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1 Conditional Expectation
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1.1 Motivation and definition
Martingales are models of fair games and to understand then we need to understand first conditional expectations.
Conditional expectations is a very useful concept to understand how information obtained from measurement can be
incorporated to make predictions.

Suppose we are given a random variable . If we know nothing about the outcome of experiment generating  then

our best guess for the value of  would be the expectation . On the contrary if we measure  itself then our

prediction would  itself! Conditional expectations deals with making best guesses on the possible value of  when

we have some partial information which is described by some collection of other random variables .

Example: discrete RV: Suppose  and  are discrete random variables with joint density and marginals

To define the conditional expectation  we need to give the best guess for  given that we have observed

 which is

which is well defined for those  with .

Y Y

Y E[Y ] Y

Y Y

X ​,X ​, ⋯ ,X ​1 2 n

X Y

 joint pdf  p(x, y) = P (X = x,Y = y) marginals  p(x) = ​p(x, y) , p(y) =
y

∑ ​p(x, y)
x

∑

E[Y ∣X] Y

X = x

E[Y ∣X = x] = ​yP (Y =
y

∑ y∣X = x) = ​y ​ =
y

∑
P (X = x)

P (Y = y,X = x)
​y

y

∑
p(x)
p(x, y)

x p(x) > 0

5



The function  defines a function of the random variable  which we define to be . For example

if we roll two independent dice and  is value of the first roll and  the sum of the two rolls

then we have

and this

so that .

In a similar way we can define  for discrete RV with joint pdf .

E[Y ∣X = x] X E[Y ∣X]
X Y

f(x, y) = ​ , x =
36
1

1, 2, ⋯ , 6 y = x + 1, ⋯ ,x + 6.

E[Y ∣X = x] = x + ​

2
7

E[Y ∣X] = X + ​2
7

E[Y ∣X ​, ⋯ ,X ​]1 n p(x ​, ⋯ ,x ​, y)1 n
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Example: continuous RV: In a similar way, if  are continuous RV with a joint pdf  with

marginal  then the function

defines a probability density function provided  is such that . Then the expectation

defines a function of . We leave this function undefined whenever  (or set it to  if you

prefer).

Any function of  can be used to define a RV . Note that, as a RV, this

does not depend on how the function is defined when  since such  have probability .

We call the corresponding random variable  and call it the conditional expectation of  given

.

Y ,X ​, ⋯X ​1 n f(x ​, ⋯ ,x ​, y)1 n

f(x ​, ⋯ ,x ​) =1 n f(x ​, ⋯ ,x ​, y)dy∫ 1 n

y ↦ ​

f(x ​, ⋯ ,x ​)1 n

f(x ​, ⋯ ,x ​, y)1 n

(x ​, ⋯ ,x ​)1 n f(x ​, ⋯ ,x ​)1 n = 0

E[Y ∣X ​ =1 x ​ ⋯X ​ =1 n x ​] =n y ​ dy∫
f(x ​, ⋯ ,x ​)1 n

f(x ​, ⋯ ,x ​, y)1 n

(x ​, ⋯ ,x ​)1 n f(x ​, ⋯ ,x ​) =1 n 0 0

h(x ​, ⋯ ,x ​)1 n h(X ​, ⋯ ,X ​)1 n

f(x ​, ⋯ ,x ​) =1 n 0 x 0

E[Y ∣X ​, ⋯ ,X ​]1 n Y

X ​, ⋯ ,X ​1 n
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The conditional expectation has the following properties

1.  depend only on  in the sense that it is function . In the language of

measure theory  is a measurable function with respect to , or better with respect to

the -algebra generated by .

2. Suppose that  is an event which depends only on , for example the rectangle

and let  be the corresponding indicator function. Then

To prove the second property note that

E[Y ∣X ​ ⋯X ​]1 n X ​, ⋯ ,X ​1 n h(X ​, ⋯ ,X ​)1 n

E[X∣Y ​, ⋯ ,Y ​]1 n X ​, ⋯ ,X ​1 n

σ X ​, ⋯ ,X ​1 n

A X ​, ⋯ ,X1 n

A = a ​ ≤ X ​ ≤ b ​ , i = 1, ⋯ ,n{ i i i }

1 ​A

E[Y 1 ​] =A E[E[Y ∣X ​, ⋯ ,X ​]1 ​]1 n A

​ ​

E[E[Y ∣X ​, ⋯ ,X ​]1 ​]1 n A = E[Y ∣X ​ = x ​, ⋯ ,X ​ = x ​]1 ​(x ​, ⋯ ,x ​)f(x ​, ⋯ ,x )dx ​ ⋯ dx ​∫ 1 1 n n A 1 n 1 n 1 n

