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1 Dynkin systems
Proving that a property holds for all measurable sets in a -algebra may seem a-priori very difficult, often because -

algebra are defined in a indirect manner, for example the Borel -algebra is the smallest -algebra generated by open

sets. The Dynkin theorem(s) is a technical tool to accomplish this.
If you need to remember only one thing of this section: a probability measure on  is uniquely determined by its value on

the intervals .
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1.1 -systems and -systems

Definition 1.1 ( -systems and -systems)  

A collection of sets  is a -system it is closed under (finite) intersections.

A collection of sets  is a -system if

1. 

2.  and 

3. 

The  stands for product (= intersection) and  stands for  who introduced that concept.

It is obvious that a -algebra is both a -system and a -system. The next proposition shows the converse.

Proposition 1.1  is a -algebra if and only if  is a -system and a -system.

Proof. If  is a -system and a -system then  and  are in  and  is closed under complement. All this follows from

properties 1. and 2. for -system. Furthermore  is then closed under union since . Finally to

extend this to countable unions for pairwise disjoiont  define  and use the property 3. of -systems.

p d

p d

C p

D d

Ω ∈ D

A,B ∈ D A ⊃ B ⟹ A ∖ B ∈ D

A ​,A ​, ⋯ ∈1 2 D with A ​ ↗n A ⟹ A ∈ D

p d Eugene Dynkin

σ p d

E σ E p d

E p d Ω ∅ E E
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n
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1.2 Monotone Class Theorem
The next theorem is a version of many theorems of the same type in probability and measure theory.

Theorem 1.1 (Monotone Class Theorem) If a -system contains a -system  then it contains the -algebra generated

by .

Proof. Consider the smallest -system  containing  (intersections of -systems are -sytems). It is enough to prove the

statement for , that is, . Since  is the smallest -algebra containing  it is enough to show that  is a -

algebra itself. By  we thus only need to show that  is a -system.

Fix  and consider .

Note that  belongs to . We claim that  is a -system. Clearly . Further if  with both ,  in 

then  which belongs to . Similarly if  and  then 

 and so  and so .

 is thus a -system and it contains  since  and  is a -system. Therefore  and we have shown that if

 and  then .

We now define for fixed  the set .

One verifies that  is a -system (just like for ) and thus . This proves that  is a -system. 

d p C σ

C

d D C d d

D D ⊃ σ(C) σ(C) σ C D σ

Proposition 1.1 D p

B ∈ C D ​ =1 {A ∈ D : A ∩ B ∈ D}

B D D ​1 d Ω ∈ D ​1 A ​ ⊂1 A ​2 A ​1 A ​2 D ​1

(A ​ ∖2 A ​) ∩1 B = (A ​ ∩2 B) ∖ (A ​ ∩1 B) D A ​ ∈n D ​1 A ​ ↗n A (A ​ ∩n

B) ↗ (A ∩ B) A ∩ B ∈ D A ∈ D ​1

D ​1 d C B ∈ C C p D ​ ⊃1 D

A ∈ D B ∈ C A ∩ B ∈ D

A ∈ D D ​ =2 {B ∈ D : A ∩ B ∈ D}

D ​ =2 d D ​1 D ​ ⊃2 D D p □
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1.3 Uniqueness of Measures
It is usually impossible to compute  for all sets. An important appliction of the the monotone class theorem is that

knowing the values of  on -system generating  determines  uniquely.

Theorem 1.2 (Uniqueness of probability measures) Suppose  and  are two probability measures on . If

 for all  in a -system  generating  then .

Proof. We know that  for all  and . Let us consider .

Clearly  so to use the Monotone Class Theorem we need to show that  is a -system.

Since  then  and so property 1. holds.

For property 2. suppose  with  then  since

For property 3. if  and , Then  for all  and by sequential continuity they must

have the same limits and thus  and so .

Corollary 1.1 If two probability  and  coincide on the sets of the form  then they are equal.

P (A)
P p A P

P Q (Ω, A)
P (A) = Q(A) A p C A P = Q

P (A) = Q(A) A ∈ C D = B ∈ A : P (A) = Q(A){ }

D ⊃ C D d

P (Ω) = Q(Ω) = 1 Ω ∈ D

A,B ∈ D A ⊃ B B ∖ A ∈ D

P (B ∖ A) = P (B) − P (A) = Q(B) − Q(A) = Q(B ∖ A)

{A ​} ⊂n D A ​ ↗n A P (A ​) =n Q(A ​)n n

P (A) = Q(A) A ∈ D

P Q (−∞, a]
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2 Measurable maps and random
variables
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2.1 Motivation
Given a probability space  we think of  as an event and  is the probability to the event 

occurs. Think of this an “observation”: how likely is it that the  occurs.

A random variable is a more general kind of observation. Think for example that you are performing some
measurement: to an outcome  you associate e.g. number . It could also be a vector or even some

more general object (e.g. a probability measure!)

Consider another state space  (often we will take ( ) where  is the Borel -algebra) and a map

We will want to compute

for some .

The notation  is for the inverse image and for this to make sense we will need

.

All of this motivates the following definitions.

(Ω, A,P ) A ∈ A P (A) A

A

ω ∈ Ω X(ω) ∈ R

(F , F) R, B B σ

X : Ω → F

P ({ω,X(ω) ∈ A}) = P (X ∈ A) = P (X (A))−1

A ∈ F

X (A) =−1 {ω : X(ω) ∈ A}
X (A) ∈−1 Ω
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2.2 Measurable functions and random variables
Given a function  and  we write

for the inverse image. The following properties are easy to verify

Definition 2.1 (Measurable and Borel functions) Given measurable spaces  and , a function 

 is measurable (with respect to  and ) if

If  (equipped with the Borel -algebra ) a measurable functions is often called a Borel function.

f : E → F B ⊂ F

f (B) =−1 x ∈ E ; f(x) ∈ B{ }

f (∅) =−1 ∅

f (A ∖−1 B) = f (A) ∖−1 f (B)−1

f ( ​ A ​) =−1 ⋃i i ​ f A ​⋃i
−1 ( i)

f ( ​ A ​) =−1 ⋂i i ​ f A ​⋂i
−1 ( i)

(E, E) (F , F) f : E →
F E F

f (B) ∈−1 E  for all B ∈ F .

F = R σ B
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Definition 2.2 (Random variable) A random variable is a measurable function

from a probability space  to some measurable space .

Convention: If  then we always take the Borel -algebra.

Remarks:

Using the letter  for a random variable is standard convention from elementary probability.

The term “random variable” is maybe a bit unfortunate but it is standard. The word “variable” means we have a
function and the word “random” means it is defined on some probability space,

Compare this to the definition of continuity. A function is continuous if, for all open set,  is open.

We just say measurable if there is no ambiguity on the choice of  and .

X : Ω → F

(Ω, A,P ) (F , F)
F = R σ

X

f (O)−1

E F
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Fortunately it is enough to check the condition for a few sets

Proposition 2.1  is measurable with respect to  and  if and only if

where  generates  (i.e.  ).

Proof. Consider the family of sets

We now that  and that .

To conclude it is enough to show that  is a -algebra because if this true  implies .

Showing that  is a -algebra is easy using the rules for inverse images in .

Corollary 2.1 A function from  to  is measurable if and only if

that this, all the level sets of the function  need to be measurable sets

f : E → F E F

f (B) ∈−1 E  for all  B ∈ C

C F σ(C) = F

D = B ∈ F : f (B) ∈ E{ −1 }

D ⊃ C σ(C) = F

D σ D ⊃ C D ⊃ σ(C) = F

D σ Section 2.2

(E, E) (R, B)

f ((−∞, a]) =−1 {x ∈ E : f(x) ≤ a} ∈ E

f
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2.3 Operations on measurable functions
Composition of functions

Like continuity is preserved by composition so is measurability.

Theorem 2.1 (Composition preserves measurability) If  is measurable (w.r.t.  and ) and  is

measurable (w.r.t.  and ) then the composition  is measurable (w.r.t  and .

Proof. If  then . By the measurability of ,  and so by the

measurability of , .

Given a function  we define positive/negative parts

Theorem 2.2  is measurable iff and only if  and  are measurable.

Proof. It is enough to consider sets of the form . Proof in your homework.

f : E → F , g : F → G, g ∘ f : E → G

f : E → F E F g : F → G

F G h = g ∘ f E G)

C ∈ G (g ∘ f) (C) =−1 f (g (C))−1 −1 g g (C) ∈−1 F

f f (g (C)) ∈−1 −1 E

f : E → R

f =+ f ∨ 0, f ​ =− −(f ∧ 0) ⟹ f = f ​ −+ f ​, ∣f ∣ =− f ​ ++ f ​−

f : E → R f+ f ​−

{x, f(x) ≤ a}
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2.4 Simple functions
Definition 2.3 (Simple functions)  

Given a set , the indicator function  is defined as

A simple function  is a function of the form

for some finite , real numbers , and measurable sets .

Remarks

The  are not necessarily disjoint.

A function is simple if and only if it takes finitely many different values (at most  values including )

The decomposition is not unique.

A ∈ E 1 ​A

1 ​(x) =A ​ ​{ 1
0

 if x ∈ A

 otherwise

f

f(x) = ​a ​1 ​(x)
i=1

∑
n

i A ​i

n a ​i A ​i

A ​i

2N 0
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Definition 2.4 A simple function is in canonical form if

where  are all distinct and  form a partition of .

Remark: One can always rewrite a simple function in canonical form if needed. Just make a list of the values the function
takes  and set .

Proposition 2.2 If  and  are simple function then so are

Proof. The simplest way to see this is to note that each of these functions takes at most finitely many values if  and  does

and therefore they must be simple functions.

f(x) = ​b ​1 ​(x)
i=1

∑
m

i B ​i

b ​i (B ​) ​i i=1
m E

b ​, b ​, ⋯ , b ​1 2 m B ​ =i {x, f(x) = b ​}i

f g

f + g, f − g, fg, f/g, f ∨ g = max{f , g}, f ∧ g = min{f , g}

f g
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2.5 Supremum, infimum, limits
As we see next measurability is preserved by basic operations, in particular taking limits.

Refresher on  and  of sequences: Recall the definitions of  and  for sequences of real

numbers (they always exists if we allow the values .)

We have then

Theorem 2.3 Suppose  is a sequence of measurable functions (with respect to  and the

Borel -algebra). Then the functions

are measurable.
If  exsts then  is measurable

lim sup lim inf lim inf lim sup
±∞

​a ​ =
n

lim inf n ​ ​a ​ =
n

sup
m≥n
inf m ​ ​a ​ =

n
lim

m≥n
inf m  smallest accumulation point of {a ​}n

​a ​ =
n

lim sup n ​ ​a ​ =
n

inf
m≥n
sup m ​ ​a ​ =

n
lim

m≥n
sup m  largest accumulation point of {a }n

​a ​ exists  ⟺
n

lim n ​a ​ =
n

lim inf n ​a ​

n
lim sup n

f ​ :n E → ,n =R 1, 2, ⋯ E

σ

​f , ​f ​ , ​f ​ , ​f ,
n

inf n
n

sup n
n

lim inf n
n

lim sup n

f = lim ​ f ​n n f

16

Probability Measures and Expectation



Proof.

Let us write . It is enough to check that  is measurable for any . We have

So  is measurable if each  is measurable.

For  we could use that the Borel -algebra is generated by the collection  and

Since  and  are written in terms of  and  they do preserve measurability.

