
Part 1: Warming Up
Probability Theory: Math 605, Fall 2024

Luc Rey-Bellet
University of Massachusetts Amherst

2024-09-27

1

Warming up



1 Axioms of Probability
The axioms of probability were formalized by  in 1933 but probability theory started much earlier.

 by Abraham de Moivre in 1718 is usually considered as the �rst probability textbook and de
Moivre also �rst proved a version of the central limit theorem in 1733.

The  by Jacob Bernoulli in 1713 has the �rst proof of the Law of Large numbers and the subsequent
work by Pierre Simon Laplace  in 1819 present a formalization of probability
theory.

Laplace’s book the concept of conditional probability (“the” key idea in probability) is also presented (�rst introduced
by Thomas Bayes in 1763 in  by Thomas Bayes.

The mathematical foundations, at the very bottom, of Probability relies on measure theory developed earlier by the
likes of  and  and many others.

According to a remark attributed to : probability theory is measure theory with a soul

Probability is the new kid on the mathematics block (after Geometry, Algebra and Analysis) but of course the coolest
kid.

Probability theory provides the mathematical foundations and the language for Statistics, Ergodic Theory, Statistical
Mechanics, Information Theory, and (a big part of) Machine Learning.

Andrey Kolmogorov

The Doctrines of Chances

Ars conjectandi
Théorie analytique des probabilités

An_Essay_towards_solving_a_Problem_in_the_Doctrine_of_Chances

Emile Borel Henri Lebesgue

Marc Kac
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1.1 -algebras
The state space or sample space  is some abstract space and we denote subsets of  by capital letters . We

use the language of set theory

σ
Ω Ω A,B, ⋯

A =c Ω ∖ A, A ∩ B, A ∪ B, A ∖ B, A ⊃ B, ∅,

De�nition 1.1 (partition) A partition of  is a collection of sets, , such that

 (pairwise disjoint) for all .

Ω (A  )  i i=1
∞

A  ∩i A  =j ∅ i = j

 A  =⋃i=1
∞

i Ω

Intuition:

 = collection of all possible outcomes of an experiment

 = event = collection of all outcomes compatible with the event 

Ω

A A

Write  for the collection of all subsets of  and we denote by calligraphic letter  collections of subsets of 

(that is subsets of ).

2Ω Ω A, E , F , ... Ω
2Ω
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We introduce natural collection of subsets

De�nition 1.2 (algebra) A collection of set  is an algebra if

 and .

 is closed under complement: .

 is closed under �nite union and intersection: .

E

∅ ∈ E Ω ∈ E

E A ∈ E ⟹ A ∈c E

E A  , ⋯ ,A  ∈1 n E ⟹  

 A  ∈ E⋃i=1
n

i

 A  ∈ E⋂i=1
n

i

De�nition 1.3 ( -algebra) A collection of set  is an -algebra if

 and .

 is closed under complement: .

 is closed under countable union and intersection: .

σ A σ

∅ ∈ A Ω ∈ A

A A ∈ A ⟹ A ∈c A

A A  ,A  , ⋯ , ∈1 2 A ⟹  

A  ∈ A⋃
i=1
∞

i

A  ∈ A⋂
i=1
∞

i

Examples: , , A = ∅, Ω{ } A = 2Ω A = ∅,A,A , Ω{ c }
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De�nition 1.4 ( -algebra generated by ) If  is a collection of subsets of , the -algebra generated by , denoted

by , is the smallest -algebra containing .

Remark:  always exists since, alternatively, you can think of it as the intersection of all -algebras which contains .

Indeed we always have  and arbitrary intersections of -algebras are -algebras (see Homework for more

details).

σ C C Ω σ C

σ(C) σ C

σ(C) σ C

C ⊂ 2Ω σ σ

If the space  has a topology (e.g ) then it natural to pick a -algebra compatible with open set.

De�nition 1.5 (The Borel -algebra) If  the Borel -algebras  is the -algebra generated by the collection of

all open sets (or, equivalently, by the closed sets).
The sets in the Borel -algebras  are called Borel sets.

Remark: The Borel -algebra of  is strictly smaller than  (see Math 623 for a proof (existence of non-measurable

sets)). The -algebra  is too big to useful!

Ω Ω = R σ

σ Ω = R σ B σ

σ B

σ R 2R

σ 2R
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An important characterization of the Borel -algebra of  is the following. It will play a big role to characterize random

variables

Theorem 1.1 The Borel -algebra of  is generated by the countable collection of intervals of the form

σ R

σ R

(−∞, a] where a ∈ Q

Proof. Let  be the collection of all open set.

If  is an open set, then  can be written as the union of disjoint intervals .

An interval  can be written as .

Taking a sequence  with  we have .

Taking a sequence  with  we have .

If  is the collection of interval , with  then we have shown that  and therefore 

. But since  consists of closed sets (which are Borel sets) we have  and thus . 

C

A A A = ∪  (a  , b  )i i i

(a, b) (a, b) = (−∞, b) ∖ (−∞, a]

b  ∈n Q b  ↗n b (−∞, b) =  (−∞, b  ]⋃n n

a  ∈n Q a  ↘n a (−∞, a] =  (−∞, a  ]⋂n n

D (−∞, a] a ∈ Q C ⊂ σ(D) σ(C) ⊂
σ(D) D D ⊂ σ(C) σ(D) ⊂ σ(C) □
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1.2 Axioms of Probability
Two simple axioms underlie probability theory.

De�nition 1.6 (Probability measure) A probability measure de�ned a on a -algebra  is a function

with the following properties

 and 

(Countable additivity) For any countable collection of pairwise disjoint sets  (i.e.   for all  ) we

have

A Probability space  consists of the set  a -algebra  and a probability measure .

σ A

P : A → [0, 1]

P (∅) = 0 P (Ω) = 1

A  i A  ∩i A  =j ∅ i = j

P A  =(
i=1

⋃
∞

i)  P (A  )
i=1

∑
∞

i

(Ω, A,P ) Ω σ A P

Remark: As we shall see, requiring �nite additivity  for �nite  would not be suf�cient.P  A  =(⋃
i=1
n

i)  P (A  )∑
i=1
n

i n
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1.3 Consequence of the axioms
Theorem 1.2 (Elementary properties or probability measures)  

Finite additivity: 

Monotonicity: 

Complement: 

Union rule: 

Inclusion-exclusion:

Proof. Homework

A ∩ B = ∅ ⟹ P (A ∪ B) = P (A) + P (B)

A ⊂ B ⟹ P (A) ≤ P (B)

P (A ) =c 1 − P (A)

P (A ∪ B) = P (A) + P (B) − P (A ∩ B)

  

P  A  =(
i=1

⋃
N

i)  P (A  ) −  P (A  ∩ A  ) +  P (A  ∩ A  ∩ A  )+
i

∑ i

i<j

∑ i j

i<j<k

∑ i j k

+ ⋯ + (−1) P (A  ∩ ⋯A  )N+1
1 N
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1.4 Countable additivity and limits
Monotone limits for sets

Theorem 1.3 (Sequential continuity)  

Countable additivity implies sequential continuity that is, if 

Finite additivity + sequential continuity implies countable additivity

A  ↘n A  means  A  ⊃1 A  ⊃2 A   and  A =3  A  

n=1

⋂
∞

n

A  ↗n A  means  A  ⊂1 A  ⊂2 A   and  A =3  A  

n=1

⋃
∞

n

A  ,A  , ⋯ ∈1 2 A

  

A  ↘ An

A  ↗ An

⟹ P (A ) ↘ P (A)n

⟹ P (A ) ↗ P (A)n

10

Warming up



Proof. Let us assume �rst countable additivity. If  de�ne the disjoints set , 

, . Then for any ,  and . By countable additivity

If  then taking complement we have  and using the above and de

Morgan’s law

For the converse statement suppose  are pairwise disjoint and set . Then .

