenlim,, E[X,,| = E|X]

. To see this define

N ={w : | X,(w)| <Y(w)foralln} and M ={w: li7£an(w) = X(w)}

Then P(M¢) = P(N°¢) = 0.We can modify the RV on sets of measures of 0 in such a way that the statements hold for
allw:set X,, = 0,X = 0,Y = 0on M¢ U N€ Then the properties holds for all w and since the expectations do not
change we are done.
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4.8 The Expectation rule (very useful for computations)

Computing the expectation of RV X (or h(X')) can be done using either P (good for proofs) or PX (good for
computations). As we will see this is an abstract version of the change of variable formula from Calculus!

Notation Another widely used (and convenient) notation for the expectationis E[X] = [, X (w)dP(w).

Theorem 4.8 (Expectation rule) Suppose X isaRV on (2, A, P) taking value in (F', F) and with distribution P*X.
Leth : (F', F) — (R, B) be measurable.

1. h(X) e £Y(Q, A, P)ifandonlyifh € L1(F, F, PX).

2. If either h > 0 or h satisifies the equivalent conditions in 1. we have

E[h(X)] = /Q h(X (w))dP(Q) = / h(z)dP* (z)(4.8)

F

3. Conversely suppose () is a probability measure on (F, .7:) such that

EIhX)) = [ hz)dQ()

F

for all non-negative measurable h. Then () = pPX.
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Proof. The probability distribution of X, P%X,is defined by P* (B) = P(X !(B)). Therefore
E[15(X)] = P(X € B) = PX(B) / 15(2)dP ()
F
This prove Equation 4.8 for chracteristic functions, and by linearity Equation 4.8 hold for simple functions h.

If h : F' — Ris positive then pick a sequence of simple function h,, such that h,, /" h.Then

E[h(X)] = E[lim h,(X)] = lim E[h,(X)] by the MCT in 0

n—oo n—oo

= 1i_>m hno(z)dP*(z) because h, is simple.
n—oo F

= / lim h,(z)dP*(z) byMCTinF
F

n—,oo

= /F h(z)dP* (z)

This proves Equation 4.8 for h non-negative. If we apply this to |h| this proves part 1. of the Theorem. For general h, write
h = h — h_ and deduce the result by substraction.

For the converse initem 3. just take f = 14 to be a characteristic function. Then

P(X € A) = E[14(X)] = / 1,(2)dQ(z) = Q(A).

F

Since A is arbitrary, the distribution of Xﬁ?&gability Measures and Expectation
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Consequences:

® |f X isareal-valued random variable, we can compute its expectation as doing an integral on R

o |f X isreal-valued and h : R — Ris a (measurable) function (e.g. X, or €% or - - -. Then we
have

E[X] = /R zdP* (z) E[X"] = /R z"dP* (z)

An alternative would to compute the distribution PY of the Y = X™ and then we have

E[X") = BY] = / ydP" ()

® Generally we will compute E'|h(X)] using the distribution of X ...

® But often we will work backward. We will use the change of variable formula to compute the distribution of Y (see

item 3.in Theorem 4.8). Checking the equality for all non-negative function or all characteristic function is not always
easy so we will show that one can restrict onesleves to just nice functions! (Later..)

Probability Measures and Expectation




68

4.9 Examples

Example: gamma random variable. The gamma random variable X has density

{ b7 _pa-le=Br 4 >0

fz) =

IN()
0 x <0

and the Gamma function I' («) given by

I'«) :/ e de .
0

Let us compute E[X‘S] for some d > 0. Using the expectation rule we find
00 o T 00 a+d
E[X°] = / x° P e Prdy = Pla+9) i)/ T 2t te Py
o T(o) (@)’ Jo T(a+9)

=1

7

If § = nisaninteger thenwe canusethatI'(a + 1) = al'(«) andso E[X"| = O‘(O‘H)“B‘f*(n_l)
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Example: power of an exponential random variable and Weibull random variables

Let us compute next the distributionof Y = X9 when X isan exponential random variable (i.e. a Gamma random
variable & = 1). For any non-negative function h we have, by the expectation rule

E[h(Y)] = E[h(X°%)] = /0 " h(a®) e P da

and with the change of variabley = 2°, dy = dz°!dz we find
> IB 1—1 —ﬂy%
B = [ h) Sy ey
0

from which we learn that power of exponential random variables are Weibull random variables.