If  exists then  and thus is measurable.

g = sup ​ f ​n n {g ≤ a} a

{g ≤ a} = {f ​ ≤n a for all n} = ​{f ​ ≤
n

⋂ n a} .

inf ​ f ​n n f ​n

g = inf ​ f ​n n σ {[a, +∞) : a ∈ R}

{g ≥ a} = {f ​ ≥n a for all n} = ​{f ​ ≥
n

⋂ n a} .

lim sup lim inf inf sup

f = lim ​ f ​n n f = lim ​ f ​ =n n lim sup ​ f ​ =n n lim inf ​ f ​n n
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2.6 Approximation by simple functions
The following theorem is very important, because it reduces many a computation about measurable function to a
computation about a simple function and then taking a limit. In that context one also uses all the time that any measurable

 is the difference of two non-negative measurable functions.

Theorem 2.4 (Approximation by simple functions) A nonnegative function  is measurable   is

the limit of an increasing sequence of positive simple functions.

Simple function, right continuous,  on 

f

f : E → R ​+ ⟺ f

d ​ =n ​ ​ 1 ​ +
k=1

∑
n2n

2n
k − 1

[ ​ , ​ )2n
k−1

2n
k n1 ​[n,∞)

d ​(x) ↗n x [0, ∞)
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Proof. It is not difficult to see that that the function  given in the previous page is increasing (due to the dyadic

decomposition) and  as  since if  then .

Let  be a non-negative measurable function then the function

is a measurable functions (as a composition of measurable functions) and it is a simple function because  takes only

finitely many values. Since  is increasing and , . 

Corollary 2.2 (Approximation by simple functions) A function  is measurable if and only if it can be

written as the limit of sequence of simple functions.

Proof. Write  and apply  to . 

Theorem 2.5 Suppose  and  are measurable then

are measurable

Proof. Homework.

d ​n

d ​(x) ↗n x n → ∞ x ∈ [ ​ , ​ )2n
k−1

2n
k ∣x − d ​(x)∣ ≤n ​2n

1

f

g ​ =n d ​ ∘n f

d ​ ∘n f

d ​n f(x) ≥ 0 d ​(f(x)) ↗n f(x) □

f : E → R

f = f ​ −+ f ​− Theorem 2.4 f ​± □

f g

f + g, f − g, fg, f/g( if g(x) = 0)

19

Probability Measures and Expectation



2.7 Extended real-valued function
Write .

Often it is useful to consider function which are allowed to take values .

The Borel -algebra on  consists of all sets of the form .

This Borel -algebra is generated by the intervals of the form .

All properties of measurable functions on  extend to functions : approximation by simple

functions, supremeum, infimum, etc…

We will use all this whenever we need it.

=R R ∪ {−∞, ∞}

±∞

σ R A,A ∪ {−∞},A ∪ {∞},A ∪ {−∞, ∞}

σ {[−∞, r]}

f : E → R f : E → R
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2.8 Homework problems
Exercise 2.1 Show that  is measurable if and only if  and  are measurable.

Exercise 2.2 A function  is continuous at  if for any  there exists  such that

A function  is continuous if it is continuous at all .

Show that  is continuous if and only if for every open set ,  is open.

Show that every continuous function is measurable if we equiped  with the Borel -algebra.

Remark: This also holds for any continuous function between arbitrary metric space.

f f+ f ​−

f : R → R x ϵ > 0 δ > 0

∣x − y∣ < δ ⟹ ∣f(x) − f(y)∣ < ϵ .

f : R → R x ∈ R

f O f (O)−1

R σ
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Exercise 2.3  

Suppose  (both equipped with Borel  algebra) is a right-continuous step function, if there exists a

(finite or countable) collection of intervals  such that  is constant on  and . Show that

such a function is measurable.

A function  is right continuous if  for any decreasing sequence  and this holds

for every . Show that such a function is measurable.

Hint: Set  and .

Exercise 2.4 Suppose  is increasing. Show that  is measurable.

Exercise 2.5 Given two measurable function  from  to . Show that the sets

are all measurable.

f : R → R σ

I ​ =n [t ​, s ​)n n f I ​n ∪ ​I ​ =n n R

f : R → R f(x ​) →n f(x) x ​ ↘n x

x

c ​ =n ​ ​ 1 ​∑k=1
∞

2n
k

[ ​ , ​ )2n
k−1

2n
k f ​ =n f ∘ c ​n

f : R → R f

f , g (E, E) (R, B)

{f ≤ g}, {f < g}, {f = g}, {f = g}
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Exercise 2.6 Suppose  and  are two measurable spaces. A (measurable) rectangle in  is a set of

the form

The product -algebra  is defined as the -algebra generated by all measurable rectangles.

Suppose  is measurable (with respect to  and ) and  is measurable (with respect to 

and ). Show that the function  given by  is measurable (with respect to 

and ).

Suppose  is measurable (with respect to  and ). For any fixed  define the section

of  as the function

Show that  is measurable. Hint: Show first that the map  given by  is measurable.

(E, E) (F , F) E × F

A × B A ∈ E ,B ∈ F .

σ E ⊗ G σ

f : E → F E F g : E → G E

G h : E → F × G h(x) = (f(x), g(x)) E

F ⊗ G

f : E × F → G E ⊗ F G x ​ ∈0 E

f

h : F → G  with h(y) = f(x ​, y)0

h g : Y → X × Y g(y) = (x ​, y)0
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3 Distribution functions and
quantile functions
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3.1 Random variables
Let us apply what we have learned in the last sections to random variables

where  is a probability space.

Theorem 3.1 Suppose  is a measurable map between the measurable spaces  and  and  a

probability measure on . Then

1.  is a -algebra, in general a sub -algebra of .

2.  which is defined has  is a probability

measure on .

Proof. Check the axioms.

Definition 3.1 (Image of a measure) The measure  is called the image of the measure  under . Various

other notations are used (such as , etc…)

X : Ω → R

(Ω, A,P )

f : E → F (E, E) (F , F) P

(E, E)

f (F ) =−1 f (B),B ∈ F{ −1 } σ σ E

P ∘ f (B)−1 P ∘ f (B) =−1 P (f (B)) =−1 P ({x : f(x) ∈ B})
(F , F)

P ∘ f−1 P f

f ​P#
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Adding some terminology

Definition 3.2 (The -algebra generated by a random variable ) Given a random variable  defined on

the probability space , the -algebra generated by a random variable  is the -algebra .

The interpretation is that this -algebra contains all the “information” you can extract from the probability measures 

simply by using the random variable . This will play an increasingly important role in the future!

Definition 3.3 (Distribution of a random variable ) Given a random variable  defined on the probability

space , the distribution of the random variable  is the probability measure  given by

defined on . That is we have

σ X X : Ω → R
(Ω, A,P ) σ X σ X (B) ⊂−1 A

σ P

X

X X : Ω → R
(Ω, A,P ) X PX

P ≡X P ∘ X−1

(R, B)

P (B) =X P (X ∈ B).
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3.2 Cumulative distribution function
By , probability on  are uniquely defined by their values on the intervals , this justify the following

definition

Definition 3.4 (Cumulative distribution function) The cumulative distribution function (CDF) of a random variable 

is the function  defined by

Theorem 3.2 (Properties of CDF) If the function  is the CDF for some random variable , then  has the

following properties

1.  is increasing.

2.  and 

3.  is right-continuous: for every , .

Proof. Item 1. is the monotonicity property for the probability measure . Item 2. follows from sequential continuity

and from the fact that  as  and so . A similar argument works for .

Item 3. follows also from sequential continuity since as , .

Corollary 1.1 R (−∞,x]

X

F : (−∞, ∞) → [0, 1]

F ​(t) =X P{X ≤ t} = P ((−∞, t])X

F (t) X F

F

lim ​ F (t) =t→−∞ 0 lim ​ F (t) =t→+∞ 1

F t F (t) = F (t+) ≡ lim ​ F (s)s↘t

PX

(−∞, t] ↘ ∅ t ↘ −∞ F (t) ↘ P (∅) =X 0 t ↗ ∞
s ↘ t (−∞, s] ↘ (−∞, t]
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Remarks:

Note that  is in general not (left)-continuous. Indeed if  then  and 

. We denote the left limit by .

One can compute probabilities using the CDF. For example

A atom for a probability measure  on a set  is an element 

such that .

The distribution  of the random variable  has atoms whenever

the CDF is discontinuous (i.e.  ).

The distribution  of the random variable  has at most countably

many atoms. (Why? see homework)

A discrete random variable  taking values  has a purely

atomic distribution  The CDF  is piecewise constantand we

have 

F s ↗ t (−∞, s] ↗ (−∞, t) P ((−∞, t]) =X

P ((−∞, t)) +X P ({t})X F (t−)

P (a < X ≤ b) = F (b) − F (a)

P (a ≤ X ≤ b) = F (b) − F (a−)

P (X = b) = F (b) − F (b−)

P Ω ω ∈ Ω
P ({ω}) > 0

PX X

F ​(t−)X = F ​(t)X

PX X

X {x ​}n
PX F ​(t)X

F ​(t) =X ​ P ({x ​})∑n : x ​≤tn
n
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3.3 Continuous random variables
Another way to define a CDF is to use a PDF (=probability density function).

Definition 3.5 (Probability density function) A probability density function (PDF) is a function  such that

,  is non-negative

,  is normalized

The corresponding CDF is then given by the integral

For now think of the integral as a Riemann integral (e.g.   is piecewise continuous). In particular by the fundamental

theorem of Calculus we have

We will revisit this later when equipped with better integration tools. Many of the classical distributions in probability are
given by densities. Here are some examples which will come back.

f : R → R

f(t) ≥ 0 f

​ f(t)dt =∫−∞
∞ 1 f

F (t) = ​ f(x)dx∫
−∞

t

f

F (t) =′ f(t)
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Examples of PDF:

1. Uniform RV on : .

This random variable takes values uniformly distributed in the interval . It has a density given by

2. Exponential RV with parameter : .

The distribution is parametrized by  and the ODF and CDF are given by

3. Gamma RV with parameters : 

The random variables is parametrized by  and  and the density is given by

where  is the gamma function given by .

[a, b] Wikipedia page on uniform distribution

[a, b]

f(x) = ​ ​ F (x) ={ ​

b−a
1

0
a ≤ x ≤ b

otherwise
​ ​ ​⎩⎨

⎧ 0
​

b−a
x−a

1

x ≤ a

a ≤ x ≤ b

x ≥ b

β Wikipedia page on exponential

λ > 0

f(x) = ​ ​ F (x) ={ 0
βe−βx

x ≤ 0
x ≥ 0

​ ​{ 0
1 − e−βx

x ≤ 0
x ≥ 0

(α,β) Wikipedia page on gamma distribution.

α > 0 β > 0

f(x) = ​ ​{ 0
​x eΓ(α)

βα α−1 −βx
x ≤ 0
x ≥ 0

Γ(α) Γ(α) = ​ x e dx∫0
∞ α−1 −x
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4. Weibull distribution with parameters :

5. Normal distribution with parameters : The normal distribution has parameter 

6. Log-normal distribution parameters :

7. Laplace distribution with parameters : This is a 2-sided and shifted version of the exponential distribution.

8. Cauchy distribution with parameters : This is an example of distribution without a finite mean

9. Pareto distribution with paramters :

(α,β)

(μ,σ )2 μ ∈ R

f(x) = ​e F (x) =
​2πσ2

1 − ​

2σ2
(x−μ)2

​ f(t) dt∫
−∞

x

(μ,σ )2

(α,β)

f(x) = ​e
2
β −β∣x−α∣

(α,β)

f(x) = ​ ​ F (x) =
βπ

1
1 + (x − α) /β2 2

1
​ arctan ​ +

π

1 (
β

x − α) ​

2
1

(x ​,α)0
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It is always a good idea to map the density of a random variables (ask ChatGPT for help). Note that the Gamma random
variables is often paramterized by .