= ​ y ​dy f(x ​, ⋯ ,x ​, y)dx ​ ⋯ dx ​∫
A

(∫
f(x ​, ⋯ ,x ​)1 n

f(x ​, ⋯ ,x ​, y)1 n ) 1 n 1 n

= ​ yf(x ​, ⋯ ,x ​, y)dydx ​ ⋯ dx ​∫
A

∫ 1 n 1 n

= E[Y 1 ​]A
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1.2 General defintion of the conditional expectation
What we have demonstrated with examples are instance of a general theorem. We use the notation  to denote all the

information contained in the random variables . We say that a random variable  is [measurable with

respect to ] if  can be expressed as a function of . We say that a set  is

measurable with respect to  if the function  is measurable with respect to . This simply means that  should be

specifiued using the random variable .

Theorem 1.1 Let  and  be random variables on a probability space  and assume that

. Let  be the -algebra generated by . Then there exists a unique random variable

 such that

1.  is measurable with respect to .

2. For any  measurable with respect to  we have

A more geometric way to understand conditional expectation as an (orthogonal) projection is explored in the homework.

F ​n

X ​, ⋯ ,X ​1 n Z

F ​n Z = h(X ​, ⋯ ,X ​)1 n (X ​, ⋯ ,X ​)1 n A

F ​n 1 ​A F ​n A

X

Y X ​, ⋯ ,X ​1 n (Ω, F , P)
E[∣Y ∣] < ∞ F ​n σ X ​, ⋯ ,X ​1 n

E[Y ∣X ​, ⋯ ,X ​]1 n

E[Y ∣X ​, ⋯ ,X ​]1 n F ​n

A F ​n

E[Y 1 ​] =A E[E[Y ∣X ​, ⋯ ,X ​]1 ​]  for all A ∈1 n A F ​ .n
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1.3 Properties of Conditional Expectations
From now we use the abbreviated notation for the conditional expectation

The conditional expectation has the following properties

Theorem 1.2 The conditional expectation has the following properties

1. Linearity: 

2. If  then 

3. If  is independent of  then 

4. If  then .

5. If  then .

E[Y ∣F ​] =n E[Y ∣X ​, ⋯ ,X ​]1 n

E[a ​Y ​ +1 1 a ​Y ​∣F ​] =2 2 n a ​E[Y ​∣F ​] +1 1 n a ​E[Y ​∣F ​]2 2 n

Y = g(X ​, ⋯ ,X ​)1 n E[Y ∣F ​] =n Y

Y X ​, ⋯ ,X ​1 n E[Y ∣F ​] =n E[Y ]

m < n E[E[Y ∣F ​]∣F ​] =n m E[Y ∣F ​]m

Z = g(X ​, ⋯ ,X ​)1 n E[Y Z∣F ​] =n ZE[Y ∣F ​]n
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Proof. The idea is to use the uniqueness statement in .

For part 1.  are the unique  measurable random variables such that  and so by

linearity

and by uniqueness we must have .

For part 2. if  then  itself satisfies the definition.

For part 3. if  is independent of  then by independence and linearity

which, by uniqueness, proves the statement.

For part 4. note that  and  both depend only on . Moreover if  is 

measurable and  then it is also  measurable. So we have

which, by uniqueness, proves the statement.

Finally for 5. if  and  is  measurable then

which proves the statement. For general  one use an approximation argument by simple functions.

Theorem 1.1

E[Y ​∣F ​]i n F ​n E[Y ​1 ​] =i A E[E[Y ​∣F ​]1 ​]i n A

a ​E[E[Y ​∣F ​]1 ​] +1 1 n A a ​E[E[Y ​∣F ​]1 ​] =2 1 n A a ​E[Y ​1 ​] +1 1 A a E[Y ​1 ​] =2 2 A E[(a ​Y ​ +1 1 a ​Y ​)1 ​]2 2 A