By a similar computation we see that taking a random vairbales to some poistive power transform the family of Weibull
random variables into itself.
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4.10 Location and scale

We investigate how the pdf of a random variable transform under a linear transformation X — Y = aX + b.

Theorem 4.9 Suppose the real-value RV X has the pdf fx (t) thenY = aX + bhas the pdf fy (y) = |71L|f(yT_b)

Proof. For a change we prove it directly using the expectation rule. The pdf fy (y) must satisfy, for any nonnegative h,

E[h(Y)) = / h(y) fr (v)dy

We rewrite this using the pdf of X using the expectation rule again and the change of variabley = ax + b

o0

BINY)| = BbaX +0)] = [ htoa+D)fx(@de = [ b (y - b) Ly

o o a /) |al
and therefore we must have fy (y) = ﬁfX (yT_b>

Remark Alternatively you can prove this using the CDF, for example fora > 0

FY(t)=P(Y§t)=P(aX+b§t):p(X§y;b) _ 7 (y—b)

and then differentiate. Do the case a < 0.
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Location-scale family of random variables: A family of random variables parametrized by parameter o € R (=location)
and 8 € (0, 00) (=scale) is called a location-scale family if X belonginging to the family implies thatY = a X + balso
belong to the family for any parameter a and b. If f has a density this is equivalent to require that the densities have the

form

l . z—«
fa,ﬂ(fﬁ) = Ef( 3

)

for some fixed function f ().

—(z—p)? /202
® Normal RV are scale/location family with parameters u (=location) and o > 0 (=scale) and f(w) = %

—_

® The Cauchy distribution with pdf L 2 is also a location scale family.

Br TR

=

® Some family of distribution are only a scale family. For example the exponential random variables with density
f(z) = %e_x/ﬂ are a scale family with scaling parameter (3.
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4.11 Homework problems

Exercise 4.1 Show the following facts:

1. Show that if X = 0 almost surely if and only if E[X 1 4] = O for all measurable sets A.

2. Suppose X is arandom variable with E[X] < co.Show that X < oo almost surely.
Hint: Consider the set B, = {X > n}.

Exercise 4.2 (infinite sum of random variables) Suppose X, is a collection of random variables defined on the
probability space (2, A, P).

1. Prove that if the X, are all nonnegative then E[> > X;] = > "1 | E[X}].
Hint: Use the monotone convergence theorem.

2. Provethatif > | E[|X|]isfinitethen E[> -, Xu] = Y1 E[Xk].
Hint: Consider theRVY = ) | X}| and use the dominated convergence theorem and Exercise 4.1, part 2.
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Exercise 4.3 (Building new probability measures using densities) Suppose Y is a random variable on the probability
space (2, A, P)withY > Oalmostsurelyand E|Y] = 1.

1. Define @ : A — Rby Q(A) = E[Y'14].Show that Q is probability measure on (2, A, P). We denote by Eg
the expectation with respect to ().

2. Show, using the definition of the integral, that Eg[X] = E[XY].

3. Showif B € Aissuchthat P(B) = 0thenwe have Q(B) = 0.(We say then that @ is absolutely continuous
with respect to P.)

4. Show that, in general Q(B) = 0 does not imply P(B) = 0 but thatif Y > 0 almost surely then Q(B) = 0 does
imply P(B) = 0.

5. Assuming Y > 0 almost surely show that % is integrable with respect to () and show that the measure R defined
by R(A) = Eg[+14]isequal to P.
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Exercise 4.4 (the log normal distribution)

1. Suppose X is a normal random variable. Show that the random variable Y = eX has the distribution with the
following density

1 e—(log(x)-p)*/20" 2 >
0 x <0

The random variable Y is called the log-normal distribution with parameter p and a2

2. Show that E[Y"] = €"#*27° ™ Hint: Do the change of variables y = log(z) — pin the integral for E[Y"].

Exercise 4.5 (Cauchy distribution)

1. Suppose X is a random variable with density fx (z).Express the density fy of Y = % interms of fx.

2. A Cauchy RV with parameters (v, 8) has the pdf f(z) = ﬂlﬂ 1+(a:—1a)2/,82'

® Show thatif X isaCauchyRVsoisY = aX + band find how the parameters transform.
® Show that if X has a Cauchy distribution with & = 0 then % has again a Cauchy distribution.