Code

θ = 1/β

import numpy as np1
import matplotlib.pyplot as plt2
from scipy.stats import gamma3

4
# Fixed scale parameter5
scale = 2.0  # Scale parameter (theta)6

7
# Define a range of shape parameters8
shape_parameters = [1.0, 2.0, 5.0]9

10
# Generate x values (range)11
x = np.linspace(0, 20, 1000)12

13
# Plot PDFs for different shape parameters14
plt.figure(figsize=(8, 6))15
for shape in shape_parameters:16
    pdf_values = gamma.pdf(x, a=shape, sca17
    plt.plot(x, pdf_values, label=f'Shape=18

19
# Add labels and title20
plt.title('Gamma Distribution with Fixed S21
plt.xlabel('x')22
plt.ylabel('PDF')23
plt.legend()24
plt.grid(True)25
plt.show()26
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3.4 Random variables with mixed distribution.
It easy to build a random variable whose distribution is neither discrete nor continous.

Example: Flip a fair coin. If the coins lands on tail you win a prize  uniformly distributed on  and if the coins lands

on tail you loose. Then  has an atom at  and

More generally we can use the concept of mixture

Definition 3.6 (Mixtures of Random variables) Suppose  are random variables with CDF 

and  is such that  and . Then

is a CDF of a random variable  which is called the  mixture of .

In the previous example we had a  mixture of  (a discrete RV) and  a uniform RV on  (a

continuous RV).

X [0, 1]
X 0

F (x) = ​ ​ ​⎩⎨
⎧ 0

​ + ​x2
1

2
1

1

x < 0
0 ≤ x < 1
x ≥ 1

X ​,X ​, ⋯ ,X ​1 2 m F ​(t)X ​1

α = (α ​, ⋯ ,α ​)1 m α ​ ≥i 0 ​ α ​ =∑
i=1
m

i 1

​α ​F ​(t)
i=1

∑
m

i X ​i

X (α ​, ⋯ ,α ​)1 m X ​,X ​, ⋯ ,X ​1 2 m

(1/2, 1/2) X ​ =1 0 X ​2 [0, 1]
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3.5 Devil’s staircase
We construct here a CDF with remarkable properties

 has no discontinuities (no atoms)

 does not have a density, that is  cannot be written as .

The construction is based on the Cantor set and  is defined iteratively.

Set 

Define the function  to be equal to  on  continuous and linear  with  and .

Then we have .

In the second step, let  to be equal to  on , unchanged on ,  on , continuous and

piecewise linear  with  and . We have .

Repeat the procedure now on the interval , , , ….

It is not diificult to see, by induction, that  and thus the sequence  converges uniformly to

a continuous function  which is increasing on 

F (t)

F (t) F (t) F (t) = ​ f(t)dt∫0
x

F

F ​(t) =0 t

F ​1 ​2
1 [1/3, 2/3] [0, 1] F (0) = 0 F (1) = 1

∣F ​(t) −1 F ​(t)∣ <0 ​2
1

F ​2 ​4
1 [1/9, 2/9] [1/3, 2/3] ​4

3 [1/9, 2/9]
[0, 1] F (0) = 0 F (1) = 1 ∣F ​(t) −2 F ​(t)∣ <1 ​4

1

[1/27, 2/27] [7/27, 8/27] [19/27, 20/27] [25/27, 26/27]

∣F ​(t) −n F ​(t)∣ ≤n−1 ​2n
1 F ​n

F (t) [0, 1]
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The function  is CDF in good standing. We have  as well as P([7/9,8/9])=0$

and so on. In particular there are  intervals of lengths  whose probability vanishes. The total lenghts of all the

interval on which the probability vanishes is thus . Thus it cannot have a density!

A random variable  with CDF  is neither continuous (in the sense of having a density), nor discrete and it is called

sometimes a singular continous dostribution. The CDF is called the Cantor’s function or sometime, more poetically, the
devil’s staircase.

The functions , , , F ​0 F ​1 F ​2 F ​3

The iterative construction The function F (t)

F (t) P ([1/3, 2/3]) = 0 P ([1/9, 2/9]) =
2n−1

​3n
1

​ +3
1 2 × ​ +9

1 4 ​ =27
1

​ ​ =∑n=0
∞

3n
2n−1

1

X F (t)
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3.6 Quantile functions
Intuitively a -quantile for a RV X, where , is a value  where the probability that 

reaches (or crosses over) . For  it is usually referred to as the median. More formally

Definition 3.7 (Quantiles of a RV .) For , a -quantile for the RV  is a value  such that

Remark: Various cases are possible

 is the unique -quantile for  (  is strictly

increasing at )

 is the unique -quantile (but there is an whole

interval of  which share the same quantile !).

The interval  are all - quantiles (because 

is locally constant).

p p ∈ (0, 1) t ∈ R F ​(t) =X P (X ≤ t)
p p = ​2

1

X p ∈ (0, 1) p X t ∈ R

P (X < t) = F ​(t−) ≤X p  and  P (X ≤ t) = F ​(t) ≥X p

a p p F ​X

a

b q

q b

[c, d] r F ​X
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We now make a choice to make it unique (other conventions occur in the literature).

Definition 3.8 (Quantile function for a random variable X) For a RV  with CDF  we define the quantile function

of ,  as

with the convention that 

Remark:

 is well defined since  being increasing and right-continuous implies that

and thus the mimimum exists.

 is a -quantile since if  then  and, for any , . Therefore . In fact

this shows that  is the smallest -quantile of .

If we had picked  this would have given us the largest -quantile (a fine, and common,

choice as well).

X F (t)
X Q : [0, 1] → R

Q(p) = min{t : F (t) ≥ p}

inf ∅ = +∞

Q F

{t : F (t) ≥ p} = [a, ∞)

Q(p) p s = Q(p) F (s) ≥ p t < s F (t) < p F (s−) ≤ p

Q(p) p X

​(t) =Q inf{t : F (t) > p} p
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Theorem 3.3 (Properties of the quantile function) The
quantile function  satisfies the following properties

1.  is increasing.

2. .

3. .

4.  and  exists. That is  is left

continuous.

Proof.

1. If  then  increasing implies that 

 and this implies that .

2. By definition  is the smallest  such that 

. Thus .

3.  is a value  such that  and thus 

.

4. This holds because  is right-continuous.

Q(p)

Q(p)

Q(F (t)) ≤ t

F (Q(p)) ≥ p

Q(p−) = Q(p) Q(p+) Q

p ≤ q F {t : F (t) ≥ q} ⊂
{t : F (t) ≥ p} Q(q) ≥ Q(p)

Q(F (t)) s F (s) ≥
F (t) Q(F (t)) ≤ t

Q(p) s F (s) ≥ p F (Q(p)) ≥
p

F

Flat portions of  become jump for 

and vice-versa.

F (t) Q(p)
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3.7 Application: Construction of probability measures on 
The most important property of quantile is the following property which shows that  is a form of functional inverse for

.

Theorem 3.4 We have

Proof.

If  then since  is increasing . But by , item 2.  and thus 

.

Conversely if  then, since  is increasing,  where the last inequality is from

, item 3.

.

R
Q

F

Q(p) ≤ t ⟺ p ≤ F (t)

Q(p) ≤ t F F (Q(p)) ≤ F (t) Theorem 3.3 F (Q(p)) ≥ p p ≤
F (t)

p ≤ F (t) Q Q(p) ≤ Q(F (p)) ≤ p

Theorem 3.3

□
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We turn next to constructing all probabilities on . To do this we first need to construct at least one.

Theorem 3.5 (Lebesgue measure on ) There exists a unique probability measure  on  with its Borel -

algebra such that

The measure  is the distribution of the uniform random variable on  with PDF

and CDF

Proof. Go and take Math 623….

R

[0, 1] P ​0 [0, 1] σ

P ([a, b]) = b − a

P ​0 [0, 1]

f(t) = ​ ​{ 1
0

0 ≤ x ≤ 1
otherwise

F (t) = ​ ​ ​⎩⎨
⎧ 0

x

1

x ≤ 0
0 ≤ x ≤ 1
x ≥ 1
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Equipped with this we can now prove

Theorem 3.6 Any probability measure  on  has the form

where  is the Lebesque measure on  and  is the quantile function for .

Proof. By definition of the image measure (see ),  is a probaility measure, and from the fact that

 we get, using 

and we are done since the CDF determines the measure  uniquely. 

Another way to interpret this result is that we have constructed a probability space for any RV with a given CDF. Namely
we constructed a probability space (here ) (here ) is the Lebesgue measure on  and

a map  (the quantile function) with .

P R

P = P ​ ∘0 Q−1

P ​0 [0, 1] Q F (t) = P ((−∞, t])

Theorem 3.1 P

P ​([0, a]) =0 a Theorem 3.4

​ ​

P ​ ∘ Q ((−∞, t])0
−1 = P ​({p : Q(p) ≤ t})0

= P ​({p : p ≤ F (t)})0

= F (t)

P □

(Ω, A,P ) = ([0, 1], B,P ​)0 P ​0 [0, 1]
X = Q Q : [0, 1] → R
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3.8 Simulation
In computers are built-in random number generators which generate a uniform RV on , that a RV whose distribution

is .

Inverse method to generate Random Variables:

To generate a RV  with PDF :

Generate a random number . If 

If  set  where  is the quantile function for .

Example:

If  has an exponential distribution, then  and 

If  is uniform on  then the quantile function is the function . Recall  is the smallest

integer equal or greater than .

If  is a normal RV then the CDF is . The quantile  has no closed form, but there

exists excellent numerical routine to compute it. This can be used to generate normal random variables.

The inverse methods has its limitation and we will learn other simulation methods later on.

[0, 1]
P ​0

X F (t)

U U = u

U = u X = Q(u) Q X

X F (t) = ​ λe ds =∫0
t −λs 1 − e−λt Q(p) = − ​ ln(1 −

λ
1 p)

X {1, 2, ⋯ ,n} Q(p) = ⌈np⌉ ⌈x⌉
x

X F (t) = ​ ​dx∫−∞
t

​2π
e−x /22

Q = F−1
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Code
import numpy as np1
import matplotlib.pyplot as plt2
from scipy.special import ndtri # quantile3

4
uniform = np.random.rand(1000000)  # gener5
dataexponential = - np.log(1-uniform) # qu6
datanormal =  ndtri(uniform)   # quantile 7
datadiscreteuniform10 = np.ceil (10*unifor8

9
# Create a histogram10
hist, bin_edges = np.histogram(dataexponen11
# Adjust the number of bins as needed12

13
# Calculate the PDF from the histogram14
bin_width = bin_edges[1] - bin_edges[0]15
pdf = hist * bin_width16

17
# Plot the empirical PDF18
plt.bar(bin_edges[:-1], pdf, width=bin_wid19
plt.xlabel('X-axis')20
plt.ylabel('PDF')21
plt.title('Empirical Probability Density F22
plt.show()23
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3.9 Homework problems
Exercise 3.1  

1. Suppose  is a real-valued random variable with a continuous cdf  and probability distribution  on

. Show that the random variable  has a uniform distribution  on  (i.e. Lebesgue

measure).

2. In , using the quantile function  for a given a CDF  we constructed a random variable 

 (  is Lebesgue measure) whose CDF is . In other words we showed  has CDF

.

Use this fact and part 1. to construct a random variable  such that is CDF is .