E[a ​Y ​ +1 1 a ​Y ​∣F ​] =2 2 n a ​E[Y ​∣F ​] +1 1 n a ​E[Y ​∣F ​]2 2 n

Y = g(X ​, ⋯ ,X ​)1 n Y

Y X ​, ⋯ ,X ​1 n

E[Y 1 ​] =A E[Y ]E[1 ​] =A E[E[Y ]1 ​]A

E[E[Y ∣F ​]∣F ​]n m E[Y ∣F ​]m X ​, ⋯X ​1 m A F ​m

m ≤ n F ​n

E[E[Y ∣F ​]1 ​] =m A E[Y 1 ​] =A E[E[Y ∣F ​]1 ​] =n A E[E[E[Y ∣F ​]∣F ]1 ​]n m A

Z = 1 ​B B F ​n

E[E[Y 1 ​∣F ​]1 ​] =B n A E[Y 1 ​1 ​] =B A E[Y 1 ​] =A∩B E[E[Y ∣F ​]]1 ​1 ​]n B A

Z
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1.4 Examples
Example Suppose  are IID random variables with  and let . If we take  then

we have

since  is  measurable and  is independent of  (see

, properties 2 and 3.)

Example Let  as in the previous example and assume that  and let  be the variance. If we take

 we find, using properties 2. 3. and 5. of .

X ​i μ = E[X ​]i S ​ =n X ​ +1 ⋯ + X ​n m < n

​ ​

E[S ​∣F ​]n m = E[X ​ + ⋯ + X ​∣F ​] + E[X ​ + ⋯ + X ​∣F ​]1 m m m+1 n m

= X ​ + ⋯ + X ​ + E[X ​ + ⋯ + X ​] = S ​ + (n − m)μ1 m m+1 n m

X ​ +1 ⋯ + X ​m F ​m X ​ +m+1 ⋯ + X ​n X ​,X ​, ⋯ ,X ​1 2 m

Theorem 1.2

S ​n μ = 0 σ =2 V (X ​)i
m < n Theorem 1.2

​ ​

E[S ​∣F ​]n
2

m = E[(S ​ + (S ​ − S ​)) ∣F ​]m n m
2

m

= E[S ​∣F ​] + 2E[(S ​ − S ​)S ​∣F ​] + E[(S ​ − S ​) ∣F ​]m
2

m n m m m n m
2

m

= S ​ + 2S ​E[(S − S ​)∣F ​] + E[(S ​ − S ​) ]m
2

m n m m n m
2

+ S ​ + 2S ​E[S ​ − S ​] + E[(S ​ − S ​) ]m
2

m n m n m
2

= S ​ + V (S ​ − S ​) = S ​ + (n − m)σm
2

n m m
2 2
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Example If  are Bernoulli RV and  let us compute . Note first that

and thus

X ​i m < n E[S ​∣S ​]m n

P (X ​ =1 1∣S ​ =n k) = ​ =
​ p (1 − p)(

k
n) k n−k

p ​ p (1 − p)(
k−1
n−1) k−1 n−k

​ ⟹
n

k
E[X ​∣S ​] =1 n ​

n

S ​n

E[S ​∣S ​] =m n ​S ​ .
n

m
n
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1.5 Exercise
Exercise 1.1 (Conditional expectation as a projection)  

1. Show the following: if  (which ensures that all expectations exists) then  is is the random

variable measurable with respect to  which minimizes the mean square error, that is it solves

Hint: Write  as  and expand the square.

2. Suppose  and . Show that

in particular  is a decreasing function of .

3. Suppose  and define the conditional variance to be the random variable 

. Show that

E[∣Y ∣ ] <2 ∞ E[Y ∣F ​]n
F ​n

min{E[(Y − Z) ] :2 Z F ​ −n measurable}

Z Z = E[Y ∣F ​] +n W

E[Y ] <2 ∞ m ≤ n

E[(Y − E[Y ∣F ​]) ] +n
2 E[(E[Y ∣F ​] −n E[Y ∣F ​]) ] =m

2 E[(Y − E[Y ∣F ​]) ]m
2

E[(Y − E[Y ∣F ​]) ]n
2 n

E[Y ] <2 ∞ V (Y ∣F ​) =n E[Y ∣F ​] −2
n

E[Y ∣F ​]n 2

V (Y ) = E[V (Y ∣F ​)] +n V (E[Y ∣F ​])n
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2 Martingales
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2.1 Definition and simple examples
Definition 2.1 Consider a collection of random variables . A sequence of random variables

 is called a Martingale with respect to the filtration  if

1.  for all .

2.  is measurable with respect to 

3. For each  we have 

Remark To verify the martingale porperty 3. in  it is enough to check that

since this property implies that, by item 4. in 

and so on.

