STAT 315: Mean, variance, and covariance for discrete joint RV

Luc Rey-Bellet

University of Massachusetts Amherst luc@math.umass.edu

November 5, 2025

Expected value of function of joint random variables

If Y_1, Y_2 are joint RV and $g : \mathbb{R}^2 \to \mathbb{R}$ is a function then we can compute the expected value of $g(Y_1, Y_2)$

Expected value(discrete

For joint random discrete variables Y_1 and Y_2 with joint pdf $p(y_1, y_2)$ and a function $g(Y_1, Y_2)$ we have

$$E[g(Y_1, Y_2)] = \sum_{y_1, y_2} g(y_1, y_2) p(y_1, y_2)$$
 discrete RV

Expected value (continuous

For joint random continuous variables Y_1 and Y_2 with joint pdf $f(y_1, y_2)$ and a function $g(Y_1, Y_2)$ we have

$$E[g(Y_1, Y_2)] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(y_1, y_2) f(y_1, y_2) dy_1 dy_2$$
 continuous RV

Linearity of expected value

Linearity

For any constant c

$$E[c] = c$$

• For any function $g(Y_1, Y_2)$ and any constant c

$$E[c g(Y_1, Y_2)] = c E[g(Y_1, Y_2)]$$

• For any functions $g(Y_1, Y_2)$ and $h(Y_1, Y_2)$

$$E[g(Y_1, Y_2) + h(Y_1, Y_2)] = E[g(Y_1, Y_2)] + E[h(Y_1, Y_2)]$$

Same proof as for f(Y)!

Independence and products

Independence and products

If Y_1 and Y_2 are independent then for any functions $g(Y_1)$ and $h(Y_2)$

$$E[g(Y_1)h(Y_2)] = E[g(Y_1)]E[h(Y_2)]$$

For example independence implies that have

$$E[Y_1Y_2] = E[Y_1]E[Y_2]$$

Proof: Independence means $p(y_1, y_2) = p(y_1)p(y_2)$ and so

$$E[g(Y_1)h(Y_2)] = \sum_{y_1,y_2} g(y_1)h(y_2)p(y_1)p(y_2)$$

$$= \sum_{y_1} g(y_1)p(y_1) \sum_{y_2} h(y_2)p(y_2)$$

$$= E[g(Y_1)]E[h(Y_2)]$$

Covariance

Covariance of Y_1 and Y_2

If Y_1 and Y_2 are random variables with means $\mu_1 = E[Y_1]$ and $\mu_2 = E[Y_2]$ then the covariance of Y_1 and Y_2 is

$$Cov(Y_1, Y_2) = E[(Y_1 - \mu_1)(Y_2 - \mu_2)]$$

and the correlation coefficient ρ is

$$\rho = \rho(Y_1, Y_2) = \frac{\operatorname{Cov}(Y_1, Y_2)}{\sigma_1 \sigma_2}$$

We say that Y_1 and Y_2 are

- positively correlated if $Cov(Y_1, Y_2) > 0$
- negatively correlated if $Cov(Y_1, Y_2) < 0$
- uncorrelated if $Cov(Y_1, Y_2) = 0$

Properties of covariance

We have the formula

$$Cov(Y_1, Y_2) = E[Y_1Y_2] - E[Y_1]E[Y_2]$$

- ② $Cov(Y_1, Y_1) = V(Y_1)$ and so $\rho(Y_1, Y_1) = 1$
- We have Cauchy-Schwartz inequality

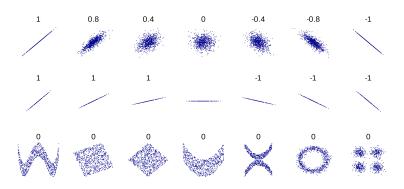
$$|E[Z_1Z_2]| \le \sqrt{E[Z_1^2]E[Z_2^2]}$$

and as a consequence the correlation coefficient satisfies

$$-1 \le \rho \le 1$$

• If Y_1 and Y_2 are independent then $Cov(Y_1, Y_2) = 0$ and so Y_1 and Y_2 are uncorrelated. But the converse is not always true

Example of correlation coefficients



Correlation capture the linear dependence between RV (but not non-linear dependences) (third row)

The correlation reflects the noisiness and direction of a linear relationship (top row), but not the slope of that relationship (second row) Image taken from Wikipedia

Example: Discrete Random Variables

Story: A professor records how long students study (X) and whether they pass an exam (Y).

- $X \in \{0, 1, 2\}$: number of hours studied
- $Y \in \{0, 1\}$: pass (1) or fail (0)

Joint Probability Distribution:

X	Y=0	Y = 1	$p_X(x)$
0	0.30	0.05	0.35
1	0.10	0.20	0.30
2	0.05	0.30	0.35
$p_Y(y)$	0.45	0.55	1

Step 1: Expectations

$$\mathbb{E}[X] = 0(0.35) + 1(0.30) + 2(0.35) = 1.0, \quad \mathbb{E}[Y] = 0(0.45) + 1(0.55) = 0.55.$$

Step 2: Mixed Moment

$$\mathbb{E}[XY] = 0(0.05) + 0(0.30) + 1(0.20) + 2(0.30) = 0.80.$$

Step 3: Covariance

$$Cov(X, Y) = \mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y] = 0.80 - (1.0)(0.55) = \boxed{0.25.}$$

Interpretation: A positive covariance (0.25) indicates that students who study more tend to have higher probability of passing. If study time and success were independent, covariance would be 0.