® Show that the mean and the variance of a Cauchy RV are undefined.
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Exercise 4.6 Consider the RV X with CDF given by

0 f < =1l
F(t)=1< 1/4+3(t+1)? —-1<t<0
1—e®  t>0

Compute F|X] and Var(X).
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5 Inequalities
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5.1 Jensen inequality

Some facts about convex functions: Recall that a
function ¢ on R% is convex if

dlaz +(1-ay) < ad(z) + (1 - )dly)  *

forallz,yandall0 < a < 1.This means that the 2
line segment between (z, ¢(x)) and (y, ¢(y)) lies :

Convex Function with Supporting Hyperplane

above the graph of ¢(z) for z lying on the line P e ———

-+ Line segement between (x, flx)) and (y, f{y))

Segement between m and y. ”’,/’ === Suppeorting Hyperplane

@ Tangent Point xp

T T T T T
-1 0 1 2 3 4

An equivalent description of a convex fuction (“obvious” from a picture, with a proof in the homework) is that at any point
oo we can find a supporting hyperplane: that is there exists a plane l(w) inIR™ x R which is tangent to the graph of ¢ at
xg (and thus l(xz) = ¢(xo) + ¢ - (x — o)) and such that the graph of ¢ lies above [ for all z, i.e. we have ¢(x) >
$(x0) +c- (x — zo) forallz € R4,

If @ is differentiable at x( the plane is given by the tangent plane to the graph at ¢, we have

$(z) = ¢(x0) + V(o) - (x — o)

If f@is twice continuously differentiable then ¢ is convex if and only if the matrix of second derivative D2qb(:c) is positive
definite for all x.
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Theorem 5.1 (Jensen inequality) If ¢ : R — R is a convex function then

Elp(X)] = ¢(E[X])

provided both expectations exist, i.e. E[| X || < coand E[|¢(X)|] < oo.

Proof. Choose xy = E[X | and pick a supporting hyperplane [(x) at z( so that for any x

¢(z) = #(E[X]) + c(z — E[X])

By the motonicity of expectation we obtain

El¢p(X)] = ¢(E[X]) + cE|[(X — EX])] = ¢(E[X]).

Examples

® Since f(x) = x?is convex we have E[X]? < E[X?].

® Since f(z) = €@ is convexforany o € R we have E[e®X] > e*FIX]

Remark The theory of convex functions is very rich and immensely useful!
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We will need the following slight generalization of Jensen inequality

Theorem 5.2 If ¢ : RY — Risaconvex functionand X = (X7, -+ , X4) isaRV taking values in R%. Then we have

Elp(X)] = ¢((E[X4],-- -, E[Xd]))

provided both expectations exist.

Proof. Same proof as Jensen.

Examples The functions ¢(u, v) = uPv' " and ¢ (u, v) = (u® + v°)? are concaveif 0 < b < landu > 0,v > 0,
i.e. —¢ and —1) are convex.

It is enough to compute the derivatives, for example for ¢

bub~1yl—t 5, (bb—1u 2t b1 —b)ub vt
Vo = ((1 — b)ubvb) D¢ = ((1 — b)bub_lfv_b —b(1 — b)ubvbl)

and D? ¢ is negative definite.
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5.2 LP-norm of random variables

Suppose (€2, A, P) is a probability space and X is a real-valued random variable.

Definition 5.1 (L”-norms) Given a random variable X and 1 < p < oo we define
|Xl, = B[ X[P)> forl<p< oo
and
| X||oo =inf{b e R, : | X| < ba.s}

and || X||,, is called the LP normof aRV X.