X ​,X ​, ⋯1 2

M ​,M ​,M ​, ⋯0 1 2 F ​n

E[∣M ​∣] <n ∞ n

M ​n F ​n

m < n E[M ​∣F ​] =n m M ​m

Definition 2.1

E[M ​∣F ​] =n+1 n M ​ for all nn

Theorem 1.1

E[M ​∣F ​] =n+2 n E[E[M ​∣F ​]∣F ​] =n+2 n+1 n E[M ​∣F ​] =n+1 n M ​n
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Example One of the prototype of a martingale is given by sum of IID random variables. Let

As we have seen before, if ,

This implies that  is a martingale.

Example Suppose  is a random variable with . Then we can build a martingale with respect to  by

setting

Indeed we have, for 

In that case we say that the martingale is closed by the random variable  and we can think of  as succesively “better”

approximation of  as we incorporate more and more information.

S ​ =0 0 , S ​ =n X ​ +1 ⋯X ​n

m < n

E[S ​∣F ​] =n m S ​ +m (n − m)μ

M ​ =n S ​ −n nμ

Y E[∣Y ∣] < ∞ F ​n

M ​ =n E[Y ∣F ​]n

m ≤ n

E[M ​∣F ​] =n m E[E[Y ∣F ​]F ​] =n m E[Y ∣F ​] =m M ​m

Y M ​n

Y
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2.2 Martingale and fair game
Suppose we are playing a sequence of independent fair game with two outcomes (e.g betting on the flip a fair coin.) We
describe this by RV  such that

The RV describe the winning obtain by betting an amount of  on the  game and the game is fair since .

A betting sequence is a sequence of RV  such that

1.  is the amount of money bet on the  game.

2.  is measurable with respect to .

3. .

The second property means that the way you bet on the  game is guided by the past outcomes of the  previous

bets. No peeking into the future allowed! The winnings after  games is given by

and we show it is a martingale.

X ​i

P (X ​ =i +1) = P (X ​ =i −1) = ​

2
1

1 ith E[X ​] =i 0

B ​n

B ​n nth

B ​n F ​n−1

E[∣B ​∣] <n ∞

nth n − 1
n

W ​ =n ​B ​X ​ withW ​ =
k=1

∑
n

k k 0 0
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Clearly  is  measurable and . Moreover we have

where we have used that  is  measurable and .

The martingale property implies that  is constant: we have

which means that your expected winning in fair game is zero.

But this is not the end of the story. In a betting strategy you will do a sequence of bet and decide of a good moment when
you actually stop betting. Consider for example the following well known strategy (often called the martingale strategy):
double your bet until you win. If you win the first game you stop and take you gain of . If you lose the first game

you bet 2 on the second game. If you win the second game you winning is  and then stop. If you lose

the first two games you know bet  on the third game abnd if you win the third game you winning is 

, and so on… We have then the transition probabilities  and

and this is a martingale. It is true that  but however when you stop, which happens at a random time , you

always win 1! The time  at which you first win occurs has here a geometric distribution. We will consider stopping time

in the next section.

W ​n F ​n E[∣W ​∣] <n ∞

​ ​

E[W ​∣F ​]n+1 n = E[B ​X ​∣F ​] + E[W ​∣F ​] = B ​E[X ​∣F ​] + W ​ = W ​n+1 n+1 n n n n+1 n+1 n n n

B ​n+1 F ​n E[X ​] =n 0

E[W ​]n

E[W ​] =n E[E[W ​∣F ​]] =n n−1 E[W ​]n−1

W ​ =1 1
W ​ =2 −1 + 2 = 1

4 W ​ =3 −1 − 2 +
4 = 1 P (W ​ =n+1 1∣W ​ =n 1) = 1

P (W ​ =n+1 1∣W ​ =n −(2 −n 1)) = ​ P (W ​ =
2
1

n+1 −(2 −n+1 1)∣W ​ =n −(2 −n 1)) = ​

2
1

E[W ​] =n 0 T

T
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2.3 Polya Urn
Consider an urn with balls of two colors, say red and green. Assume that initially there is one ball of each color in the urn.
At each time step, a ball is chosen at random from the urn. If a red ball is chosen, it is returned and in addition another red
ball is added to the urn. Similarly, if a green ball si chosen, is is returned together with another green ball.