Using �nite additivity and continuity we �nd

which prove countable additivity.

A  ⊂1 A  ⊂2 A  ⊂3 ⋯ B  =1 A  1 B  =2 A  ∖2

A  1 B  =3 A  ∖3 A  , ⋯2 N B  ∪1 ⋯ ∪ B  =N A  N  A  =⋃n=1
∞

n  B  ⋃n=1
∞

n

P (A) = P A  =(
n=1

⋃
∞

n) P  B  =(
n=1

⋃
∞

n)  P (B  ) =
n=1

∑
∞

i   P (B  ) =
N→∞
lim

n=1

∑
N

i  P (A  ).
N→∞
lim N

A  ⊃1 A  ⊃2 A  ⊃3 ⋯ A  ⊂1
c A ⊂2

c A  ⊂3
c ⋯

P (A) = P  A  =(
n=1

⋂
∞

n) 1 − P  A  =(
n=1

⋃
∞

n
c) 1 −  P  A  =

N→∞
lim (

n=1

⋃
N

n
c) 1 −  P A  =

N→∞
lim ( N

c )  P (A  )
N→∞
lim N

A  i B  =N  A  ⋃n=1
N

n B  ↗N B =  A  ⋃n=1
∞

n

P  A  =(
n=1

⋃
∞

n) P (B) =  P (B  ) =
N→∞
lim N   P (A  ) =

N→∞
lim

n=1

∑
N

n  P (A  )
n=1

∑
∞

n

□
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1.5 More on limits of sets
limsup and liminf of sets: For an arbitrary collection of sets  we de�ne the limsup and liminf by

The fact that the two de�nitions coincide requires some thoughts (see homework for more details). For example if 

 then  for every . Taking  we �nd that there exist some  such that 

. Taking next  we see that there exists  such that , and so on. Therefore  belongs to

in�nitely many .

Characteristic function of a set : 

Limits of sets: We say that  converge to  if  for all .

A  n

  

 A  

n→∞
lim sup n

 A  

n→∞
lim inf n

=   A  = ω ∈ Ω ;ω ∈ A  for infinitely many n
n=1

⋂
∞

m≥n

⋃ m { n }

=   A  = ω ∈ Ω ;ω ∈ A  for all but finitely many n
n=1

⋃
∞

m≥n

⋂ m { n }

ω ∈
  A  ⋂n=1

∞ ⋃m≥n m ω ∈  A  ⋃m≥n m n n = 1 k  ≥1 1 ω ∈
A  k  1 n = k  +1 1 k  >2 k  1 ω ∈ A  k  2 ω

A  n

A 1  (ω) =A   { 1
0

ω ∈ A

ω ∈ A/

A  n A lim  1  (ω) =n A  n
1  (ω)A ω
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Theorem 1.4 If  converges to  then .

Proof. If  for some  then the sequence is either  (if ) or  (if ) for all but �nitely

many . Therefore if  converges to  this means

Set  and . Then we have  and thus, by monotonicity

Since the sequence  is increasing to  and and and the sequence  is decreasing to  and

 we have . .

A  n A lim  P (A  ) =n→∞ n P (A)

lim  1  (ω) =n A  n
1  (ω)A ω 1 ω ∈ A 0 ω ∈/ A

n A  n A

A =  A  =
n

lim sup n  A  .
n

lim inf n

B  =n  A  ⋂m≥n m C  =n  A  ⋃m≥n m B  ⊂n A  ⊂n C  n

P (B  ) ≤n P (A  ) ≤n P (C  ).n

B  n lim inf  A  n n C  n lim sup  A  n n

A = lim sup  A  =n n lim inf  A  n n lim P (A  ) =n→∞ n P (A) □
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1.6 Conditional Probability and Independence
The intuition behing conditional probabilities is as follows. Suppose you observe that the vent  has occurred (e.g. “it

rained yesterday”). How does that in�uence the probability of another event  (e.g. there was wind yesterday or it is

raining today)?

For  to be a possible outcome we must have . So only events of the form  are relevant.

Normalizing the probabilities leads to the following

De�nition 1.7 Given  with , the conditional probability of  given  is de�ned by

If the occurence of  does not in�uence the probability that  occurs, that is if  then we will call

theses events independent. This means 

.

De�nition 1.8 (Independent events)  

Two events  and  are independent if 

A collection of events  (  possibly be in�nite) if for any �nite , 

B

A

ω ∈ A ω ∈ A ∩ B A ∩ B

B ∈ A P (B) > 0 A B

P (A∣B) =  

P (B)
P (A ∩ B)

B A P (A∣B) = P (A)
P (A∣B) = P (A) ⟺ P (A ∩ B) = P (A)P (B) ⟺ P (B∣A) =

P (A)

A B P (A ∩ B) = P (A)P (B)

(A  )  i i∈I I J ⊂ I P (  A  ) =⋂i∈J i  P (A  )∏i∈J i

14

Warming up



Theorem 1.5 (Properties of conditional probability)  

Independence: If  and  are independent so are  and ,  and , and  and .

Product rule: For any events 

Conditioning: If  is a �nite or countable partition of  then

Bayes rule: If  is a �nite or countable partition of  then

A B A Bc Ac B Ac Bc

A  ,A  , ⋯ ,A  1 2 n

P (A  ∩1 ⋯ ∩ A  ) =n P (A  )P (A  ∣A  )P (A  ∣A  ∩1 2 1 3 1 A  ) ⋯P (A  ∣A  ∩2 n 1 ⋯ ∩ A  )n−1

(E  ))nn Ω

P (A) =  P (A∣E  )P (E  ).
n

∑ n n

(E  )  n n Ω

P (E  ∣A) =m  .
 P (A∣E  )P (E  )∑

n n n

P (A∣E  )P (E  )m m
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Proof of .

Independence: 

.