Exercise 3.2 Show that the function  defines a geometric random variable with success probability

 on the probability space  (where  is Lebsegue measure. (Or in other words if  is uniform on 

then  has a geometric distribution, which provides an easy way to generate geometric random variables on a

computer). Provide a code to illustrate this, including the empirical distribution.

Hint: There is a natural relation between the CDF of exponential and geometric random variables.

Y F ​(t)Y P Y

(R, B) U = F ​(Y )Y P ​0 [0, 1]

Theorem 3.6 Q F X :
([0, 1], A,P ​) →0 (R, B) P ​0 F Q(U)
F

X :′ ([0, 1], B,P ​) →Y (R, B) F

X(ω) = ​⌈ ln(1−p)
ln(1−ω) ⌉

p (Ω, A,P ​)0 P ​0 U [0, 1]

​⌈ ln(1−p)
ln(1−U) ⌉
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Exercise 3.3 Some notations:

A probability measure  on the measurable space  is called diffuse if  has no atoms.

Two probability measures  and  on  are called singular if we can partition  (with 

) such that  and .

The set of all probbaility measures on  is denoted by . It is a convex set: if  then 

 for any . We say then that  is a mixture of  and .

Show the following

1. Show that any probability measure  can be decomposed as a mixture of two singular atomic measure  and

diffuse measure .

2. Suppose  is a probability measure on  with CDF . Describe the decomposition of the measure  into

an atomic and diffuse measure in terms of the CDF , that is write .

3. Suppose  is a diffuse measure on  and  is any subset with . Show that for any 

there exists a set  such that .

Hint: Let . Study the function .

P (Ω, A) P

P Q (Ω, A) Ω = Ω ​ ∪P Ω ​Q Ω ​ ∩P

Ω ​) =Q ∅ P (Ω ​) =P 1 Q(Ω ​) =Q 1

(Ω, A) P(Ω) P ,Q ∈ P(Ω) R =
αP + (1 − α)Q ∈ P(Ω) α ∈ [0, 1] R P Q

P P ​a

P ​d

P (R, B) F (t) P

F F = F ​ +a F ​d

P (R, B) A ⊂ R P (A) > 0 0 ≤ t ≤ 1
B ​ ⊂t A P (B ​) =t tP (A)

B ​ =t A ∩ (−∞, t] h(t) = P (B ​)t
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Exercise 3.4  

Prove that the Cantor function (a.k.a devil’s staircase) given in  is continuous and that this defines a
diffuse probability measure .

Let  be the Cantor set obtained by removing from  the intervals  and  

and so on. If  is the Lebesgue measure on , show that  and that yet  has the same cardinality

as . Hint: One option is to use the Cantor function.

Show that the Lebesgue measure on , the Cantor measure, and any atomic measure are all singular.

Section 3.5
P

C [0, 1] (1/3, 2/3) (1/9, 2/9) (7/9, 8/9)
P ​0 [0, 1] P ​(C) =0 0 C

[0, 1]

[0, 1]
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Exercise 3.5 In this problem you should write a code, run it, including a visualization of your result. (The use of
ChatGPT or similar tools to help you wirte the code is encouraged.) We suppose the quantile function of the normal
random variable with parameter  is known. For example in python

Calling random numbers (as many as needed) and using the quantile function ndtri write a code which generates a
mixture of 3 normal random variables with parameters

with mixing parameters .

–>

(μ,σ) = (0, 1)

from scipy.special import ndtri # quantile for the normal RV1

(μ ​,σ ​) =1 1 (−2, .4), (μ ​,σ ​) =2 2 (0, .3), (μ ​,σ ​) =3 3 (3, 1)

(2/7, 4/7, 1/7)
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4 Integration with respect to a
probability measure
Given a probability space  and a random variable  how do we define the expectation of  for

general random variables?

There are 2 parts in the theory. A general theory using the measure  from which we deduce a more practical way which

uses the probability  on  (the only thing we really know how to handle …)

(Ω, A,P ) X : Ω → R X

P

PX R
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4.1 Definition of the expectation (a.k.a the integral)
We start by giving a definition of expectation for an arbitrary random variables. The definition is a bit rigid and may seem
at first sight slighlty arbitrary but subsequent analysis will show that this is a good choice.

Definition 4.1 (Definition of expectation) Let  be a probability space.

1. Suppose  is a simple RV (i.e., it takes finitely many values) then  (in canonical form!). We define

2. Suppose  is an arbitrary non-negative RV (i.e.   for all .) Then using the functions  given in

 consider the simple RV  and define

3. For an arbitrary RV , write  and define

(Ω, A,P )

X X = ​ b ​1 ​∑j=1
M

j B ​j

E[X] = ​b ​P (B ​)
j=1

∑
M

j j (4.1)

X X(ω) ≥ 0 ω ∈ Ω d ​n

Theorem 2.4 X ​ =n d ​ ∘n X

E[X] = ​E[X ​] where the limit allowed to be +
n→∞
lim n ∞ (4.2)

X X = X ​ −+ X ​−

E[X] = ​ ​{ E[X ​] − E[X ​]+ −

undefined
if E[X ​] < ∞ or E[X ​] < ∞+ −

if E[X ​] = ∞ and E[X ​] = ∞+ −
(4.3)

51

Probability Measures and Expectation



Remarks Let us make a number of comments on the definition.

1. If the simple RV is not in canonical form, i.e.  , then . The argument is tedious

but not difficult, take  then consider the sets

and the values

Then

You can do a similar proof for arbitrary  by an inductive argument.

2. The preceeding remark implies that if  and  are simple random variables then , this

is immediate form the the formula which does not use the canonical form and so we have linearity of expectation at
least for simple random variables.

3. If  is a nonnegative random variable then  implies that . Indeed if  is in canonical

form then  and to .

X = ​ a ​1 ​∑i=1
N

i A ​i
E[X] = ​ a ​P (A ​)∑n i i

N = 2

B ​ =0 A ​ ∩1
c A ​,B ​ =2

c
1 A ​ ∩1 A ​,B ​ =2

c
2 A ​ ∩1

c A ​,B ​ =2 3 A ​ ∩1 A ​2

b ​ =0 0, b ​ =1 a ​, b ​ =1 2 a ​, b ​ =2 3 a ​ +1 a ​2

​ ​

E[X] = b ​P (B ​) + b ​P (B ​) + b ​P (B ​)1 1 2 2 2 3

= a ​P (A ​ ∩ A ​) + a ​P (A ​ ∩ A ​) + (a ​ + a ​)P (A ​ ∩ A ​) = a ​P (A ​) = a ​P (A ​)1 1 2
c

2 1
c

2 1 2 1 2 1 1 2 2

N

X Y E[X + Y ] = E[X] + E[Y ]

Z Z ≥ 0 E[Z] ≥ 0 Z = ​ b ​1 ​∑
i i B ​i

b ​ ≥i 0 E[Z] ≥ 0
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4. If  and  are simple and nonnegative and  then . This follows from the linearity by writing

 and so . Since  then  and so

.

5. The function  are increasing in ,  and this implies that  and thus by monotonicity

.

Therefore the limit in  always exists but could well be equal to .

6. The definition in item 2. seems somewhat arbitrary since it is using a particualr choice of simple function . We will

show soon that this choice actually does not matter.

7. For general  we allow the expectation to equal to  (if  and ) or (  if 

 and ). If both  and  the expectation is undefined.

8. If  is is extended real-valued (the values  are aalso allowed) we can still define expectation in the

same way. If  is infinite on a set of positive measure then expectation will be infinite or not defined.

Definition 4.2 A measurable function is integrable if  is finite or equivalently if  or equivalently if

.

The set of integrable RV is denote by .

X Y X ≤ Y E[X] ≤ E[Y ]
Y = X + (Y − X) E[Y ] = E[X] + E[Y − X] Y − X ≥ 0 E[Y − X] ≥ 0
E[X] ≤ E[Y ]

d ​n n d ​(x) ≤n d ​(x)n+1 X ​ ≤n X ​n+1

E[X ​] ≤n E[X ​]n+1

Equation 4.2 +∞

d ​n

X +∞ E[X ​] =+ ∞] E[X ​] <− ∞] −∞ E[X ​] <+

∞] E[X ​] =− ∞] E[X ​] =+ ∞] E[X ​] =− ∞]

X : Ω → R ±∞
X

E[X] E[∣X∣] < ∞
E[X ​] <± ∞

L =1 L (Ω, A,P )1
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4.2 Monotone Convergence
We extend monotonicity to general non-negative RVs.

Theorem 4.1 (Monotonicity) If  then . If  then .

Proof. If  so is  and therefore . If  then  and so 

and thus .

The next theorem (Monotone convergence Theorem) is very useful in itself and, in addition, the other convergence
theorems for expectations derive from it.

Theorem 4.2 (Monotone Convergence Theorem) Suppose  are non-negative and increasing: 

. Then  exists and

Proof. Since  is an increasing the sequence, the limit  exists and  exists. By monotonicity, see

, we have  and therefore  exists and we have

We need to show the reverse inequality: . To prove this we need to show the following claim.

X ≥ 0 E[X] ≥ 0 0 ≤ X ≤ Y E[X] ≤ E[Y ]

X ≥ 0 X ​ =n d ​ ∘n X E[X] ≥ 0 0 ≤ X ≤ Y X ​ ≤n Y ​n E[X ​] ≤n E[Y ​]n
E[X] ≤ E[Y ]

X ​n 0 ≤ X ​(ω) ≤n

X ​(ω)n+1 X(ω) = lim ​ X ​(ω)n→∞ n

​E[X ​] =
n→∞
lim n E[X] = E[ ​X ​]

n→∞
lim n

X ​(ω)n X(ω) ∈ R E[X]
Theorem 4.1 X ​ ≤n X ​ ≤n+1 X lim ​ E[X ​]n→∞ n

​E[X ​] ≤
n→∞
lim n E[X] .

lim ​ E[X ​] ≥n→∞ n E[X]
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Claim: Suppose  is simple and  then .

Indeed if the claim is true  for all  and taking the limit  concludes the proof.

To prove the claim take  and consider the set  and set . Since  we have

 by sequential continuity. Furthermore

which implies, by monotonicity, that  and taking  we obtain

Now this inequality remains true if we consider the set  instead of . To see this, take an increasing

sequence  so that . Indeed apply  (with  replaced by ) and then used

monotonicity.

To conclude note that if  (in canonical form) and  then  on . By finite additivity, using

, we have

and this concludes the proof. 

Y Y ≤ X lim ​ E[X ​] ≥n→∞ n E[Y ]

lim ​ E[X ​] ≥n→∞ n E[d ​ ∘k X] k k → ∞

b ≥ 0 B = {X > b} B ​ =n {X ​ >n b} B ​ ↗n B

P (B ​) →n P (B)

X ​1 ​ ≥n B X ​1 ​ ≥n B ​n
b1 ​B ​n

E[X ​1 ​] ≥n B bP (B ​)n n → ∞

​E[X ​1 ​] ≥
n→∞
lim n B bP (B). (4.4)

=B {X ≥ b} B

b ​ ↗m b {X > b ​} ↗m {X ≥ b} Equation 4.4 b b ​m

Y = ​ a ​1∑i=1
m

i A ​i
X ≥ Y X ≥ a ​i A ​i

Equation 4.4

​E[X ​] =
n→∞
lim n ​ ​E[X ​1 ​] ≥

i=1

∑
m

n→∞
lim n A ​i

​a ​P (A ​) =
i=1

∑
m

i i E[Y ]

□
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4.3 Further properties of the expectation
Remark: The monotone convergence theorem shows that if  is any sequence of simple function increasing to  then

.