Examples

- For the joint RV (X, Y) with PDF $f(x, y) = 2e^{-2x}e^{-y}, x \ge 0, y \ge 0$ compute Cov(X, Y).
- For gas tank problem with the joint RV (Y_1, Y_2) with joint PDF $f(y_1, y_2) = 3y_1$ for

$$0 \le y_2 \le y_1 \le 1$$

compute $\mathrm{Cov}(\mathrm{X},\mathrm{Y})$ and the correlation coefficient $\rho(Y_1,Y_2)$. Compute the mean and the variance of Y_1-Y_2 (the quantity of unsold gas).

• Suppose Y_1 and Y_2 be the proportion of two chemical in a mixture so that we must have $Y_1 + Y_2 \le 1$. We take the PDF to be

$$f(y_1, y_2) = 2$$
 if $y_1 \ge 0, y_2 \ge 0, y_1 + y_2 \le 1$

Compute $\mathrm{Cov}(Y_1,Y_2)$ and the correlation coefficient $\rho(Y_1,Y_2)$

Correlation versus independence

• Take X uniform on [-1,1] and $Y=X^2$. Are X and Y independent? Compute Cov(X,Y).

Consider the discrete RVs with joint PDF

$X \setminus Y$	-1	0	1	$P_X(x)$			
-1	1/16	3/16	1/16	5/16			
0	3/16	0	3/16	6/16			
1	1/16	3/16	1/16	5/16			
$P_Y(y)$	5/16	6/16	5/16				
Compute Cov(Y V)							

Compute Cov(X, Y).

Are X and Y independent?

Linear combinations of random variables

Linear combination

For random variables Y_1 , Y_2 and Z_1 , Z_2 and constants a_1 , a_2 and b_1 , b_2 . Expected Value

$$E[a_1Y_1 + a_2Y_2] = a_1E[Y_1] + a_2E[Y_2]$$

Variance

$$V(a_1Y_1 + a_2Y_2) = a_1^2V(Y_1) + a_2^2V(Y_2) + 2a_1a_2\text{Cov}(Y_1, Y_2)$$

Covariance

$$Cov(a_1Y_1 + a_2Y_2, b_1Z_1 + b_2Z_2) = a_1b_1Cov(Y_1, Z_1) + a_1b_2Cov(Y_1, Z_2) + a_2b_1Cov(Y_2, Z_1) + a_2b_2Cov(Y_2, Z_2)$$

Practice: Variance, Covariance, and Correlation

- **3** X, Y are uncorrelated with Var(X) = 4, Var(Y) = 9. Compute Var(2X 3Y).
- 2 X, Y have Var(X) = 1, Var(Y) = 4, Cov(X, Y) = 1. Compute:
 - (a) Var(X + Y)
 - (b) Var(2X Y)
- 3 Given Var(X + Y) = 25, Var(X) = 9, Var(Y) = 16, find Cov(X, Y).
- **1** X_1, X_2, X_3 are uncorrelated with $Var(X_1) = 1$, $Var(X_2) = 2$, $Var(X_3) = 3$. Compute $Var(2X_1 X_2 + 3X_3)$.
- **3** X, Y, Z have Var(X) = Var(Y) = Var(Z) = 1 and $Cov(X, Y) = Cov(X, Z) = Cov(Y, Z) = \rho$. Find Var(X + Y + Z) in terms of ρ .
- **3** X, Y have Var(X) = 9, Var(Y) = 4, Cov(X, Y) = -3. Compute Var(X + 2Y) and discuss the effect of negative covariance.
- (With correlation) E[X] = E[Y] = 0, Var(X) = 4, Var(Y) = 9, $\rho(X, Y) = 0.5$. Compute:
 - (a) Cov(X, Y)
 - (b) Var(2X Y)
 - (c) $\rho(2\dot{X}-Y,X)$

Diversify to minimize risk

.

You are given 2 investments X_1 and X_2 which are independent, say $X_1 = \text{crypto}$ and $X_2 = \text{mongolian sheeps}$.

Assume that

$$E[X_1] = E[X_2]$$
 same average return

$$V(X_1) = \sigma_1^2$$
 $V(X_2) = \sigma_2^2$ different risks

: Goal is to minimize the risk of your investment: What should you do?

Diversify: Allocate proportion α to X_1 and $(1-\alpha)$ to X_2 with $0 \le \alpha \le 1$

$$X = \alpha X_1 + (1 - \alpha)X_2$$

$$V(X) = \alpha^2 V(X_1) + (1 - \alpha)^2 V(X_2) = \alpha^2 \sigma_1^2 + (1 - \alpha)^2 \sigma_2^2$$

Minimize with respect to α :

$$0 = 2\alpha\sigma_1^2 - 2(1-\alpha)\sigma_2^2 \implies \alpha = \frac{\sigma_2^2}{\sigma_1^2 + \sigma_2^2}$$

If $\sigma_1^2=10$ (crypto) and $\sigma_2^2=1$ (sheep) you should invest $\alpha^*=\frac{1}{11}$ in crypto and $(1-\alpha^*)=\frac{10}{11}$ in sheep.

Then the optimal variance is

$$V(X) = \left(\frac{1}{11}\right)^2 \times 10 + \left(\frac{10}{11}\right)^2 \times 1 = \frac{110}{121} < 1$$

Don't put all your eggs in the same basket.

Mean and Variance of sample averages

Empirical or sample average

Suppose $Y_1, Y_2, \dots Y_n$ are independent random variables with

$$E[Y_i] = \mu \qquad V(Y_1) = \sigma^2$$

Then

$$E\left[\frac{Y_1+Y_2+\cdots Y_n}{n}\right]=\mu$$

and

$$V\left(\frac{Y_1+Y_2+\cdots Y_n}{n}\right)=\frac{\sigma^2}{n}$$

Very important for later