Product rule: Use repeatedly  which is just the de�nition. Then

Conditioning: Use countable additivity

Bayes: Use the de�ntion and conditioning:

Theorem 1.5

P (A ∩ B ) =c P (A) − P (A ∩ B) = P (A) − P (A)P (B) = (1 − P (B))P (A) =
P (A)P (B )c

P (A ∩ B) = P (B∣A)P (A)

P (A  ∩1 ⋯ ∩ A  ) =n P (A  ∣A  ∩n 1 A  )P (A  ∩n−1 1 ⋯ ∩ A  ) =n−1 ⋯

P (A) = P (A ∩ ∪  E  ) =n n P (∪  (A ∩n E  )) =n  P (A ∩
n

∑ E  ) =n  P (A∣E  )P (E  ).
n

∑ n n

P (E  ∣A) =m  =
P (A)

P (A ∩ E  )m
 =

P (A)
P (A∣E  )P (E  )m m

 .
 P (A∣E  )P (E  )∑

n n n

P (A∣E  )P (E  )m m
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1.7 Conditional probability model
Given a probability  and any (�xed) event  we can build a new probability

Theorem 1.6 (Conditional probability model) Given a probability on  on a -algebra  and a (�xed) set  the

map

de�nes a probability measure on , the conditonal probabilty given the event 

Proof. Easy to verify the axioms.

One can then extend the concepts of independence to conditional independence.

De�nition 1.9 The events  and  are independent condtionally on the event  if

This concept is important in Markov chain, Markov and Bayesian networks (graphical models) (see
e.g.   and , and later
examples in the class).

P A

P σ A B ∈ A

A ↦ P (A∣B)

A B

A  1 A2 B

P (A  ∩1 A  ∣B) =1 P (A  ∣B)P (A  ∣B)1 2

https://en.wikipedia.org/wiki/Graphical_model https://en.wikipedia.org/wiki/Bayesian_network
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Example Watches from companies  are defective with probbailities  and watches from companies  are defective

with probailities . Pick two random watches. If the �rst watch works, what is the probability that the second watch

work?

For the factory of origin  we have .

If we describe the state of the watches by  and  with  is the watches works and if all watches are

independently defective we have conditional independence

and similarly for .

We want to compute 

A  100
1 B

 100
2

Y P (Y = A) = P (Y = B) =  2
1

X  1 X  2 X  =i 1

P (X  =1 1,X  =2 1∣Y = A) = P (X  =1 1∣Y = A)P (X  =2 1∣Y = A)

Y = B

P (X  =2 1∣X  =1 1) =  

P (X  =1)1

P (X  =1,X  =1)2 1
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1.8 Take-home messages
-algebra would not be necessary if we work only with discrete sample space.

But to describe sample space like  or a countable collection of discrete models (think coin �ip) they are necessary

(recall that  has the same cardinality as ). In the dark corners of real numbers various monsters are lurking that

need to be tamed (and then ignored).

At a deeper and more interesting level -algebra will occur later in conditional expectation, martingales and

stochastic processes, they will be use as information-theoretic tool and will describe sets of questions or inquiries you
can perform on a model.

σ

R
2N R

σ
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1.9 Homework problems
Exercise 1.1  

1. Suppose  is an arbitrary collection of -algebras (  does not need to be countable). Show that the

intersection  is a -algebra.

2. Is the union of a -algebras a -algebra? Prove or disprove.

Exercise 1.2 Suppose  is a -algebra and let  be some set. De�ne .

1. Show that  is a -algebra of subsets of .

2. Interpret the conditional probability  as a probability on the -algebra .

Exercise 1.3 Suppose  is an arbitrary map. For  let  the inverse

image of the set .

1. Prove that 

2. Prove that if  is a -algebra of subsets of  then  is a -algebra of subsets of 

{A  }  j j∈J σ J

∩  A  j∈J j σ

σ σ

A σ B ∈ A B = {A ∩ B ; A ∈ A}

B σ B

P (A∣B) σ B

f : E → F B ⊂ F f (B) =−1 {x ∈ E ; f(x) ∈ B}
B

1  (f(x)) =B 1  (x)f (B)−1

A σ F f (A) =−1 {f (B) ; B ∈−1 A} σ E
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Exercise 1.4  

Prove the properties of probability measures given in 

Prove also the so-called Bonferronni inequality

Exercise 1.5 (Markov property and conditional independence) Three events  satisfy the Markov property

if we have . Show that  satisfy the Markov property if and only if  and

 are independent conditionally on .

Theorem 1.2

 P (A  ) −
i=1

∑
n

i  P (A  ∩
i<j

∑ i A  ) ≤j P (∪  A  ) ≤i=
n

i  P (A  ) −
i=1

∑
n

i  P (A  ∩
i<j

∑ i A  ) +j  P (A  ∩
i<j<k

∑ i A  ∩j A  )k

A  ,A  ,A  1 2 3

P (A  ∣A  ∩3 1 A  ) =2 P (A  ∣A  )3 2 A  ,A  ,A  1 2 3 A  3

A  1 A  2
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Exercise 1.6 (limsup and liminf for sequences) This exercise serves as a reminder from your analysis class.

1. Suppose  is a bounded sequence of real numbers then de�ne the limsup by

Show that  is an accumulation point of the sequence  (i.e. there exists a convergent subsequence of

 which converges to  ) and that this is actually the greatest such accumulation point.

2. What is the corresponding statement for  (just state it, no proof)?

{x  }n

 x  =
n

lim sup n   x  

n→∞
lim

k≥n
sup k

lim sup  x  n n x  n

x  n lim sup  x  n n

lim inf
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Exercise 1.7 (limsup and liminf of sets)  

Prove that two de�nitions for limsup and liminf of sets given in  are equivalent.

Show that 

I found online this pretty instructive illustration of limsup and liminf (slightly edited).

A tech company is closing down and �ring the set  of all his employees who become beggars and have to live on

the street (in this story people never die). A local church decides to start to give out free food to them every day. On
the  day  is the subset of �red employees who show up at church to get fed. There are three categories of

people:

1. Some of the people eventually get a new job and never show up at the church again.

2. Others are too proud and try be seen around all the time, but they need to eat so they always come back
eventually.

3. Lastly there are the people who after trying everything else, eventually give up start to get their food from the
church each day.

Express the categories of people in 1., 2., 3. in terms of limsup and liminf? What needs to happen for  to

exist?

Section 1.5

lim sup  A  =n n
c (lim inf  A  )n n

c

Ω

nth A  n

lim  A  n n
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Exercise 1.8 (Random permutations) Consider the following lottery game: On  lottery tickets (visibly) numbered 

to  and the numbers  to  are randomly assigned hidden under the scratch pad. (Each number comes up exactly

once, in other words one is picking a random permutation of the N numbers). If the randomly assigned number match
the visible numbers then you win. This lottery has the remarkable property that the probability that nobody wins is
essentially independent of .

Consider the events .

Compute  and  for  using the product rule.

Use the inclusion-exclusion formula to compute the probability that there is at least one winner.

Show that if  is even moderately big (maybe  or  will do) this probability that nobody wins is for all

practical purpose independent of  and nearly equal to .

Compute now the probability that there are exactly  winners in that games. Hint: There are  ways to have 

winners and to have exactly  winner, we must have  matches and no matches among the  others.