Theorem 4.3 (Linearity of Expectation) If  and  are integrable nonnegative random variable then for any 

and  we have

Proof. If  and  are simple this is true by the remarks after . For general  and  pick  and  simple

functions which increase to  and  respectively (e.g.   or ). Then

Now by the Monotone Convergence Theorem  increases to  and thus taking  concludes

the proof. 

We will extend the linearity of expectation to general function later after we have developed more theory.

X ​n X

E[X] = lim ​ E[X ​]n n

X Y a ≥ 0
b ≥ 0

E[aX + bY ] = aE[X] + bE[Y ]

X Y Definition 4.1 X Y X ​n Y ​n

X Y X ​ =n d ​ ∘n X Y ​ =n d ​ ∘n X

E[aX ​ +n bY ​] =n aE[X ​] +n bE[Y ​].n

aX ​ +n bY ​n aX + bY n → ∞
□
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4.4 Negligible sets and completion of a measure space
Let us discuss here a bit carefully sets of probability .

Definition 4.3  

A measurable set  is negligible with respect to  (or a null set for ) if .

A set  (not necessarily measurable) is negligible with respect to  if there exists  such that

 and  (i.e.   is a subset of set of meaasure ).

It is a fine point of measure theory that negligible set need not be measurable. This is true for example for the Borel -

algebra and Lebesgue measure (see your Math 623 class for more details) and this related to the existence of non- Borel
measurable sets.

There is a standard procedure, which is called the completion of a probability space to deal with such issue. The idea is to
extends the -algebra and the probability measure  in such a way all negligible sets are measurable and without

changing the probability assigned to sets of positive probability.

0

A ∈ A P P P (A) = 0

A P B ∈ A

A ⊂ B P (B) = 0 A 0

σ

σ P
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The idea is to define, with  denoting all the null sets of , a new -algebra

and a new probability measure

It is not terribly difficult to check that  is a -algebra and  is a probability measure. The probability space 

is called the completion of .

For example the completion of the Borel -algebra on  with the Lebesgue measure is called the Lebesgue -algebra.

This does not play much of a practical role in probability, but at a few occasions it may be convenient to assume that the
space is complete.

N A σ

=A {A ∪ N : A ∈ A,N ∈ N }

(A ∪P N) = P (A) .

A σ P (Ω, , )A P

(Ω, A,P )

σ [0, 1] σ
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4.5 Almost sure properties
Generally speaking, almost sure properties are property which are true except possibly on a set of measure  (or on a

neglgible set).
For example

We say that two RVs  and  are equal almost surely if

that is  and  differ on a negligible set. We write  a.s.

If  almost surely then . Indeed then the simple approximations satisfies  almost

surely. If two simple random variables are equal almost surely then their expectations are equal (use their canonical
form to see this).

We say, for example, that  a.s if .

We say  converges to  almost surely if there exists a set of measure , , such that for all  we have

.

0

X Y

P (X = Y ) = P ({ω : X(ω) = Y (ω)}) = 1

X Y X = Y

X = Y E[X] = E[Y ] X ​ =n Y ​n

X ≥ Y P ({ω : X(ω) ≥ Y (ω)} = 1

X ​n X 0 N ω ∈ Ω ∖ N
lim ​ X ​(ω) =n n X(ω)
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An example where almost sure property occur naturally is the follwoing result

Theorem 4.4 Suppose . Then  if and only  a.s

Proof. If  a.s. then  because . Conversely let . Then 

 and thus by monotonicity

and thus  for all . But  and thus by sequential continuity . 

Some other examples will be used later, see in particular .

X ≥ 0 E[X] = 0 X = 0

X = 0 E[X] = 0 E[0] = 0 A ​ =n ω : X(ω) ≥ ​{
n
1} X ≥ X1 ​ ≥A ​n

​ 1 ​

n
1

A ​n

0 = E[X] ≥ E[X1 ​] ≥A ​n
​P (A ​)

n

1
n

P (A ​) =n 0 n A ​ ↗n {X > 0} P (X = 0) = 1 □

Exercise 4.1
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4.6 Fatou’s Lemma
Our first convergence theorem was the monotone convergence theorem . Our second convergence theorem
still deals with non-negative function random variables and is called the Fatou’s lemma.

Theorem 4.5 (Fatou’s Lemma) Suppose  are non-negative random variables. Then

Proof. Set . Then  and . We can use the

monotone convergence theorem for the sequence  to get

Also for  we have  and so by monotonicity  and thus

Combining  and  we find

Theorem 4.2

X ​n

E[ ​X ​] ≤
n

lim inf n ​E[X ​]
n

lim inf n

Y ​ =n inf ​ X ​m≥n m Y ​ ≤n Y ​n+1 lim inf ​ X ​ =n n lim ​ inf ​ X ​ =n m≥n m lim ​ Y ​n n

Y ​n

E[ ​X ​] =
n

lim inf n ​E[Y ​] .
n

lim n (4.5)

m ≥ n Y ​ =n inf ​ X ​ ≤k≥n k X ​m E[Y ​] ≤n E[X ​]m

E[Y ​] ≤n E[X ​] .
m≥n
inf m (4.6)

Equation 4.7 Equation 4.6

E[ ​X ​] ≤
n

lim inf n ​ E[X ​] =
n

lim
m≥n
inf m ​E[X ​]

n
lim inf n (4.7)

□
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Variation on Fatou’s Lemma: One can deduce directly from Fatou’s Lemma the following results

1. If  and  is an integrable RV then .

Proof: Apply Fatou’s Lemma to the RV  which is nonnegative.

2. If  and  is an integrable RV . Proof: Apply Fatou’s Lemma to the RV

 which is nonnegative.

3. We shall use these versions of Fatou’s Lemma to prove our next big result, the Dominated Convergence Theorem.

4. Intuitively the Fatou’s Lemma tells us that “probability can leak away at infinity”” but you can never “create” it. For
example cosnider the following example with  and  the Lebesgue measure.

Then we have  a.s. but also

and thus so .

X ​ ≥n Y Y E[lim inf ​ X ​] ≤n n lim inf ​ E[X ​]n n

Y ​ =n X ​ −n Y

X ​ ≤n Y Y E[lim sup ​ X ​] ≥n n lim sup ​ E[X ​]n n

Y ​ =n Y − X ​n

Ω = [0, 1] P

X ​(ω) =n n1 ​(ω)[0, ​ ]
n
1

X ​ →n 0

E[X ​] =n nP ([0, ​ ]) =
n

1
1 for all n.

E[lim ​ X ​] =n n 0 = 1 = lim ​ E[X ​]n n
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4.7 Dominated convergence Theorem
Theorem 4.6 (Dominated convergence theorem) Suppose  is a collection of random variable such that

1.  for all 

2. There exists an integrable random variable  such that  for all . Then

Proof. We derive it from Fatou’s Lemma. The condition  means that .

Applying Fatou’s lemma to  we find that

Using that  and  we find

and  and thus we have . Applying Fatou’s

to  yields in a similar manner  (check this). Therefore we have

. This proves that . .

{X ​}n

lim ​ X ​(ω) =n n X(ω) ω

Y ∣X ​∣ ≤n Y n

​E[X ​] =
n

lim n E[X] = E[ X ​]
n

lim n

∣X ​∣ ≤n Y −Y ≤ X ​ ≤n Y

Y − X ​ ≥n 0

E[ ​(Y −
n

lim inf X ​)] ≤n lim inf E[Y − X ​]n

lim inf ​(−a ​) =n n − lim sup ​ a ​n n lim ​ X ​ =n n X

E[ ​(Y −
n

lim inf X ​)] =n E[Y ] + E[ ​(−X ​)] =
n

lim inf n E[Y ] − E[ ​X ​)] =
n

lim sup n E[Y ] − E[X]

lim inf E[Y − X ​] =n E[Y ] − lim sup ​ E[X ​]n n lim sup ​ E[X ​] ≤n n E[X]
X ​ +n Y ≥ 0 E[X] ≤ lim inf ​ E[X ​]n n

lim sup ​ E[X ​] ≤n n E[X] ≤ lim inf ​ E[X ​]n n lim ​ E[X ​] =n n E[X] □
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A special case of the dominated convergence theorem is frequently used

Theorem 4.7 (Bounded convergence theorem) Suppose  is a collection of random variable such that

1.  for all 

2. There exists an integrable random variable  such that  for all . Then

Proof.  is integrable so the result follows from the dominated convergence theorem. .

Remark on almost sure versions:

Monotone convergence theorem, Fatou’s lemma and dominated convergence theorem has also almost sure versions.
For example if  is integrable and  almost surely and  almost surely then 

. To see this define

Then . We can modify the RV on sets of measures of  in such a way that the statements hold for

all : set , ,  on . Then the properties holds for all  and since the expectations do not

change we are done.

{X ​}n

lim ​ X ​(ω) =n n X(ω) ω

c ∣X ​∣ ≤n c n

​E[X ​] =
n

lim n E[X] = E[ ​X ​]
n

lim n

Y = c □

Y ∣X ​∣ ≤n Y X ​(ω) →n X lim ​ E[X ​] =n n E[X]

N = {ω : ∣X ​(ω)∣ ≤n Y (ω)for all n}  and  M = {ω : ​X ​(ω) =
n

lim n X(ω)}

P (M ) =c P (N ) =c 0 0
ω X ​ =n 0 X = 0 Y = 0 M ∪c N c ω
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4.8 The Expectation rule (very useful for computations)
Computing the expectation of RV  (or ) can be done using either  (good for proofs) or  (good for

computations). As we will see this is an abstract version of the change of variable formula from Calculus!

Notation Another widely used (and convenient) notation for the expectation is .

Theorem 4.8 (Expectation rule) Suppose  is a RV on  taking value in  and with distribution .

Let  be measurable.

1.  if and only if .

2. If either  or  satisifies the equivalent conditions in 1. we have

3. Conversely suppose  is a probability measure on  such that

for all non-negative measurable . Then .

X h(X) P PX

E[X] = ​ X(ω)dP (ω)∫Ω

X (Ω, A,P ) (F , F) PX

h : (F , F) → (R, B)

h(X) ∈ L (Ω, A,P )1 h ∈ L (F , F ,P )1 X

h ≥ 0 h

E[h(X)] = ​ h(X(ω))dP (Ω) =∫
Ω

​ h(x)dP (x)∫
F

X (4.8)

Q (F , F)

E[h(X)] = ​ h(x)dQ(x)∫
F

h Q = PX
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Proof. The probability distribution of , , is defined by . Therefore

This prove  for chracteristic functions, and by linearity  hold for simple functions .

If  is positive then pick a sequence of simple function  such that . Then

This proves  for  non-negative. If we apply this to  this proves part 1. of the Theorem. For general , write

 and deduce the result by substraction.

For the converse in item 3. just take  to be a characteristic function. Then

Since  is arbitrary, the distribution of  is .

X PX P (B) =X P (X (B))−1

E[1 ​(X)] =B P (X ∈ B) = P (B) =X
​ 1 ​(x)dP (x)∫

F
B

X

Equation 4.8 Equation 4.8 h

h : F → R h ​n h ​ ↗n h

​ ​

E[h(X)] = E[ ​h ​(X)]
n→∞
lim n = ​E[h ​(X)]  by the MCT in Ω

n→∞
lim n

= ​ ​ h ​(x)dP (x)  because h ​ is simple.
n→∞
lim ∫

F
n

X
n

= ​ ​h ​(x)dP (x)  by MCT in F∫
F
n→∞
lim n

X

= ​ h(x)dP (x)∫
F

X

Equation 4.8 h ∣h∣ h

h = h ​ −+ h ​−

f = 1 ​A

P (X ∈ A) = E[1 ​(X)] =A ​ 1 ​(x)dQ(x) =∫
F

A Q(A) .

