
STAT 315: Binomial, Multinomial,Hypergeometric

Luc Rey-Bellet

University of Massachusetts Amherst

luc@math.umass.edu

November 4, 2025

Luc Rey-Bellet (UMass Amherst) STAT 315 November 4, 2025 1 / 8



Variance of a sum

If
Y = X1 + X2 + · · ·+ Xn

then

E [Y ] =
n∑

i=1

E [Xi ]

and

V [Y ] =
n∑

i=1

V [Xi ] + 2
∑
i 6=j

Cov(Xi ,Xj)

=
n∑

i=1

V [Xi ] +
∑
i>j

Cov(Xi ,Xj)
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Sampling without replacement: binomial

Suppose Y binomial with parameters n, p. Then

Y = X1 + · · ·+ Xn , where Xi =

{
1 i th trial = success
0 i th trial = failure

We have
E [Xi ] = p, V [Xi ] = p(1− p)

The Xi are independent and so Cov(Xi ,Xj) = 0 and thus

Mean: E [Y ] = np , Variance: V [Y ] = np(1− p)
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Sampling without replacement: hypergeometric

Sample n balls out of N balls with r red balls and N − r green balls.

Y = X1 + · · ·+ Xn where Xi =

{
1 i th ball = red
0 i th ball = green

The Xi are not independent but they are identically distributed. It does
not matter how we order the n balls we sample!
We have

V [Y ] =
n∑

i=1

V [Xi ] + 2
∑
i<j

Cov(Xi ,Xj)

P(X1 = 1) = p =
r

N
=⇒ V (X1) =

r

N

(
1− r

N

)
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P(X1 = 1,X2 = 1) =
r

N

r − 1

N − 1
=⇒ E (X1,X2) =

r

N

r − 1

N − 1

and so

Cov(X1,X2) =
r

N

r − 1

N − 1
− r

N

r

N
= − r

N

(
1− r

N

) 1

N − 1

that is X1 and X2 are negatively correlated.
By symmetry Cov(Xi ,Xj) are all equal (i 6= j) and so we find

V [Y ] = n
r

N

(
1− r

N

)
− n(n − 1)

r

N

(
1− r

N

) 1

N − 1

V (Y ) = n
r

N

(
1− r

N

)(N − n

N − 1

)
Variance of Hypergeometric

Note as N →∞ if we assume r
N → p then N−n

N−1 → 1 and

V [Y ]→ np(1− p)
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The Multinomial Distribution

Multinomial

We perform n independent trials, each with k possible outcomes
C1,C2, . . . ,Ck .

Each outcome Ci occurs with probability pi , where pi ≥ 0 and∑k
i=1 pi = 1.

Let Xi be the number of times outcome Ci occurs.

Definition:

(Y1,Y2, . . . ,Yk) ∼ Multinomial(n; p1, p2, . . . , pk)

PDF:

P(X1 = n1, . . . ,Xk = nk) =
n!

n1!n2! · · · nk !
pn11 pn22 · · · p

nk
k ,

k∑
i=1

ni = n.
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Examples

Example 1: Rolling a fair die

Roll a fair die n = 10 times:

(X1,X2,X3,X4,X5,X6) ∼ Multinomial
(

10; 1
6 , . . . ,

1
6

)
P(X = (2, 1, 3, 0, 2, 2)) =

10!

2!1!3!0!2!2!

(
1
6

)10
.

Each Xi counts how many times face i appears.

Example 2: Survey on preferred transport mode

20 people choose: Car (0.5), Bus (0.3), Bike (0.2):

(Xcar,Xbus,Xbike) ∼ Multinomial(20; 0.5, 0.3, 0.2)

P(X = (10, 6, 4)) =
20!

10!6!4!
(0.5)10(0.3)6(0.2)4.

Interpretation: counts across categories follow a multinomial law.
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Properties of the multinomial

Mean, Variance, Covariance

Mean and variance: E [Yi ] = npi , V (Yi ) = npi (1− pi ).

Covariance: Cov(Xi ,Xj) = −npipj

We write

Yi = Xi ,1 + · · ·+ Xi ,n where Xi ,l =

{
1 l th trial = Ci

0 l thtrial = something else

Since the trials are independent with P(Xi ,l = 1) = pi we find, like for a
binomial random variable, E [Yi ] = npi and V (Yk) = npi (1− pi ).

Using that the trials are independent we find

Cov(Yi ,Yj) =
n∑

l ,m=1

Cov(Xi ,l ,Xj ,m) =
n∑
l

Cov(Xi ,l ,Xj ,l)

=
n∑

l=1

E [Xi ,lXj ,l ]− E [Xi ,l ]E [Xj ,l ] = −npipj

since the product Xi ,lXj ,l is always 0 for i 6= j .
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