N 1
N 1 N

N

A  =i {ticket i is a winner}

P (A  )i P (A  ∩i A  )j i = j

N N ≥ 5 6
N  

e
1

k  (
k
n) k

k k n − k
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Exercise 1.9 (A series of liars) Consider a sequence of  “liars” . The �rst liar  receives information

about the occurrence of some event in the form “yes or no”, and transmits it to , who transmits it to , etc. . . Each

liar transmits what he hears with probability  and the contrary with probability . The decision of

lying or not is made independently by each liar. What is the probability  of obtaining the correct information from

? What is the limit of  as  increases to in�nity? Hint: For example you may want to de�ne a random variable

 to describe the state of the liar (1=truthful, -1=lying).

n L  , ⋯ ,L  1 n L  1

L  2 L  3

0 < p < 1 q = 1−p
x  n

L  n x  n n

X  =i ±1
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2 Discrete random variables
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2.1 Probabilities on countable state spaces
If  is countable sample space take as -algebra  to the collection of all susbets of .

Specifying a probability on  is equivalent to choosing a collection of numbers  which the probability

of the event  with

and then for any  we have

Countable additivity reduces to the fact that for absolutely convergent series we can freely interchange of
summations

if the  are pairwise disjoint.

Ω = (ω  ,ω  , … )1 2 σ A = 2Ω Ω

A p  =n P ({ω  })n

{ω  }n

p  ≥n 0  and   p  =
i

∑ n 1

A ⊂ Ω

P (A) =  P ({ω})
ω∈A

∑

P (∪  A  ) =i i  p(ω) =
ω∈∪  A  i i

∑   p(ω) =
i

∑
ω∈A  i

∑  P (A  )
i

∑ i

A  i
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We recall some standard probability models

De�nition 2.1 (Poisson) A Poisson distribution with parameter  is a probability distribution on 

with

The Poisson distribution ( see ) is ubiquitous, in particular because of
its relation with the binomial distribution (sometimes called The Law of small numbers see ). Typical examples
are the number of typos in a page, the number of earthquakes hitting a region, the number of radiactive atoms decay, etc…

De�nition 2.2 (Pareto or Zeta distribution) A Pareto distribution with decay rate  is a probability distribution

on  with

The Pareto distribution is a model with polynomial tails (see ). It is widely
used in economics where polynomial tails often occurs. Classical example is the the wealth distribution in a population, or
the size of cities, or the number of casualties in wars. See the  (“20% of the population controls 80% of the
wealth”) and the examples in 

λ > 0 {0, 1, 2, 3, ⋯ }

p  =n e  .−λ

n!
λn

https://en.wikipedia.org/wiki/Poisson_distribution
Theorem 2.1

α > 0
{1, 2, 3, ⋯ }

p  =n    where  ζ(s) =
ζ(α + 1)

1
nα+1

1
   Riemann zeta function 

n=1

∑
∞

ns
1

https://en.wikipedia.org/wiki/Zeta_distribution

Pareto principle
this paper
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De�nition 2.3 (Independent Bernoulli trials) The model is characterized by an integer  (= number of trials) and by a

number  (=the probability of success in each trials). We assume that the trials succeed or fails

independently of each other. The state space is  and we write  with

If we set  which counts the number of ’s in  then

De�nition 2.4 (Binomial random variable) The binomial distribution describe the the number of success in  Bernoulli

trials. It is a probability distribution on  with

where  is the number of ways  successes can occur among  trials.

n

0 ≤ p ≤ 1
Ω = {0, 1}n ω = (ω  , ⋯ ,ω  )1 n

ω  =i   { 0
1

 if i  trial failsth

 if i  trial succeedsth

∥ω∥  =1  ω  ∑i=1
n

i 1 ω

P ({ω}) = p (1 −∥ω∥  1 p)n−∥ω∥  1

n

{0, 1, ⋯ ,n}

p  =k  p (1 −(
k

n) k p)n−k

 =(
k
n)  

k!(n−k)!
n! k n
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De�nition 2.5 (Geometric distribution) The geometric distribution describes when the �rst succesful trial occurs in a
series of Bernoulli trials. It is a probability distribution on  with

since we have unsuccesful trial before the �rst succesful ones.

De�nition 2.6 (Negative binomial or Pascal’s distribution) The negative binomial distribution describes when the 

successful trial occurs in a series of Bernoulli trials. It is a probability distribution on  with

Sometimes the negative binomial is de�ned slightly differently and counts the number of failure until the  success

occurs.

{1, 2, 3 ⋯ , }

p  =n (1 − p) pn−1

kth

{k, k + 1, k + 2 ⋯ }

p  =n  (1 −(
k − 1
n − 1) p) pn−k k

kth
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2.2 Poisson approximation
If the number of trial  is large and the probability of success if small , then the binomial distribution can be

approximated by a Poisson distribution with parameter . A formal mathematical result is the following (proof in

the homework)

Theorem 2.1 (The Law of small numbers) Suppose the probability of success, , varies with  in such a way that

 (take ) then we have

Example: Birthday problem

There are  students in class. Event “at least two students share the same birthday”.

 probability that one pair of students have the same birthday? It is .

Number of trials here is the number of pair of students . Note:T rials are weakly dependent here.

Poisson approximation  and so .

Exact value 

See more in the nice book 

n ≫ 1 p ≪ 1
λ = np

p  n n

lim  np  =n→∞ n λ p  =n  

n
λ

  p  (1 −
n→∞
lim (

k

n) n
k p  ) =n

n−k e  

−λ

k!
λk

N A =

p = p =  365
1

n =  =( 2
N)  2

N(N−1)

λ = np =   ( 2
N) 365

1 P (A ) ≈c e
−   ( 2

N) 365
1

P (no pair share the same birthday) =   ⋯  365
365

365
364

365
365−N+1

Understanding Probability by Henk Tijms
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Code
import numpy as np1
import matplotlib.pyplot as plt2
from scipy.stats import poisson3
from scipy.stats import binom4

5
n = 40   # Number of trials6
p = 0.1  # Probability of success7
lam = n*p # paramter of the Poisson distri8

9
# Values to evaluate the PDF at10
x = np.arange(0, 15)11

12
# Calculate the PDF of the Poisson distrib13
pdfP = poisson.pmf(x, mu=lam)14
pdfB = binom.pmf(x, n, p)15

16
# Plot the PDF17
plt.figure(figsize=(5,3))  18
plt.bar(x, pdfP, color='blue', width=0.5, 19
plt.bar(x, pdfB, color='red', alpha=0.5, l20
plt.title('Poisson Approximation')21
plt.xlabel('k')22
plt.ylabel('PDF')23
plt.legend()24
plt.grid(True)25
plt.show()26
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2.3 Random variable on countable state spaces
You should think as a random variable as associating a quantity (a number or maybe a vector) (hence the name “variable”)
to an each outcomes . The probability de�ned on  implies that this variable is random, hence the name “random

variable”.