A X Q

66

Probability Measures and Expectation



Consequences:

If  is a real-valued random variable, we can compute its expectation as doing an integral on 

If  is real-valued and  is a (measurable) function (e.g.  , or , or . Then we

have

An alternative would to compute the distribution  of the  and then we have

Generally we will compute  using the distribution of  ….

But often we will work backward. We will use the change of variable formula to compute the distribution of  (see

item 3. in ). Checking the equality for all non-negative function or all characteristic function is not always
easy so we will show that one can restrict onesleves to just nice functions! (Later..)

X R

X h : R → R Xn eiαX ⋯

E[X] = ​ xdP (x) E[X ] =∫
R

X n
​ x dP (x) ⋯∫

R

n X

P Y Y = Xn

E[X ] =n E[Y ] = ​ ydP (y)∫
R

Y

E[h(X)] X

Y

Theorem 4.8
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4.9 Examples
Example: gamma random variable. The gamma random variable  has density

and the Gamma function  given by

Let us compute  for some . Using the expectation rule we find

If  is an integer then we can use that  and so 

X

f(x) = ​ ​{ ​x eΓ(α)
βα α−1 −βx

0
x ≥ 0
x < 0

Γ(α)

Γ(α) = ​ x e dx .∫
0

∞
α−1 −x

E[X ]δ δ > 0

​ ​

E[X ]δ = ​ x ​x e dx = ​ ​∫
0

∞
δ

Γ(α)
βα α−1 −βx

Γ(α)βδ
Γ(α + δ)

=1

​​ ​x e dx∫
0

∞

Γ(α + δ)
βα+δ

α+δ−1 −βx

δ = n Γ(α + 1) = αΓ(α) E[X ] =n
​

βα
α(α+1)⋯α+(n−1)
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Example: power of an exponential random variable and Weibull random variables

Let us compute next the distribution of  when  is an exponential random variable (i.e. a Gamma random

variable ). For any non-negative function  we have, by the expectation rule

and with the change of variable ,  we find

from which we learn that power of exponential random variables are Weibull random variables.

By a similar computation we see that taking a random vairbales to some poistive power transform the family of Weibull
random variables into itself.

Y = Xδ X

α = 1 h

E[h(Y )] = E[h(X )] =δ
​ h(x )βe dx∫

0

∞
δ −βx

y = xδ dy = δx dxδ−1

E[h(Y )] = ​ h(y) ​y e dy∫
0

∞

δ

β
​ −1δ

1 −βy ​

δ
1
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4.10 Location and scale
We investigate how the pdf of a random variable transform under a linear transformation .

Theorem 4.9 Suppose the real-value RV  has the pdf  then  has the pdf 

Proof. For a change we prove it directly using the expectation rule. The pdf  must satisfy, for any nonnegative ,

We rewrite this using the pdf of  using the expectation rule again and the change of variable 

and therefore we must have .

Remark Alternatively you can prove this using the CDF, for example for 

and then differentiate. Do the case .

X ↦ Y = aX + b

X f ​(t)X Y = aX + b f ​(y) =Y ​f( ​ )∣a∣
1

a
y−b

f ​(y)Y h

E[h(Y )] = h(y)f ​(y)dy∫ Y

X y = ax + b

E[h(Y )] = E[h(aX + b)] = ​ h(ax +∫
−∞

∞

b)f ​(x)dx =X ​ h(y)f ​ ​ ​dy∫
−∞

∞

X (
a

y − b)
∣a∣
1

f ​(y) =Y ​f ​ ​∣a∣
1

X (
a
y−b)

a > 0

F ​(t) =Y P (Y ≤ t) = P (aX + b ≤ t) = P X ≤ ​ =(
a

y − b) F ​ ​X (
a

y − b)
a < 0
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Location-scale family of random variables: A family of random variables parametrized by parameter  (=location)

and  (=scale) is called a location-scale family if  belonginging to the family implies that  also

belong to the family for any parameter  and . If  has a density this is equivalent to require that the densities have the

form

for some fixed function .

Normal RV are scale/location family with parameters  (=location) and  (=scale) and 

The Cauchy distribution with pdf  is also a location scale family.

Some family of distribution are only a scale family. For example the exponential random variables with density

 are a scale family with scaling parameter .

α ∈ R
β ∈ (0, ∞) X Y = aX + b

a b f

f ​(x) =α,β f( ​ )
β

1
β

x − α

f(x)

μ σ > 0 f(x) = ​

​σ2π
e

−(x−μ) /2σ2 2

​ ​

βπ
1

1+( ​ )
β

x−α 2
1

f(x) = ​e
β
1 −x/β β
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4.11 Homework problems
Exercise 4.1 Show the following facts:

1. Show that if  almost surely if and only if  for all measurable sets .

2. Suppose  is a random variable with . Show that  almost surely.

Hint: Consider the set .

Exercise 4.2 (infinite sum of random variables) Suppose  is a collection of random variables defined on the

probability space .

1. Prove that if the  are all nonnegative then .

Hint: Use the monotone convergence theorem.

2. Prove that if  is finite then .

Hint: Consider the RV  and use the dominated convergence theorem and , part 2.

X = 0 E[X1 ​] =A 0 A

X E[X] < ∞ X < ∞
B ​ =n {X ≥ n}

X ​n

(Ω, A,P )

X ​n E[ ​ X ​] =∑
k=1
∞

k ​ E[X ​]∑
k=1
∞

k

​ E[∣X ​∣]∑n=1
∞

k E[ ​ X ​] =∑k=1
∞

n ​ E[X ​]∑k=1
∞

k

Y = ∣X ​∣∑ k Exercise 4.1
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Exercise 4.3 (Building new probability measures using densities) Suppose  is a random variable on the probability

space  with  almost surely and .

1. Define  by . Show that  is probability measure on . We denote by 

the expectation with respect to .

2. Show, using the definition of the integral, that .

3. Show if  is such that  then we have . (We say then that  is absolutely continuous

with respect to .)

4. Show that, in general  does not imply  but that if  almost surely then  does

imply .

5. Assuming  almost surely show that  is integrable with respect to  and show that the measure  defined

by  is equal to .

Y

(Ω, A,P ) Y ≥ 0 E[Y ] = 1

Q : A → R Q(A) = E[Y 1 ​]A Q (Ω, A,P ) E ​Q

Q

E ​[X] =Q E[XY ]

B ∈ A P (B) = 0 Q(B) = 0 Q

P

Q(B) = 0 P (B) = 0 Y > 0 Q(B) = 0
P (B) = 0

Y > 0
Y
1 Q R

R(A) = E ​[ ​ 1 ​]Q Y
1

A P
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Exercise 4.4 (the log normal distribution)  

1. Suppose  is a normal random variable. Show that the random variable  has the distribution with the

following density

The random variable  is called the log-normal distribution with parameter  and .

2. Show that . Hint: Do the change of variables  in the integral for .

Exercise 4.5 (Cauchy distribution)  

1. Suppose  is a random variable with density . Express the density  of  in terms of .

2. A Cauchy RV with parameters  has the pdf .

Show that if  is a Cauchy RV so is  and find how the parameters transform.

Show that if  has a Cauchy distribution with  then  has again a Cauchy distribution.

Show that the mean and the variance of a Cauchy RV are undefined.

X Y = eX

f(x) = ​ ​{ ​ ​e
x
1

​σ2π
1 −(log(x)−μ) /2σ2 2

 0
x ≥ 0
x < 0

Y μ σ2

E[Y ] =r erμ+ ​σ r2
1 2 2

y = log(x) − μ E[Y ]r

X f ​(x)X f ​Y Y = ​

X
a f ​X

(α,β) f(x) = ​ ​

βπ
1

1+(x−α) /β2 2
1

X Y = aX + b

X α = 0 ​

X
1
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Exercise 4.6 Consider the RV  with CDF given by

Compute  and .

X

F (t) = ​ ​ ​⎩⎨
⎧ 0

1/4 + ​ (t + 1)3
1 2

1 − ​e4
1 −2t

t ≤ −1
−1 ≤ t < 0
t ≥ 0

E[X] Var(X)
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5 Inequalities
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5.1 Jensen inequality
Some facts about convex functions: Recall that a
function  on  is convex if

for all  and all . This means that the

line segment between  and  lies

above the graph of  for  lying on the line

segement between  and .

An equivalent description of a convex fuction (“obvious” from a picture, with a proof in the homework) is that at any point

 we can find a supporting hyperplane: that is there exists a plane  in  which is tangent to the graph of  at

 (and thus ) and such that the graph of  lies above  for all , i.e. we have 

 for all .

If  is differentiable at  the plane is given by the tangent plane to the graph at , we have

If  is twice continuously differentiable then  is convex if and only if the matrix of second derivative  is positive

definite for all .

ϕ Rd

ϕ(αx + (1 − α)y) ≤ αϕ(x) + (1 − α)ϕ(y)

x, y 0 ≤ α ≤ 1
(x,ϕ(x)) (y,ϕ(y))

ϕ(z) z

x y

x ​0 l(x) R ×n R ϕ

x ​0 l(x) = ϕ(x ​) +0 c ⋅ (x − x ​)0 ϕ l x ϕ(x) ≥
ϕ(x ​) +0 c ⋅ (x − x ​)0 x ∈ Rd

ϕ x ​0 x ​0

ϕ(x) ≥ ϕ(x ​) +0 ∇ϕ(x ​) ⋅0 (x − x ​)0

fϕ ϕ D ϕ(x)2

x
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Theorem 5.1 (Jensen inequality) If  is a convex function then

provided both expectations exist, i.e.   and .

Proof. Choose  and pick a supporting hyperplane  at  so that for any 

By the motonicity of expectation we obtain

Examples

Since  is convex we have .

Since  is convex for any  we have .

Remark The theory of convex functions is very rich and immensely useful!

ϕ : R → R

E[ϕ(X)] ≥ ϕ(E[X])

E[∣X∣] < ∞ E[∣ϕ(X)∣] < ∞

x ​ =0 E[X] l(x) x ​0 x

ϕ(x) ≥ ϕ(E[X]) + c(x − E[X])

E[ϕ(X)] ≥ ϕ(E[X]) + cE[(X − E[X])] = ϕ(E[X]) .

f(x) = x2 E[X] ≤2 E[X ]2

f(x) = eαx α ∈ R E[e ] ≥αX eαE[X]
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We will need the following slight generalization of Jensen inequality

Theorem 5.2 If  is a convex function and  is a RV taking values in . Then we have

provided both expectations exist.

Proof. Same proof as Jensen.

Examples The functions  and  are concave if  and ,

i.e.   and  are convex.

It is enough to compute the derivatives, for example for 

and  is negative definite.

ϕ : R →d R X = (X ​, ⋯ ,X ​)1 d Rd

E[ϕ(X)] ≥ ϕ((E[X ​], ⋯ ,E[X ​]))1 d

ϕ(u, v) = u vb 1−b ψ(u, v) = (u +b v )b ​

b
1

0 < b < 1 u > 0, v > 0
−ϕ −ψ

ϕ

∇ϕ = ​ D ϕ =( bu vb−1 1−b

(1 − b)u vb −b) 2
​(b(b − 1)u vb−2 1−b

(1 − b)bu vb−1 −b
b(1 − b)u vb−1 −b

−b(1 − b)u vb −b−1)
D ϕ2
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5.2 -norm of random variables
Suppose  is a probability space and  is a real-valued random variable.