Remarks

® |tiseasytocheckthat
| X|l, =0 = X = 0 almost surely,

leXllp = cll Xl

® || X||, < comeansthat | X |Pisintegrable (if 1 < p < co)and that X is almost surely bounded (if p = c0). Often
| X || oo is called the essential supremum of X .
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5.3 Cauchy-Schwartz, Hélder, Minkowski

Theorem 5.3 (H6lder and Minkowski inequalities)

1. Hélder: Suppose 1 < P, q < o0 aresuch that% + % — 1 then we have

[ XY |lr < [ XAlp][Ylq -
Special case is the Cauchy-Schwartz inequalityp = q¢ = 2

I XYl < 1 X]2l[Y[l2-

2. Minkowski: For 1 < p < 0o we have
X + Y, < [|X[lp + [[¥],-

(a.k.a triangle inequality)

Proof. The proof is ultimately a consequence of Jensen inequality (there are many different proofs but all relies in one way
or the other on convexity). Our proof use Jensen inequality and the concavity of the functions

d(u,v) = vPv'™®  and P(u,v) = (u® + vb)% (5.1)

forb € (0,1)andu > 0,v > 0.
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Once this is done let us turn to Holder inequality:

® Ifp=1andq = cothenwehave | XY | < |X]|||Y ]| almost surely and thus by monotinicity || XY ||; <
X2 11Y oo

® The concavity of ¢ in Equation 5.1 implies that for non negative random variables U and V' we have
E[UV'"? < E[UPPE[V]'?.

If1 < p < q < ocothenwesetb = Zl)andl —b= %andU = | X[Pand V = |Y|% Then

E[X||[Y]) = E [(X]P)» (Y|} < BIXP): B[Y]]}

For Minkowski

® |f p = oo Minkowskiinequality is easy to check.

® The concavity of ¥ in Equation 5.1 implies that for non negative random variables U and V' we have

E[(U* + V*)#] < (E[U] + E[V]")"" .

which implies Minkovski if we take b = ;—) andU = | X|PandV = |Y|P.

L.
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Definition 5.2 (L? spaces) For 1 < p < oo we define
LP(2,AP)={X:Q—=R,|X], < oo}
and the quotient space
LP(Q,A P)=LP(Q,A P)/ ~

where X ~ Y means X = Y a.sisan equivalence relation.
The Minkowski inequality shows that the space LP(Q, A, P) is a normed vector space.

Theorem 5.4 The mapp — || X ||, is an increasing map

® If||X||oo < cothenp — || X||,iscontinuouson |1, 00).

® If || X||lcoc = cothereexists g < oo suchthat || X ||, is continuouson [1,¢q) and || X ||, = +ocoon (g, ).

Proof. Homework

Probability Measures and Expectation




85

Examples:

® |f X has a Pareto distribution with parameter a and x then its the CDF is

F(t)=1- (—)a for t > x;

and F'(t) = Ofort < x.

[e%

The pdfis f(z) = —= and we have

= _a P
E[|X|P] = E[X?] = / azlz O Py — { 25Ty p<a
+o00 a>p

o
® |f X has anormal distribution (or an exponential, gamma, etc...}then X € LPforalll < p < cobut X ¢ L*.

® Other norms exists (Orlicz norms) to capture the tail of random variables.
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5.4 Markov, Chebyshev, and Chernov

Another very important inequality is the so-called Markov equality. Very simple and very useful.

Theorem 5.5 (Markov inequality) If X > Othenforanya > 0

ElX]

P(X >a) <

Proof. Using that X is non-negative we have
X > Xlx>q =2 alx>,

and taking expectation and monotonicity gives the result.
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Theorem 5.6 (Chebyshev inequality) We have
P(|X — E[X]| > ¢) <

where Var(X) = E[X — E[X]]is the variance of X.

Var|X]|
2

Proof. Apply Markov inequality to the random variable (X — E[X])? whose expectation is Var[X|:

P(|X — E[X]| > €) = P((X - E[X])* > €

<

E[(X — E[X])Y] _ Var|X]|

62

62

® Chebyshev inequality suggests measuring deviation from the mean in multiple of the standard deviation o =

v/ Var|X]:

P(|X — E[X]| > ko) <

® Chebyshev inequality might be extremly pessimistic

1
k2

® Chebyshev is sharp. Consider the RV X with distributioncP(X = +1) =

E[X]=0and Var[X] = %

P(|X| = ko) = P(|X]|

Zl)zﬁ

1
2k2

1
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Theorem 5.7 (Chernov inequality) We have for any a

Ele”] P(X <a) <inf Ele”]

P(X > a) <inf

Proof. This is again an application of Markov inequality. If £ > 0 since the function e'* is increasing

E [ etX ]
eta

P(X >a) =P >¢€) <

Since this holds for any ¢ > 0 we can then optimize over t. The second inequality is proved in the same manner. [

® Chernov inequality is a very sharp inequality as we will explore later on when studying the law of large numbers. The
optimization over t is the key ingredient which ensures sharpness.