De�nition 2.7 (Random Variables on discrete state space)

Suppose  is countable set with  (e.g  or ). A map

is called a discrete random variable (RV). For example if  is itself countable then the image of  by  will always be

discrete.

The distribution of , also called the law of X is a probability measure on  called , induced from the probability

 on  and de�ned as follows: if  then

It particular for  we have .

ω ∈ Ω Ω

E E ⊂ R E = N Z

X : Ω → E

Ω Ω X

X E PX

P Ω A ⊂ E

P (A) =X P ({ω ; X(ω) ∈ A}) = P (X (A)) =−1 P (X ∈ A).

j ∈ E p  =j
X P (X = j)
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2.4 Sampling with or without replacement
A urn with  balls,  blue balls and  red balls. We select  balls out of the  balls either with or without

replacing balls after choosing them.

Sample space  with  where  means getting a red ball and  means

getting a blue ball on the  selection.

Random variable  which is the number of blue balls and take values in 

De�nition 2.8 (Sampling distributions: binomial and hypergeometric)  

If we sample with replacement, the probability to get a blue ball is always  and we get a binomial

distribution

If we sample without replacement, then we get a hypergeometric distribution

N b r = N − b n N

Ω = {0, 1}n ω = (ω  , ⋯ ,ω  )1 n ω  =i 0 ω  =i 1
ith

X(ω) = ∥ω∥  =1  ω  ∑i i {0, 1, ⋯ ,n}

p =  

b+r
b

p  =k
X P (X = k) = p (1 −(

k

n) k p) .n−k

p  =k
X P (X = k) =  

 (
n
N)

  (
k
b)(

n−k
N−b)
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2.5 Expectation
De�nition 2.9 (functions of random variables) If  is a discrete random variable taking value in  and  is

a map then  is a discrete random variables taking values in . The distribution of ,  is such that

De�nition 2.10 If  is a discrete random variable taking value in a countable set  and  a

function we de�ne the expectation of expectation of a random variable 

The expectation is well de�ned if  (in which case the sum could possible in�nite) or if the series is absolutely

convergent . In the latter case we say that  is integrable.

X E g : E → F

Y = g(X) F Y P Y

P  =j
Y P (Y = j) = P (ω : Y (ω) = j) = P (ω : g(X(ω)) = j) = P (i; g(i) =X j)

X : Ω → E E g : E → R
g(X)

E[g(X)] =  g(i)P (X =
i∈E

∑ i)

g ≥ 0
 ∣g(i)∣P (X =∑i i) < ∞ g(X)
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The following properties are easy to check using the corresponding properties of sum

Theorem 2.2 (Elementary properties of expectation)  

1. Linearity of expectation: If  then 

2. Monotonicity: If  for all  then 

3. Triangular inequality: .

We can also write the expectation using the distribution of  that is 

 (check this).

We denote by  the set of random variable with a �nite

expectation .

 is a vector space (see more on this later).

λ  ,λ  ∈1 2 R E[λ  g  (X) +1 1 λ  g  (X)] =2 2 λ  E[g  (X)] +1 1 λ  E[g  (X)]2 2

g  (x) ≤1 g  (x)2 x ∈ E E[g  (X)] ≤1 E[g  (X)]2

E[g(X)] ≤∣ ∣ E[∣g(X)∣]

Y = g(X) E[g(X)] = E[Y ] =
 jP (Y =∑

j∈F j)

L =1 {X : Ω → R,  ∣X(ω  )∣P (X =∑i i i) ≤ ∞}
E[X]

L1
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The following formula is useful (see later for a general version using Fubini-Tomelli)

Theorem 2.3 If  takes values in  then

Proof.

X N

E[X] =  P (X ≥
n=1

∑ n) =  P (X >
n>0

∑ n)

     

E[X] = P (X = 1)

= P (X = 1)

+2P (X = 2)+

+P (X = 2)+

+P (X = 2)+

+

3P (X = 3)

P (X = 3)

P (X = 3)

P (X = 3)

+ ⋯

+ ⋯

+ ⋯

+ ⋯

□
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2.6 Examples
1. Poisson RV:  and . Then

2. Bernoulli (Indicator) Random variable: Given an event  de�ne  by

Then

3. Binomial RV: The Binomial RV  with parameters  can be written as sum of  Bernoulli RV 

 where  if a success occurs. From the linarity of exectation and the previous example we see immediately

that .

X : Ω → N P (X = j) = e  

−λ
j!
λ
j

E[X] =  je   e  =
j=0

∑
∞

−λ

j!
λj

j=1

∑
∞

−λ

(j − 1)!
λj

λ  e  =
j=0

∑
∞

−λ

j!
λj

λ

A X  :A ω → {0, 1}

X  (ω) =A   { 1
0

ω ∈ A

ω ∈ A/

E[X  ] =A 1P (A) + 0(1 − P (A)) = P (A)

Z (n, p) n Z = X  +1 ⋯ +
X  n X  =i 1

E[X] = np
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3. Hypergeometric RV: If we sample  balls out  blue balls and  red balls. The we can write the number of blue balls as

 as for the binomial but this time the random variables are not independent. Clearly  is

Bernoulli with paramter . What about ? We can argue by conditioning that

and so  has the same distribution as  (they are not independent). Rather than computing on it is easier to

regroup and argue that immediately that, by symmetry, all  must have the same distribution since it does not matter

in which order the balls are drawn. So .

4. Zeta RV: If  is has zeta distribution with parameter  then

n b r

Z = X  +1 ⋯ + X  n X  1

p =  

b+r
b X  2

  

P (X  = 1)2 = P (X  = 1∣X  = 1)P (X  = 1) + P (X  = 1∣X  = 0)P (X  = 0)2 1 1 2 1 1

=   +   =  

b + r − 1
b − 1

b + r

b

b + r − 1
b

b + r

r

b + r

b

X  2 X  1

X  i

E[Z] = n  

b+r
b

X α > 0

E[X] =  n   =
n=1

∑
∞

ζ(α + 1)
1

nα+1

1
   =

ζ(α + 1)
1

n=1

∑
∞

nα
1

  {  

ζ(α+1)
ζ(α)

+∞
α > 1
0 < α ≤ 1
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5. Geometric RV: We could use  and note that

and therefore .

6. Negative binomial RV: Since a negative binomial with paramter  is the sum of  geometric RV we have .

7. Uniform distribution on : we have  for every  and thus

8. A RV without expectation: Suppose  for  and  and for a suitable normalization .

Then the series for the expecation

is unde�ned because  and .

Theorem 2.3

P (X ≥ n) = q p +n−1 q p +n ⋯ = q p(1 +n−1 q + q +2 ⋯ ) = q p  =n−1

1 − q

1
qn−1

E[X] =  P (X ≥∑
n=1
∞

n) =  q =∑
n=1
∞ n−1

 =1−q
1

 

p
1

k k E[X] =  

p
k

Ω = {1, 2, ⋯ ,N} p  =j  

N
1 j

E[X] =  (1 +
N

1
2 + ⋯ + N) =   =

N

1
2

N(N + 1)
 

2
N + 1

p  =n   

π2
3
n2
1 n ∈ Z ∖ {0} p  =0 0 c  n

 np  

n=−∞

∑
∞

n

np  =∑n>0 n ∞  np  =∑n<0 n −∞
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2.7 Independence of Random Variables
We can easily lift the notion of independence from events ( ) to random variables.