Let  denote the number of red balls in the urn after  draws. Then  and  a (time-inhomogeneous) Markov

chain with transitions

We now define

Then  is a martingale since

Since this is a Markov chain,

X ​n n X ​ =0 1 X ​n

P (X ​ =n+1 k + 1∣X ​ =n k) = ​ P (X ​ =
n + 2
k

n+1 k∣X ​ =n k) = ​

n + 2
n + 2 − k

M ​ =n ​  fraction of red balls after n draws
n + 2
X ​n

M ​n

E[X ​∣X ​ =n+1 n k] = (k + 1) ​ +
n + 2
k

k ​ =
n + 2

n + 2 − k
​ +

n + 2
k

k ⟹ E[X ​∣X ​] =n+1 n X ​ +n ​ .
n + 2
X ​n

E[M ∣F ​] =n+1 n E[M ​∣X ​] =n+1 n E ​ ∣X ​ =[
n + 3
X ​n+1

n] ​ X ​ + ​ =
n + 3

1 ( n
n + 2
X ​n ) ​ =

n + 2
X ​n

M ​n
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2.4 Martingale and Markov chains
There is a natural connection between Markov chain and martingale. We explain this in the context of Markov chains but
this is just an example. Consider a function  and let us derive an equation for . Using Kolmogorov

equation we have

and thus

Integrating the previous equation we find

There is a martingale hidden in this equation. Indeed consider the random variables

Our previous calculation shows that , moreover by the Markov property we have

f : S → R E[f(X ​)]t

​E[f(X ​)] =
dt

d
t ​ ​f(i)p ​(i) =

dt

d

i

∑ t ​f(i)(p ​A)(i) =
i

∑ t ​f(i) ​p ​(j)A(j, i) =
i

∑
j

∑ t ​ ​A(j, i)f(i)p ​(j)
j

∑
i

∑ t

​E[f(X ​)] =
dt

d
t E[g(X ​)]  where g =t Af

E[f(X ​)] −t E[f(X ​)] =0 ​ E[Af(X ​)]ds∫
0

t

s

Y ​ =t f(X ​) −t f(X ​) −0 ​ Af(X ​) ds∫
0

t

s

E[Y ​] =t 0
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2.5 Exercises
Exercise 2.1 (Martingales for IID random variables)  

1. Suppose  are IID random variable with . Show that  is a martingale.

2. Suppose  are IID random variable with a moment generating function  and let 

. Show that  is a martingale.

3. Suppose  is a martingale then under reasonable conditions on the derivatives,  is also a

martingale.

4. Use the method of part 3. and the martingale the  in part 2. to derive the martingales associated to

the first three derivative of the martingale (at ).

Exercise 2.2 (Likelihood ratio martingale) Suppose the RV  has pdf  and the RV  has PDF . Show that

 is a martingale with respect to  where  are IID with pdf . This martingale is

called the likelihood ratio martingale.

X ​,X ​, ⋯1 2 E[X ​] =i 1 M ​ =n X ​X ​ ⋯X ​1 2 n

X ​,X ​, ⋯1 2 Λ(t) = E[e ]tX ​i S ​ =n

X ​ +1 ⋯ + X ​n M ​ =n ​Λ(t)n
etS ​n

M ​(α)n ​M ​(α)\dalphak
d
k

n

M ​ =n M ​(t)n

t = 0

X f(x) Y g(x)
M ​ =n ​ ​∏j=1

n

f(X ​)i
g(X ​)i X ​,X ​, ⋯1 2 X ​i f(x)

23



Exercise 2.3 (Martingale associated to the Poisson process) Suppose  is a Poisson process with rate . Here we

denote  the -algebra generated by  for .

Show that  is a martingale with respect to .

Show that  is martingale with respect to .

Show that  is a martingale with respect to .

Exercise 2.4 Consider a branching process  with mean offspring number  and extinction probability . Show that

 is a martingale with respect to .

 is a martingale with respect to .

N ​t λ

F ​t σ X ​s 0 ≤ s ≤ t

N ​ −t λt F ​t

N ​ −t
2 λt F ​t

eN ​−λ ​t t F ​t

X ​n μ a

M ​ =n X ​μn
−n X ​, ⋯ ,X ​0 n

M ​ =n aX ​n X ​, ⋯ ,X ​0 n
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Exercise 2.5 Show (by induction) that for the polya’s urn we have

Show that  converges to  in distribution. Find .