® Thefunction M (t) = E[e!*]is called the moment generating function for the RV X and we will meet again.

® Example: Suppose X is a standard normal random variable ¢t = 0 and o2. Then, completing the square, we have

1 a2 - (90—0215)2 o242 o242
E[etX] — \/T/Gtze 22 dx = /6 22 e 2 =—=e 2
0
. 22, —inf,q (ta—ﬁ) _a
and Chernov bound gives fora > Othat P(X > a) < sup;spe 2 “=e ° 2 ) = e 27 whichturns

out to be sharp up to a prefactor (see exercises).
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5.5 Completeness of L* spaces

The LP spaces are normed vector spaces. It is a nice application of the Borel-Cantelli Lemma and Markov inequality that
these spaces are complete.

Theorem 5.8 (Completeness of L” spaces) The spaces LP(€2, A, P)) are complete normed vector spaces, that is if
{ X, }is aCauchy sequence in L? then there exists X € LP suchthatlim,, ., E[|X,, — X|’] =0

Proof. Let p < o0. If X, is a Cauchy sequence in L?, for any € > 0 there exists N = N (€) suchthatforallm,m > N
we have || X,, — X,,,||, < e Bychoosingej, = 3%3 we can choose a subsequencen; < Mg < - - -such that

1 1
]p - HXnk - Xnk+1Hp < S_k

By Markov inequality we have

1\ _ Bl X, — 2P _ (2)"
P{‘Xnk_anHl’Z?}S : 1 : < 3

ot

Since > -7y P {|Xn, — Xp,iu| = 3¢ } < 00 by Borel-Cantelli Lemma we have

1
P {|Xnk — Xl > oF infinitely often} =0
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It follows that

0

Z | X, — X, | < 00 almost surely
k=1

Therefore the series Y - (X,,, — X

s ) converges absolutely, almost surely. But the partial sum for this infinite

series is

m—1
(Xnk T Xnk+1) — XTL1 T Xn
k=1

m

and thus X, (w) converges almost surely to some X (w). This identifies our candidate for the limit.

To conclude we need to show that X, converges to X in LP. Given € > 0 pick IV so large that that || X, — X ||, < €
forn,m > N (by the Cauchy sequence property). Then by Fatou’s Lemma and the pointwise convergence Xnk to X.
For n large enough we have

E[| X, — XP) < liminf B[|| Xy — Xy, )] < ¢
—00

This shows that X,, — X € LP and therefore X € LP.The last inequality shows that

lim || X, — X], =0

n—oo

and we aredone. []
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5.6 Homework problems

Exercise 5.1

® Prove the one-sided Chebyshev inequality: if X is a random variable and € > 0 then

0.2

o2 + €2

P(X —E[X]>¢) <

where 0 = Var(X).

Hint:SetY = X — E[X]and use Markov inequality for P(Y > ¢€) = P((Y + a)? > (€ + a)?) and optimize
over

® Prove that

® The one-sided Chebyshev inequality is sharper than the Chebyshev inequality for one sided bounds P(X —
E[X] > e).

B The Chebyshev inequality is is sharper than the one-sided Chebyshev inquality for two sided bound P(\X —
EX]| =€)

Exercise 5.2 Prove Theorem 5.4. For the monotonicity use Holder or Jensen. For the continuity let p,, /" g and use the
dominated convergence theorem.
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Exercise 5.3 The Chernov bound has the form

P(X > CL) <e suptzo{ta—lnE[etX]}‘

Show that this bound is useful only if @ > E/|X]. To do this use Jensen inequality to show thatif a < E|X] the
Chernov bound is trivial.

Exercise 5.4 Consider an exponential RV X with parameter \ and density e M for t > 0.

® Compute M (t) = X aswell as all moments E[X"]
® TodoaChernov bound compute sup,~q{ta — In E[e*]} (see also Exercise 4.3).
® Fora > % estimate P(X > a) (which of course is equal to e~*¢!) using

d. Markov inequality.
b. Chebyshev
C. One-sided Chebyshev

d. Chernov
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5 and

Exercise 5.5 (mean and median of a RV) A median m for aRV X is a value m such that P(X < m) >

P(X > m) > 1/2 (see the quantile). For example if the CDF is one-to-one then the median m = F~*(3) is unique.