De�nition 2.11 (Independence of random variables)  

1. Two discrete random variables  and  taking values in  and  are independent if 

 for all .

2. The random variables  taking values in  are independent if 

 for all .

3. The collection of random variables  is independent if the RVs  are independent for any 

and .

It is not hard to check that

Theorem 2.4 If  and  are independent discrete RVs and  and  are such that  and

 are either non-negative or integrable then

Conversely if  holds for all  (non-negative or integrable) then  and  are independent.

P (AB) = P (A) = P (B)

X Y E F P (X = i,Y = j) =
P (X = i)P (Y = j) i ∈ E, j ∈ F

X  , ⋯ ,X  1 n E , ⋯ ,E  1 n P (X  =1 i  , ⋯ ,X  =1 n

i  ) =n P (X  =1 i  ) ⋯P (X  =1 n i  )n i  ∈1 E  , ⋯ i  ∈1 n E  ∈n F

(X  )  n n≥1 X  , ⋯ ,X  i  1 i  k
k

I  , ⋯ , i  1 k

X Y h : E → R g : F → R g(X)
h(Y )

E[g(X)h(Y )] = E[g(X)]E[h(Y )]. (2.1)

Equation 2.1 h, g X Y
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2.8 Variance of a RV
De�nition 2.12 (Variance of a random variables) If  is a discrete random variable with �nite mean  then

the variance of , denoted by  is

An alternative formula is

If  is �nite then  has �nite mean and thus �nite variance because of the elementary inequality .

If  and  are independent random variables then

Suppose  are independent random variables with common mean  and common variance

. Let  be their sum and  their average. Then

X μ = E[X]
X V [X]

V [X] = E[(X − μ) ] =2
 (j −

j

∑ μ) P (X =2 j)

E[X ] −2 E[X]2

E[X ]2 X ∣x∣ ≤ 1 + x2

X Y

V [X + Y ] = V [X] + V [Y ]

X  , ⋯ ,X  1 n E[X  ] =i μ

V [X  ] =i σ2 S  =n X  +1 ⋯X  n  

n
S  n

E  =[
n

S  n ] μ  and  V  =[
n

S  n ]  

n

σ2
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2.9 Conditional expectation
Conditioning on event, random variables, and eventually -algebras is at the center of probability theory. We start with

afew examples for discrete random variables and we will extend to the general case later on.

De�nition 2.13 (conditional expectation with respect to an event) If  is a (�xed) event with  and  is

integrable (or non-negative) then the conditional expectation of  conditioned on the event  is given by

Note that this is simply the expectation with respect to the probability  which we have seen in  is a

probability in its own right.

Moreover since  the sum in  well de�ned if  is integrable wioth respect to .

We can push this a little more by considering two discrete RVs  and  and condition on the event .

σ

B P (B) > 0 g(X)
g(X) B

E[g(X)∣B] =  g(i)P (X =
i

∑ i∣B) (2.2)

P (⋅∣B) Theorem 1.6

P (X = i∣B) ≤  

P (B)
P (X=i)

Equation 2.2 g(X) P

X Y Y = j
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De�nition 2.14 (conditional expectation with respect to a random variable) If  is integrable or non-negative

then conditional expectation of  conditioned on the event  is given by

Note that the right hand side of  is a function of , say  and thus we can de�ne a random variable

 which is called the conditional expectation of  conditioned on  and is denoted by

Example Suppose  and  are two independent binomial RV each with paramters . We show that

. We have

and thus  conditioned on  has an hypergeometric distribution when sampling  balls out of the urns

with  red balls and  black balls. As we have seen before (or can seen by symmetry) the mean of such distribution is .

This implies that .

g(X,Y )
g(X,Y ) Y = j

E[g(X,Y )∣Y = j] =  g(i, j)P (X =
i

∑ i∣Y = j) (2.3)

Equation 2.3 j h(j)
h(Y ) g(X,Y ) Y

E[g(X,Y )∣Y ].

X  1 X  2 (N , p)
E[X  ∣X  +1 1 X  ] =2  2

X  +X  1 2

  

P (X  = k∣X  + X  = n)1 1 2 =  =  

P (X  + X  = n)1 2

P (X  = k)P (X  = n − k)1 2

 p (1 − p)(
n

2N) n 2N−n

 p (1 − p)  p (1 − p)(
k
N) k N−k(

n−k
N ) n−k N−(n−k)

=  

 (
n

2N)

  (
k
N)(

n−k
N )

X  1 X  +1 X  =2 n n

N N  2
n

E[X  ∣X  +1 1 X  ] =2  2
X  +X  1 2
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Note that we have

To show thus we use the fact (from Math 523) that if the sequences  is integrable (that is ) then

. This is a special case of Fubini Theorem which we will prove later on in full generality.

From this we have obtained the formula for conditioning

Theorem 2.5 If  and  are discrete random variables and  is integrable then we have

Note that is a generalization of the conditioning formula. If we take  and  then have for example

. Thus

  

E[h(Y )] = h(j)P (Y = j) =   g(i, j)P (X = i∣Y = j)P (y = j)
j

∑
j

∑
i

∑

=  g(i, j)P (X = i,Y = j) = E[g(X,Y )]
j

∑
i

∑

a  ij  ∣a  ∣ <∑ij ij ∞
  a  =∑
i
∑

j ij   a  ∑
j
∑

i ij

X Y g

E[g(X,Y )] = E[E[g(X,Y )∣Y ]]

Y = 1  B X = 1  A

P (1  =A 1∣1  =B 1) = P (A∣B)

E[1  ∣1  =A B 1] = P (A∣B), [1  ∣1  =A B 0] = P (A∣B )c
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2.10 Homework problems
Exercise 2.1 (Poisson approximation) Prove 

Exercise 2.2 (Applications of the Poisson approximation)  

In the german lottery 6 balls are drawn at random out of 49 balls. As it happened within a year or so the exact same
6 number were drawn twice which seems to be an amazing coincidence since the probability to to draw a sequence
of number of is . Or is it?

When this event happened suppose the german lottery had been played twice a week for 28 years. Compute the
probability that the same numbers appear twice during those 28 years? (If you want you may use a Poisson
approximation.)

Use a Poisson approximation to estimate the probability that at least  people in a room of  share the same

birthday.

Revisit the lottery problem of . Use a Poisson approximation to estimate the probability that there are
exactly  winners and compare with the exact result.

Theorem 2.1

1/  =( 6
49) 1/13, 983, 816

3 N

Exercise 1.8
k
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Exercise 2.3 (Hypergeometric and lottery)  

In the  at each drawing 5 balls are selected at random among 69 white balls numbered 1 to 69 and 1 ball is
seleccted among 26 red balls numbered 1 to 26. A powerball ticket costs $2 and consists of selected 5+1 numbers.
You get a prize if the balls selected math the winning balls see the .