Definition 5.1 ( -norms) Given a random variable  and  we define

and

and  is called the  norm of a RV .

Remarks

It is easy to check that

 means that  is integrable (if ) and that  is almost surely bounded (if ). Often

 is called the essential supremum of .

Lp

(Ω, A,P ) X

Lp X 1 ≤ p ≤ ∞

∥X∥ ​ =p E[∣X∣ ]  for 1 ≤p ​

p
1

p < ∞

∥X∥ ​ =∞ inf{b ∈ R ​ :+ ∣X∣ ≤ b a.s}

∥X∥ ​p Lp X

∥X∥ ​ =p 0 ⟹ X = 0 almost surely,

∥cX∥ =p c∥X∥ ​.p

∥X∥ ​ <p ∞ ∣X∣p 1 ≤ p < ∞ X p = ∞
∥X∥ ​∞ X
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5.3 Cauchy-Schwartz, Hölder, Minkowski
Theorem 5.3 (Hölder and Minkowski inequalities)  

1. Hölder: Suppose  are such that  then we have

Special case is the Cauchy-Schwartz inequality 

2. Minkowski: For  we have

(a.k.a triangle inequality)

Proof. The proof is ultimately a consequence of Jensen inequality (there are many different proofs but all relies in one way
or the other on convexity). Our proof use Jensen inequality and the concavity of the functions

for  and .

1 ≤ p, q ≤ ∞ ​ +
p
1

​ =
q
1 1

∥XY ∥ ​ ≤1 ∥X∥ ​∥Y ∥ ​ .p q

p = q = 2

∥XY ∥ ​ ≤1 ∥X∥ ​∥Y ∥ ​ .2 2

1 ≤ p ≤ ∞

∥X + Y ∥ ​ ≤p ∥X∥ ​ +p ∥Y ∥ ​ .p

ϕ(u, v) = u v  and ψ(u, v) =b 1−b (u +b v )b ​

b
1

(5.1)

b ∈ (0, 1) u ≥ 0, v > 0
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Once this is done let us turn to Hölder inequality:

If  and  then we have  almost surely and thus by monotinicity 

.

The concavity of  in  implies that for non negative random variables  and  we have

If  then we set  and  and  and . Then

For Minkowski

If  Minkowski inequality is easy to check.

The concavity of  in  implies that for non negative random variables  and  we have

which implies Minkovski if we take  and  and .

.

p = 1 q = ∞ ∣XY ∣ ≤ ∣X∣∥Y ∥ ​∞ ∥XY ∥ ​ ≤1

∥X∥ ​∥Y ∥ ​1 ∞

ϕ Equation 5.1 U V

E[U V ] ≤b 1−b E[U ] E[V ] .b 1−b

1 < p < q < ∞ b = ​

p
1 1 − b = ​

q
1 U = ∣X∣p V = ∣Y ∣q

E[∣X∣∣Y ∣] = E (∣X∣ ) (∣Y ∣ ) ≤[ p ​

p
1 q ​

q
1 ] E[∣X∣ ] E[∣Y ∣ ]p ​

p
1 q ​

q
1

p = ∞

ψ Equation 5.1 U V

E[(U +b V ) ] ≤b ​

b
1

E[U ] + E[V ] .( b b)
1/b

b = ​

p
1 U = ∣X∣p V = ∣Y ∣p

□

83

Probability Measures and Expectation



Definition 5.2 (  spaces) For  we define

and the quotient space

where  means  a.s is an equivalence relation.

The Minkowski inequality shows that the space  is a normed vector space.

Theorem 5.4 The map  is an increasing map

If  then  is continuous on .

If  there exists  such that  is continuous on  and  on .

Proof. Homework

Lp 1 ≤ p ≤ ∞

L (Ω, A,P ) =p X : Ω → R, ∥X∥ ​ < ∞{ p }

L (Ω, A,P ) =p L (Ω, A,P )/ ∼p

X ∼ Y X = Y

L (Ω, A,P )p

p ↦ ∥X∥ ​p

∥X∥ ​ <∞ ∞ p ↦ ∥X∥ ​p [1, ∞)

∥X∥ ​ =∞ ∞ q ≤ ∞ ∥X∥ ​p [1, q) ∥X∥ ​ =p +∞ (q, ∞)

84

Probability Measures and Expectation



Examples:

If  has a Pareto distribution with parameter  and  then its the CDF is

and  for .

The pdf is  and we have

If  has a normal distribution (or an exponential, gamma, etc…} then  for all  but .

Other norms exists (Orlicz norms) to capture the tail of random variables.

X α x ​0

F (t) = 1 − ​  for t ≥(
x ​0

t )α

x ​0

F (t) = 0 t ≤ x ​0

f(x) = ​

xα+1
αx ​0

α

E[∣X∣ ] =p E[X ] =p
​ αx ​x dx =∫

x ​0

∞

0
α −α−1+p

​ ​{ ​x ​

α−p
α

0
p

+∞
p < α

α ≥ p

X X ∈ Lp 1 ≤ p < ∞ X ∈/ L∞
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5.4 Markov, Chebyshev, and Chernov
Another very important inequality is the so-called Markov equality. Very simple and very useful.

Theorem 5.5 (Markov inequality) If  then for any 

Proof. Using that  is non-negative we have

and taking expectation and monotonicity gives the result.

X ≥ 0 a > 0

P (X ≥ a) ≤ ​

a

E[X]

X

X ≥ X1 ​ ≥X≥a a1 ​X≥a
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Theorem 5.6 (Chebyshev inequality) We have

where  is the variance of .

Proof. Apply Markov inequality to the random variable  whose expectation is :

Chebyshev inequality suggests measuring deviation from the mean in multiple of the standard deviation 

:

Chebyshev inequality might be extremly pessimistic

Chebyshev is sharp. Consider the RV  with distributionc  Then

 and 

P (∣X − E[X]∣ ≥ ε) ≤ ​

ε2

Var[X]

Var(X) = E[X − E[X]] X

(X − E[X])2 Var[X]

P (∣X − E[X]∣ ≥ ε) = P ((X − E[X]) ≥2 ε ) ≤2
​ =

ε2

E[(X − E[X]) ]2

​

ε2

Var[X]

σ =
​Var[X]

P (∣X − E[X]∣ ≥ kσ) ≤ ​

k2

1

X P (X = ±1) = ​ P (X =2k2
1 0) = 1 −

k2
1

E[X] = 0 Var[X] = ​

k2
1

P (∣X∣ ≥ kσ) = P (∣X∣ ≥ 1) = ​

k2

1
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Theorem 5.7 (Chernov inequality) We have for any 

Proof. This is again an application of Markov inequality. If  since the function  is increasing

Since this holds for any  we can then optimize over . The second inequality is proved in the same manner. 

Chernov inequality is a very sharp inequality as we will explore later on when studying the law of large numbers. The
optimization over  is the key ingredient which ensures sharpness.

The function  is called the moment generating function for the RV  and we will meet again.

Example: Suppose  is a standard normal random variable  and . Then, completing the square, we have

and Chernov bound gives for  that  which turns

out to be sharp up to a prefactor (see exercises).

a

P (X ≥ a) ≤ ​ ​ P (X ≤
t≥0
inf

eta
E[e ]tX

a) ≤ ​ ​

t≤0
inf

eta
E[e ]tX

t ≥ 0 etx

P (X ≥ a) = P (e ≥tX e ) ≤ta
​

eta
E[e ]tX

t ≥ 0 t □

t

M(t) = E[e ]tX X

X μ = 0 σ2

E[e ] =tX
​ e e dx =
​2π

1 ∫ tx − ​

2σ2
x2

e e =∫ − ​

2σ2
(x−σ t)2 2

​2
σ t2 2

e ​2
σ t2 2

a ≥ 0 P (X ≥ a) ≤ sup ​ e =t≥0
​ −ta2

σ t2 2

e =− inf ​ ta− ​t≥0( 2
σ t2 2 ) e

− ​

2σ2
a2
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5.5 Completeness of  spaces
The  spaces are normed vector spaces. It is a nice application of the Borel-Cantelli Lemma and Markov inequality that

these spaces are complete.

Theorem 5.8 (Completeness of  spaces) The spaces  are complete normed vector spaces, that is if

 is a Cauchy sequence in  then there exists  such that 

Proof. Let . If  is a Cauchy sequence in , for any  there exists  such that for all 

we have . By choosing  we can choose a subsequence  such that

By Markov inequality we have

Since  by Borel-Cantelli Lemma we have

Lp

Lp

Lp L (Ω, A,P ))p

{X ​}n Lp X ∈ Lp lim ​ E[∣X ​ −n→∞ n X∣ ] =p 0

p < ∞ X ​n Lp ϵ > 0 N = N(ϵ) n,m ≥ N

∥X ​ −n X ​∥ ​ ≤m p ϵ ϵ ​ =k ​3k
1 n ​ <1 n ​ <2 ⋯

E[∣X ​ −n ​k
X ​∣ ] =n ​k+1

p ​

p
1

∥X ​ −n ​k
X ​∥ ​ ≤n ​k+1 p ​

3k
1

P ∣X ​ − X ​∣ ≥ ​ ≤{ n ​k n ​k+1 2k
1 } ​ ≤

​2kp
1

E[∣X ​ − x ​∣ ]n ​k n ​k+1
p

​(
3
2)kp

​ P ∣X ​ − X ​∣ ≥ ​ <∑k=1
∞ { n ​k n ​k+1 2k

1 } ∞

P ∣X ​ − X ​∣ ≥ ​  infinitely often ={ n ​k n ​k+1 2k
1 } 0
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It follows that

Therefore the series  converges absolutely, almost surely. But the partial sum for this infinite

series is

and thus  converges almost surely to some . This identifies our candidate for the limit.

To conclude we need to show that  converges to  in . Given  pick  so large that that 

for  (by the Cauchy sequence property). Then by Fatou’s Lemma and the pointwise convergence  to .

For  large enough we have

This shows that  and therefore . The last inequality shows that

and we are done. 

​ ∣X ​ −
k=1

∑
∞

n ​k
X ​∣ <n ​k+1 ∞ almost surely

​(X ​ −∑
k=1
∞

n ​k
X ​)n ​k+1

​(X ​ −
k=1

∑
m−1

n ​k
X ​) =n ​k+1 X ​ −n ​1 X ​n ​m

X ​(ω)n ​m
X(ω)

X ​n X Lp ϵ > 0 N ∥X ​ −n X ​∥ ​ ≤m p ϵ

n,m ≥ N X ​n ​k
X

n

E[∣X ​ −n X∣ ] ≤p
​E[∣∣X ​ −

k→∞
lim inf n X ​∣ ] ≤n ​k

p ϵp

X ​ −n X ∈ Lp X ∈ Lp

​ ∥X ​ −
n→∞
lim n X∥ ​ =p 0

□
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5.6 Homework problems
Exercise 5.1  

Prove the one-sided Chebyshev inequality: if  is a random variable and  then

where .

Hint: Set  and use Markov inequality for  and optimize

over 

Prove that

The one-sided Chebyshev inequality is sharper than the Chebyshev inequality for one sided bounds 

.

The Chebyshev inequality is is sharper than the one-sided Chebyshev inquality for two sided bound 

Exercise 5.2 Prove . For the monotonicity use Hölder or Jensen. For the continuity let  and use the

dominated convergence theorem.