The median m and the mean . = E/[ X ] are two measures (usually distinct) of the “central value” of the RV X..

® Consider the minimum square deviation min,cgr E[(X — a)?]. Show that the minimum is attained when a =

E[X).

® Consider the minimum absolute deviation min,ecr E || X — al]. Show that the minimum is attained when a is a
median m.
Hint: Suppose a > m then we have

m— a if z>a
z—al—|z—m|=¢ a+m—-2z (>m—-—a) ifm<z<a
a—m ifz<m
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Exercise 5.6 (mean and median of a RV, continued) Our goal is to prove a bound on how far the mean and the median
can be apart from each other, namely that

lw—m| <o

where o is the standard deviation of X . | am asking for two proofs:

® First proof: Use the characterization of the median in Exercise 4.5 and Jensen inequality (twice) starting from |,u —
m)|.

® Second proof: Use the one-sided Chebyshev for X and — X withe = o.

The quantity

S=H""c 1,1
o

is called the non-parametric skew of X and measures the assymetry of the distribution of X.
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6 Radon-Nikodym Theorem
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6.1 L’ spaces and duality

Among the L? spaces, the space L? plays a special role because, on top of beinng a complete normed vector space, it is
also a Hilbert space that is a complete inner product vector space space for the inner product

(X,Y) = E[XY]
and the L? norm derives from the inner product.
IX3 = (X, X)

Hilbert space have all kind of good properties of which we are going to need one in this class.

Definition 6.1 Suppose B is a normed vector space.

® Abounded linear functionall : B — R is a map such that
= [islinear,l(az + by) = al(x) + bl(y)foralla,b € Randz,y € B.
® [isbounded, i.e. there exists a constant C' such that |I(z)| < C||z|| forallz € B.

® The set of linear functional on B is called the dual space B’ of the normed vector space B.

It is not too difficult to show that B’ is itself a normed vector space with ||I|| = SUP£0 Tz -
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Hilbert spaces have the special property to being self-dual. In particular for L? we have

Theorem 6.1 (Riesz-Fisher Theorem) Suppose | : L? — R is a bounded linear functional. Then there exists Y € L?
such that

I(X) =(X,Y)

Proof. What it is easy to see is that

1(X)

(X,Y)
is a bounded linear functional. Indeed linearity is obvious and by Cauchy-Schwartz inequality
1 1
UX)| < B[|XY|] < E[X*2E[Y?]: = |[Y|[| X]|

and thus [ is bounded.

The converse statement that all bounded linear functional must have this form is not very difficult but the proof is long
and does not play a central role in this class and is omitted.
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6.2 Absolute continuity and Radon-Nikodym Theorem

As we have seen in Exercise 4.3 we can build new probability mesures using densities. If P is a probabilty measure and
Y > Oisarandom variable with E[Y] = f Y dP = 1 then we can build a new probabilty measure (Q by setting

Q(A) = E[1,Y] = / 1,YdP

and we have then f XdQ = f XY dP.Theintegral notation makes clear what probability measure is used. Other
conventions are touse Eg[X]| = Ep|X Y| in which the subscript indicates which probability measure we are using to
define the expectation.

Definition 6.2 (Radon-Nikodym derivative) If the probability measure @ has the form Q(A) = E[1,Y]| =
f 14YdP forsomeY > 1 with f Y dP = 1thenwe write

_ 9

Y =
dP

and Y is called the Radon-Nykodym derivative of () with respect to P.

The notion makes sense at the forml level since
dQ
XdQ = X —dP
[ xaa= [ x5
N~
=Y
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The basic question we need to answer is: given tow probability measures P and () when does such aY exist? We can
take clue lookin at set of measure 0, if A is suchthat P(A) = 0then Q(A) = E|[Y 1 4] = 0as well. As we shall see the
converse statement also holds and this motivates the following definition.