Express the probability of each prize using the hypergeometric distribution.

All the prizes are �xed except the jackpot obtained for 5 correct white ball plus the red powerball. You will
observe that most people will play only when the jackpot is big enough. As a (rational) mathematician
determine the minimal jackpot for which it makes sense to buy a powerball ticket?

Exercise 2.4 (Variance of the hypergeometric random variable) Show that for an hypergeometric random variable 

when you sample  balls out of an urn containing  blue balls$ and  balls and  is the number of blue balls,

the variance of  is given by

Note that if we were sampling the with replacement the term in red would not be present.
Hint: Write  and compute  by expanding the square and using the interchangability of the

random variables .

powerball

prizes here

Z

n b r = N − b Z

Z

V [Z] = n    

N

b

N

N − b

N − 1
N − n

Z = X  +1 ⋯ + X  n E[Z ]2

X  i
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Exercise 2.5 Suppose  is a geometric random variable with success parameter .

Show that ? What does that mean?

Show that 

Show that . Use this to compute  and .

Exercise 2.6 (More on conditioning) Suppose  and  are two discrete random variables. Show that

X p

P (X > m + n∣X > n) = P (X > m)

E  =[
X
1 ] log p(  

p−1
p )

E X(X − 1)(X − 2) ⋯ (X − r + 1) =[ ]  

pr
r!(1−p)r−1

E[X ]2 E[X ]3

X Y

E[g(X)h(Y )∣X] = g(X)E[h(Y )∣X]
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Exercise 2.7 (Conditional Variance) A natural way to de�ne conditional variance is to start with the de�nition

which is simply the variance with respect to the conditional probability .

This allows to de�ne  as the function of the random variable  whose value is equal to  when

. Prove the conditional variance formula sometimes also called the Law of total variance

Exercise 2.8 (Random sum of random variables) Suppose  is a random variables taking value in . If  are IID

(discrete) random variables

Use the conditioning formula for mean and variance to compute

in terms of the mean and variance of  and .

V [X∣Y = j] = E[(X − E[X∣Y = j]) ∣Y =2 j] = E[X ∣Y =2 j] − E[X∣Y = j]2

P (⋅∣Y = j)
V [X∣Y ] Y V [X∣Y = j]

Y = j

V [X] = E[V [X∣Y ]] + V [E[X∣Y ]]

N N Y  j

S  =N  Y  with the convention S  =
n=1

∑
N

j 0 0

E[S ]  and V [S  ]N N

Y N
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Exercise 2.9 (Eggs) The chickens in my backyard lays a random number  of eggs, each egg is green with probability 

and brown with probability  indepedently of the other eggs and of .

Show that if  has a Poisson distribution then the number of green eggs layed has a Poisson distribution with

parameter . Hint: Write the number of green eggs can be written as the random sum  of

Bernoulli random variables. Use conditioning

Show that the the number of green eggs and brown eggs layed are independent random variables.

T p

1 − p T

T

θp X  +1 ⋯ + X  T
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3 Borel Stong Law of Large
numbers
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3.1 Frequentist vs Bayesian
There are two broad interpretation of probability frequentist versus Bayesian (see e.g

)

In the Bayesian approach (subjective probability) the probability of an event  measure the degree of belief

assigned by the probabilist to the ocurrence of the event. A good example of that approach in sports betting: How do
you compute the probability that the Kansas City Chiefs will win the superbowl? It really measure the degree of belief
assigned by a bettor (or by a bookmaker) to that event.
This approach works well with Bayes formula

which describes how information (here the occurence of ) modify your belief about the occurence of .

In the frequentist approach the probability of an event is assigned by observing its frequency over time when
repeating the same experiment multipl times. This works well if you want to compute the probability that the roulette
wheel lands on the number 23. But this work not so well to compute the probbaility that an earthquake of magnituyde
more than  will hit San Francisco area.

Underlying the frequentist approach is the strong law of large number which we prove in this section: if we repeat the
same experiment  times in the same conditions, and independetly of each other then

https://en.wikipedia.org/wiki/Probability_interpretations

P (A)

 =

Posterior

 P (A∣B)     

P (B)
P (B∣A)

prior

 P (A)

B A

6

N

 ⟶
N

# of occurrences of the event A
P (A)  as N → ∞
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3.2 Borel-Cantelli Lemma
Recall that 

Theorem 3.1 (The �rst Borel Cantelli Lemma) Let  be a sequence of events. Then

Proof. The sets  decrease to  and so by sequential continuity

By countable additivity we have

Since, by assumption,  the tail sum  must go to  as  and this concludes the

proof. 

lim sup  A  =n n ∩ ∪  n≥1 k≥n A  =k {ω ∈ Ω ; ω belongs to infinitely manyA  }n

A  n

 P (A  ) <
n

∑ n ∞ ⟹ P  A  =(
n

lim sup n) 0

B  =n ∪  A  k≥n k lim sup  A  n n

P (  A  ) =
n

lim sup n  P (B  ) .
n→∞
lim n

P (B  ) =n P (∪  A  ) ≤k≥n k  P (A  ) .
k≥n

∑ k

 P (A  ) <∑
n n ∞  P (A  )∑

k≥n k 0 n → ∞
□
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For the converse statement we need to add an assumption of independence.

Theorem 3.2 (The second Borel Cantelli Lemma) Let  be a sequence of independent. Then

Proof. Before we do the proof we need to remind the reader about some elementary fact about series. For two sequences
of number  and  we sat that  if . A result from analysis states that

By L’Hospital rule  and thus  converges if and only if  converges.

Since  for every  we must have then

Thus, using the independence assumption .

This implies that  and thus . 

A  n

 P (A  ) =
n

∑ n ∞ ⟹ P  A  =(
n

lim sup n) 1

(a  )n (b  )n a  ∼n b  n lim   =n→∞ b  n

a  n 1

If a  ∼n b   then   a   converges  ⟺n

n

∑ n  b   converges 
n

∑ n

lim   =x→0 x

− ln(1−x) 1  a  ∑n n −  ln(1 −∑n a  )n

 P (A  ) =∑
k≥n k ∞ n

∞ = −  ln(1 −
k≥n

∑ P (A  )) =k − ln  (1 −
k≥n

∏ P (A  ))k

0 =  (1 −∏k≥n P (A  )) =k  P (A  ) =∏k≥n k
c P  A  (⋂k≥n k

c)
P (  A  ) =⋃k≥n k 1 P (lim sup  A  ) =n n 1 □
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3.3 Markov inequality and the weak law of large numbers
Let  be a sequence of IID discrete random variables with expected value  ((e.g take independent copies of the

indicator function  for some set). Then we set

Theorem 3.3 (Markov inequality) If  is a non-negative random variable then for any 

Proof. We have the equality

and taking expectation gives

X  i p

X = 1  A

S  =n X  +1 ⋯ + X  n

Z ≥ 0 a > 0

P (Z ≥ a) ≤  .
a

E[Z]

Z ≥ a1  ,Z≥a

E[Z] ≥ aP (Z ≥ a).