X ϵ > 0

P (X − E[X] ≥ ϵ) ≤ ​

σ + ϵ2 2

σ2

σ =2 Var(X)
Y = X − E[X] P (Y ≥ ϵ) = P ((Y + α) ≥2 (ϵ + α) )2

α

P (X −
E[X] ≥ ϵ)

P (∣X −
E[X]∣ ≥ ϵ)

Theorem 5.4 p ​ ↗n q
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Exercise 5.3 The Chernov bound has the form

Show that this bound is useful only if . To do this use Jensen inequality to show that if  the

Chernov bound is trivial.

Exercise 5.4 Consider an exponential RV  with parameter  and density  for .

Compute  as well as all moments 

To do a Chernov bound compute  (see also ).

For  estimate  (which of course is equal to !) using

a. Markov inequality.

b. Chebyshev

c. One-sided Chebyshev

d. Chernov

P (X ≥ a) ≤ e .− sup ​{ta−lnE[e ]}t≥0
tX

a > E[X] a ≤ E[X]

X λ λe−λt t ≥ 0

M(t) = etX E[X ]n

sup ​{ta −t≥0 lnE[e ]}tX Exercise 4.3

a > ​

λ
1 P (X > a) e−λa
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Exercise 5.5 (mean and median of a RV) A median  for a RV  is a value  such that  and

 (see the quantile). For example if the CDF is one-to-one then the median  is unique.

The median  and the mean  are two measures (usually distinct) of the “central value” of the RV .

Consider the minimum square deviation . Show that the minimum is attained when 

.

Consider the minimum absolute deviation . Show that the minimum is attained when  is a

median .

Hint: Suppose  then we have

m X m P (X ≤ m) ≥ ​2
1

P (X ≥ m) ≥ 1/2 m = F ( ​ )−1
2
1

m μ = E[X] X

min ​ E[(X −a∈R a) ]2 a =
E[X]

min ​ E[∣X −a∈R a∣] a

m

a > m

∣z − a∣ − ∣z − m∣ = ​ ​ ​⎩⎨
⎧ m − a

a + m − 2z (≥ m − a)
a − m

 if z ≥ a

 if m < z < a

 if z ≤ m
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Exercise 5.6 (mean and median of a RV, continued) Our goal is to prove a bound on how far the mean and the median
can be apart from each other, namely that

where  is the standard deviation of . I am asking for two proofs:

First proof: Use the characterization of the median in  and Jensen inequality (twice) starting from 

.

Second proof: Use the one-sided Chebyshev for  and  with .

The quantity

is called the non-parametric skew of  and measures the assymetry of the distribution of .

∣μ − m∣ ≤ σ

σ X

Exercise 4.5 ∣μ −
m∣

X −X ϵ = σ

S = ​ ∈
σ

μ − m
[−1, 1]

X X
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6 Radon-Nikodym Theorem
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6.1  spaces and duality
Among the  spaces, the space  plays a special role because, on top of beinng a complete normed vector space, it is

also a Hilbert space that is a complete inner product vector space space for the inner product

and the  norm derives from the inner product.

Hilbert space have all kind of good properties of which we are going to need one in this class.

Definition 6.1 Suppose  is a normed vector space.

A bounded linear functional  is a map such that

 is linear,  for all  and .

 is bounded, i.e. there exists a constant  such that  for all .

The set of linear functional on  is called the dual space  of the normed vector space .

It is not too difficult to show that  is itself a normed vector space with .

L2

Lp L2

⟨X , Y ⟩ = E[XY ]

L2

∥X∥ ​ =2
2 ⟨X , X⟩

B

l : B → R

l l(ax + by) = al(x) + bl(y) a, b ∈ R x, y ∈ B

l C ∣l(x)∣ ≤ C∥x∥ x ∈ B

B B′ B

B′ ∥l∥ = sup ​ ​x=0 ∥x∥
∥l(x)∥
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Hilbert spaces have the special property to being self-dual. In particular for  we have

Theorem 6.1 (Riesz-Fisher Theorem) Suppose  is a bounded linear functional. Then there exists 

such that

Proof. What it is easy to see is that

is a bounded linear functional. Indeed linearity is obvious and by Cauchy-Schwartz inequality

and thus  is bounded.

The converse statement that all bounded linear functional must have this form is not very difficult but the proof is long
and does not play a central role in this class and is omitted.

L2

l : L →2 R Y ∈ L2

l(X) = ⟨X , Y ⟩

l(X) = ⟨X , Y ⟩

∣l(X)∣ ≤ E[∣XY ∣] ≤ E[X ] E[Y ] =2 ​2
1 2 ​2

1
∥Y ∥∥X∥

l
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6.2 Absolute continuity and Radon-Nikodym Theorem
As we have seen in  we can build new probability mesures using densities. If  is a probabilty measure and

 is a random variable with  then we can build a new probabilty measure  by setting

and we have then . The integral notation makes clear what probability measure is used. Other

conventions are to use  in which the subscript indicates which probability measure we are using to

define the expectation.

Definition 6.2 (Radon-Nikodym derivative) If the probability measure  has the form 

 for some  with  then we write

and  is called the Radon-Nykodym derivative of  with respect to .

The notion makes sense at the forml level since

Exercise 4.3 P

Y ≥ 0 E[Y ] = Y dP =∫ 1 Q

Q(A) = E[1 ​Y ] =A 1 ​Y dP∫ A

XdQ =∫ XY dP∫
E ​[X] =Q E ​[XY ]P

Q Q(A) = E[1 ​Y ] =A

1 ​Y dP∫ A Y ≥ 1 Y dP =∫ 1

Y = ​

dP

dQ

Y Q P

XdQ =∫ X ​dP∫
=Y

​​

dP

dQ
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The basic question we need to answer is: given tow probability measures  and  when does such a  exist? We can

take clue lookin at set of measure , if  is such that  then  as well. As we shall see the

converse statement also holds and this motivates the following definition.

Definition 6.3 (Absolute continuity) A probability measure  is absolutely continuous with respect to , denoted by

 if

We have

Theorem 6.2 (Radon-Nikodym theorem) If  then the Radon Nykodim derivative  exists

and is unique: we have

for all non-negative  or for all .

P Q Y

0 A P (A) = 0 Q(A) = E[Y 1 ​] =A 0

Q P

Q ≪ P

P (A) = 0 ⟹ Q(A) = 0

Q ≪ P Y = ​ ∈
dP
dQ L (P )1

XdQ =∫ X ​dP∫
dP

dQ

X X ∈ L (Q)1
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Proof. First let us look at the uniqueness. If  and  are two radon-Nikodym derivative then for any set  we have

from which we conclude that  almost surely (see ).

As for the existence consider the mixture . Clearly we have . For  let us define the

functionals

We show that this is a bounded linear functional on . Indeed we have by the Cauchy Schwartz inequality

Therefore the Riesz-Fisher Theorem  implies that there exists  such that

Y ​1 Y ​2 A

1 ​Y ​dP =∫ A 1 1 ​Y ​dP  or  1 ​(Y ​ −∫ A 2 ∫ A 1 Y ​)dP =2 0

Y ​ −1 Y ​ =2 0 Exercise 4.1

R = ​2
P+Q Q ≪ R X ∈ L (R)2

l(X) = XdQ∫
L (R)2

∣l(X)∣ = ∣ XdQ∣ ≤∫ X dQ ≤(∫ 2 ) ​2
1

X dP + X dQ =(∫ 2 ∫ 2 ) ​2
1

​ X dR =2 (∫ 2 ) ​2
1

​∥X∥ ​ .2 L (R)2

Theorem 6.1 Z ∈ L (R)2

XdQ =∫ ⟨Z,X⟩ ​ =L (R)2 ZXdR =∫ X ​dP +∫
2
Z

X ​dQ∫
2
Z
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We can rewrite this as

This defnitely holds for all  bounded (since those are in ) and by monotone convergence this holds for all non-

negative .

Next we claim that . To see this consider the set  then we have, with ,

which implies that  and thus which shows  almost surely with respect to  and . A similar

argument shows that .

Let us next consider the set . Then taking  we find  and since  then 

 as well. This means that  almost surely and thus  is finite almost surely. We conclude the argument by

replacing  by  on the left hand side of  and then we find

This shows that the Radon-Nykodim derivative is given by . 

X 1 − ​ dQ =∫ (
2
Z) X ​dP∫

2
Z

(6.1)

X L2

X

0 ≤ Z ≤ 2 A = {Z ≥ 2 + ϵ} X = 1 ​A

Q(A) = ​ 1 ​ZdP +
2
1 ∫ A 1 ​ZdQ ≥

2
1 ∫ A (1 + ​ )Q(A) +

2
ϵ

(1 + ​ )P (A)
2
ϵ

P (A) = Q(A) = 0 Z ≤ 2 P Q

Z ≥ 0

B = {Z = 2} X = 1 ​B P (B) = 0 Q ≪ P Q(B) =
0 Z < 2 ​

1− ​2
Z

1

X ​

1− ​2
Z

X Equation 6.1

XdQ =∫ X ​dP∫
1 − ​2

Z

​2
Z

Y = ​

1− ​2
Z

​2
Z

□
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We can extend this result in the following way.

Theorem 6.3 (Lebesgue decomposition) Suppose  and  are two probability measures. Then there exists a unique

decomposition of  into a mixture

where  and  are singular and  is absolutely continuous with respect to .

Proof. The proof proceeds exactly as before until the consideration of the set  for which we have

. We do not necessarily have  anymore and we set  which is singular with

respect to .

To obtain  replace now  by  and then define  by

and we then have  and the statement follows. The proof of uniqueness of the decomposition is left

to the reader. 

P Q

Q

Q = αQ ​ +s (1 − α)Q ​ac

Q ​s P Q ​ac P

B = {Z = 2}
P (B) = 0 Q(B) = 0 Q ​(A) =s Q ​(A∣B)s

P

Q ​ac X 1 ​ ​Bc
1− ​2

Z
X Q ​ac

1 ​XdQ =∫ Bc XY dP  where Y =∫ 1 ​ ​Bc

1 − ​2
Z

​2
Z

Q ​(A) =ac Q(A∣B )c

□
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6.3 Homework problems
Exercise 6.1 (Lebesgue decomposition in terms of densities)  

1. Suppose that  and  are probability measures on  with respective densities  and  and

. When is ? What is then ?

2. Suppose  and  are two probability measures. Show that we can always find a probability measure  such that

 and . Such measure is called a dominating measure. Is it unique?

3. Given two probability measure  and , by part 1 and the Radon-Nykodym theorem we can always think that 

and  have densities with respect to a common measure :

Express the Lebesgue decomposition theorem entirely in terms in terms of the function  and .

Exercise 6.2 (Chain rule) Suppose  and . Show that  and that the chain rule holds

P Q [a, b] f(x) g(x)
​ f(x)dx =∫

a

b
​ g(x)dx =∫

a

b 1 Q ≪ P ​

dP
dQ

P Q R

P ≪ R P ≪ Q

P Q P

Q R

p = ​ q =
dR

dP
​

dR

dQ

p q

Q ≪ P R ≪ Q R ≪ P

​ =
dP

dR
​ ​

dQ

dR

dP

dQ
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Exercise 6.3 (Radon-Nikodym derivative and image measure) Suppose  is a measure on  with a density  with

 for all . Let  an invertible continuously differentiable function with inverse function 

.

Show that the image measure  is absolutely continuous with respect to  and compute the Radon-

Nykodym derivative .

Exercise 6.4 (Another definition for absolute continuity (optional problem)) Show that

P R f(x)
f(x) > 0 x ∈ R h : R → R g =
h−1

Q = P ∘ h−1 P

​

dP
dQ

Q ≪ P ⟺  For any ϵ > 0 there is δ > 0 such that P (A) ≤ δ ⟹ Q(A) ≤ ϵ
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