Definition 6.3 (Absolute continuity) A probability measure () is absolutely continuous with respect to P, denoted by
Q K Pif

P(A)=0 = Q(A) =0

We have

Theorem 6.2 (Radon-Nikodym theorem) If () < P then the Radon Nykodim derivative Y = % c Lt (P) exists

and is unique: we have
d@
XdQ = | X—dP
/ < / dP

for all non-negative X orforall X € L1(Q).
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Proof. First let us look at the uniqueness. If Y7 and Y5 are two radon-Nikodym derivative then for any set A we have

/1Al/1dP:/1AY2dP or /1A(Y1—Y§)dP:O

from which we conclude that Y7 — Yo = 0 almost surely (see Exercise 4.1).

As for the existence consider the mixture R = #. Clearly we have Q@ < R.For X € L?*(R) let us define the
functionals

I(X) = / XdQ

We show that this is a bounded linear functional on L? (R) Indeed we have by the Cauchy Schwartz inequality

1(X)| = |/Xde < (/deQf < (/X2dP+/X2dQ)% =2 (/X%R)é = V2[|X||z2(r) -

Therefore the Riesz-Fisher Theorem Theorem 6.1 implies that there exists Z € L?(R) such that

Z Z
/XdQ = (Z,X) 2(m) = /ZXdR: /XEdPJr/XEdQ
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We can rewrite this as

/X (1 = g) dQ = /ngp (6.1)

This defnitely holds for all X bounded (since those are in L2) and by monotone convergence this holds for all non-
negative X.

Next we claim that 0 < Z < 2.To see this consider theset A = {Z > 2 + €} then we have, with X = 1,

)P(A)

Q(4) = :

%/1AZdP+ . /1AZdQ > (14 9)QA) + (1 +
QA

which implies that P(A) =
argument shows that Z > 0.

) 0 and thus which shows Z < 2 almost surely with respect to P and (). A similar

Let us next consider the set B = {Z = 2}. Then taking X = 1gwefind P(B) = 0 andsince @ < PthenQ(B) =

0 as well. This means that Z < 2 almost surely and thus 1

Z
1-3

replacing X by 1_% on the left hand side of Equation 6.1 and then we find
2

[xia- [xitar

Z
2

1—

is finite almost surely. We conclude the argument by

This shows that the Radon-Nykodim derivative is givenby Y = []

vl
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We can extend this result in the following way.

Theorem 6.3 (Lebesgue decomposition) Suppose P and () are two probability measures. Then there exists a unique

decomposition of () into a mixture

Q — aQs + (1 — a)Qac

where (5 and P are singular and (). is absolutely continuous with respect to P.

Proof. The proof proceeds exactly as before until the consideration of the set B = {Z = 2} for which we have
P(B) = 0.Wedo not necessarily have Q(B) = 0 anymore and we set Q,(A) = Q,(A|B) which s singular with
respect to P.

To obtain ), replace now X by 1g. 1_% and then define Q. by
7

R[N

/1BchQ:/XYdP WhereYlec1

vl

and we then have Q,.(A) = Q(A|B¢) and the statement follows. The proof of uniqueness of the decomposition is left
tothereader. [
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6.3 Homework problems

Exercise 6.1 (Lebesgue decomposition in terms of densities)

1. Suppose that P and (Q are probability measures on [a, b] with respective densities f(a:) and g(aj) and
2 f(z)dz = [’ g(z)dz = 1.Whenis Q < P?Whatis then 427

2. Suppose P and () are two probability measures. Show that we can always find a probability measure R such that
P < Rand P < (). Such measure is called a dominating measure. Is it unique?

3. Given two probability measure P and (), by part 1 and the Radon-Nykodym theorem we can always think that P
and () have densities with respect to a common measure R:

_adaP dQ
P=43r 7 4r

Express the Lebesgue decomposition theorem entirely in terms in terms of the function p and q.

Exercise 6.2 (Chain rule) Suppose Q < P and R < @).Show that R < P and that the chain rule holds

dR _ dR dQ
dP  dQdP
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Exercise 6.3 (Radon-Nikodym derivative and image measure) Suppose P is a measure on R with a density f(a:) with
f(x) > Oforallz € R.Leth : R — R aninvertible continuously differentiable function with inverse function g =
h—l
Show that the image measure ) = P o h~1tis absolutely continuous with respect to P and compute the Radon-

dQ

Nykodym derivative P

Exercise 6.4 (Another definition for absolute continuity (optional problem)) Show that

QQ < P <= Foranye > 0thereisd > 0suchthat P(A) <§ — Q(A) <e
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