□
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Using the Markov inequality we can then prove Chebyshev

Theorem 3.4 (Chebyshev inequality) Suppose  is a random variable with mean  and variance , then

Proof. This simply Markov inequality applied to the random variable  and with . 

Theorem 3.5 (Weak Law of Large Numbers) Suppose  are IID random variable with common mean  and variance

, then for any 

Proof. The random variable  has mean  and variance  and applying Chebyshev gives

and this proves the statement. 

X μ σ2

P ∣X − μ∣ ≥ ϵ ≤( )  

ϵ2

σ2

(X − μ)2 a = ϵ2 □

X  i μ

σ2 ϵ ≥ 0

 P   − μ  ≥ ϵ =
n→∞
lim (

∣

∣

n

S  n

∣

∣ ) 0

 

n
S  n μ  

n
σ2

P   − μ  ≥ ϵ ≤(
∣

∣

n

S  n

∣

∣ )  

nϵ2

σ2

□

58

Warming up



3.4 Strong Law of Large numbers
We prove now the strong Law of Large numbers for sum of independent discrete random variables. Once we have
develop the theory of integration a bit more we will see that the same proof applies to general random variables (with
�nite mean and variance).

Theorem 3.6 (Strong Law of Large numbers) Let  be a sequence of IID (indendent and identically distributed)

discrete random variables with common means  and variance . Then

The proof is based on the following Lemma which is a consequence of Borel Cantelli Lemma

Lemma 3.1 Suppose that for any  we have

then  converges to  almost surely, that is

X  i

E[X  ] =i μ V [X  ] =i σ2

P   = μ =(
n→∞
lim

n

X  + ⋯ + X  1 n ) 1

ϵ > 0

 P (∣Z  −
n

∑ n μ∣ ≥ ϵ) < ∞

Z  n μ

P ω ;  Z  (ω) = μ =(
n

lim n ) 1
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Proof. If  converges to  then for any  there exists  (which may depends on ) such that 

for all . Therefore

By our assumption and the �rst Borel-Cantelli Lemma  we have that

and thus

Proof of . Chebyshev inequality tells us that  which unfortunately is not summbale

in  so we cannot use the Lemma directly. There are various way around this and here is an elegant one: consider the

random variable

that is, we consider a subsequence of .

Z  (ω)n μ ϵ > 0 N ω ∣Z  (ω) −n μ∣ < ϵ

n ≥ N

  

ω ;  Z  (ω) = μ{
n

lim n } = ω ; ∣Z  (ω) − μ∣ ≥ ϵ for finitely many n{ n }

= ω ; ∣Z  (ω) − μ∣ ≥ ϵ for infinitely many n{ n }c

Theorem 3.1

P ω ; ∣Z  (ω) − μ∣ ≥ ϵ for infinitely many n =( n ) 0

P ω ;  Z  (ω) = μ =(
n

lim n ) 1

□

Theorem 3.6 P   − μ  ≥ ϵ ≤(∣∣ n
S  n

∣∣ )  

nϵ2
σ2

n

Z  =k  

k2

S  k2

 

n
S  n
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Then

which is summable in  and thus by Lemma  we have that  converges to  with probability . We now use a

squeezing argument.

Assume next that the random variable  are non-negative then for any  let  such that .

Since all the terms are positive we have

Now as ,  and since 

Simlarly  and this shows that  converges almost surely.

Finally for the general case note that if a sequence  then  and so if we write  and

 we have  and . Therefore  converges if and only if  and 

converges and we can now apply the previous argument. .

P Z  − μ ≥ ϵ =(∣ k ∣ ) P   − μ  ≥ ϵ ≤(
∣

∣

k2

S  k2

∣

∣ )  

k ϵ2 2

σ2

k Lemma 3.1  

k2
S  

k2 μ 1

X  i n k = k(n) k ≤2 n ≤ (k + 1)2

  ≤
k2

X  + ⋯ + X  1 k2

n

k2

 ≤
n

X  + ⋯ + X  1 n
  

n

(k + 1)2

(k + 1)2

X  + ⋯ + X  1 (k+1)2

n → ∞ k = k(n) → ∞ lim   =k→∞ k2
(k+1)2

1

1 ≤  ≤
k2

n
 ⟹

k2

(k + 1)2

  =
n

lim
k2

n
1 .

lim   =n→∞ n

(k+1)2

1  

n
S  n

a  →n a ∣a  ∣ →n ∣a∣ a =+ max{a, 0}
a =− −min{a, 0} a = a −+ a− ∣a∣ = a a+ − a  n a  n

+ a  n
−

□
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3.5 Homework problems
Exercise 3.1 Consider a hypergeometric random variable  with parameters  ,  and

sampling size . Consider the following limits

Argue that under these condition as ,  converges almost surely to .

Hint: Look at the formula for the variance in  and study the proof of the strong law of large numbers. Your
argument should not be long!

Exercise 3.2 (The in�nite Monkey theorem) The short story The Library of Babel by Jorge Luis Borges
 is about a vast library which contains all possible 410-page books

of a certain format and character sets. Give now a Monkey a typewriter and show, under suitable assumption on the
typing abilities of the monkey, that the monkey will eventually type every book in the Libray of Babel in�nitely many
times.

Z = Z  n,b,N N b r = N − b

n

n,N → ∞, n ≤ N , p =  

N

b

n,N → ∞  Z  

n
1

n,b,N p

Exercise 2.4

https://en.wikipedia.org/wiki/The_Library_of_Babel
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Exercise 3.3 (Bob and Alice do online dating) On a certain day, Alice decides to look for a potential life partner on an
online dating portal. Being a very thorough and con�dent person, she decides that everyday she will pick a guy
uniformly at random from among the male members of the dating portal, and go out on a date with him. Unbeknownst
to Alice her neighbor Bob, an exceedingly shy mathematician, is interested in dating her. Bob decides that he will go out
on a date with Alice only on the days that Alice happens to pick him from the dating portal, of which he is already a
member.

For the �rst two parts, assume that 50 new male members and 40 new female members join the dating portal
everyday.

1. What is the probability that Alice and Bob would have a date on the nth day? Do you think Bob and Alice would
eventually stop meeting? Justify your answer, clearly stating any additional assumptions.

2. Now suppose that Bob also picks a girl uniformly at random everyday, from among the female members of the
portal, and that Alice behaves exactly as before. Assume also that Bob and Alice will meet on a given day if and only
if they both happen to pick each other. In this case, do you think Bob and Alice would eventually stop meeting?

3. For this part, suppose that Alice and Bob behave as in part 1., i.e.,Alice picks a guy uniformly at random, but Bob is
only interested in dating Alice. However, the number of male members in the portal increases by 1 percent
everyday. Do you think Bob and Alice would eventually stop meeting?
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