P (X ​ =n k + 1) = ​  for k =
n + 1

1
1, 2, ⋯

M ​n M ​∞ M ​∞
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3 Optional Sampling
Theorem
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3.1 Stopping times
A stopping time  with respect to a sequence of random variables  should be such that the random time at

which you decide to stop depends only on the information you have accumulated so far. If you decide to stop at time 

then it should depend only on  and you are not allowed to peek into the future.

Definition 3.1 A stopping time  with respect to the filtration  is a random variable taking values

 such that for any  the event  is measurable with respect to .

Example:  is a stopping time.

Example: The hitting time , for some set , is a stopping time.

Example: If  and  are stopiing time then  is also a stopping time. In particular  is a

bounded stopping time since  and we have .

T X ​,X ​, ⋯0 1

n

X ​, ⋯ ,X ​0 n

T F ​n

{0, 1, 2, ⋯ , +∞} n {T = n} F ​n

T = k

T ​ =A inf{j,X ​ ∈j A} A

T S min{S,T} T ​ =n min{T ,n}
T ​ ≤n n T ​ ≤0 T ​ ≤1 ⋯ ≤ T ​ ≤n T

28



3.2 The optional sampling theorem (version 1)
The optional sampling theorem says, roughly speaking, that “you cannot beat a fair game” which means that if  is a

martingale and  is a stopping time then . This is not true in general as we have seen when considering

the martingale betting system where . We start with the following result

Theorem 3.1 (Optional Sampling Theorem (  bounded)) Suppose  is a martingale and  is a bounded stopping

time (i.e.  ) then

and in particular .

Proof. Since  we can write

We compute next . Note that since  is bounded by  we have  which is

measurable with respect to . Therefore we find

M ​n

T E[M ​] =T E[M ​]0

1 = E[M ​]T = E[M ​] =0 0

T M ​n T

T ≤ K

E[M ​∣F ​] =T 0 M ​0

E[M ​] =T M ​0

T ≤ K

M ​ =T ​M ​1 ​

j=0

∑
K

j {T=j}

E[M ​∣F ​]T K−1 T K 1 ​ ={T=K} 1 ​{T>K−1}

F ​K−1

29



where we used that  is  measurable if .

Using this we find

and thus, inductively,

​ ​

E[M ​∣F ​]T K−1 = E[M ​1 ​∣F ​] + ​E[M ​1 ​∣F ​]K {T>K−1} K−1

j=0

∑
K−1

j {T=j} K−1

= 1 ​E[M ​∣F ​] + ​M ​1 ​ = 1 ​M ​ + ​M ​1 ​{T>K−1} K K−1
j=0

∑
K−1

j {T=j} {T>K−1} K−1
j=0

∑
K−1

j {T=j}

= 1
​M ​

+
​M ​

1
​{T>K−2} K−1

j=0

∑
K−2

j {T=j}

M ​1 ​j {T=j} F ​K−1 j ≤ k − 1

​ ​

E[M ​∣F ​]T K−2 = E[E[M ​∣F ​]∣F ​]T K−1 K−2

= E[1 ​M ​∣F ​] + ​E[M ​1 ​∣F ​]{T>K−2} K−1 K−2

j=0

∑
K−2

j {T=j} K−2

= 1 ​M ​ + ​M ​1 ​{T>K−3} K−2

j=0

∑
K−3

j {T=j}

E[M ​∣F ​] =T 0 M ​ ■0
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3.3 The optional sampling theorem (version 2)
To prove a more general version let us assume that . Then  converges to  and we

can write

Since  is bounded by the optional sampling theorem we have . But we need then to control the

remaining two terms.

If we assume that  is integrable, , the assumption  means that  converges to

 and thus by the dominated convergence theorem we have .

The third term is more troublesome. Indeed for the martingale betting systems, if  it means we lost n bets in a row

which happens with a probability of  for a total loss of . Therefore

It does not converge to  but to  in accordance with the result .

These considerations leads to the following

P (T < ∞) = 1 T ​ =n min{T ,n} T

M ​ =T M ​1 ​ +T ​n {T≤n} M ​1 ​ =T {T>n} M ​ +T ​n
M ​1 ​ −T {T>n} M ​1 ​n {T>n}

T ​n E[M ​] =T ​n
M ​0

M ​T E[∣M ​∣] <T ∞ P (T < ∞) = 1 1 ​{T>n}

0 lim ​ E[M ​1 ​] =n→∞ T {T>n} 0

T > n

​2n
1 −1 − 2 − ⋯ − 2 =n−1 −(2 −n 1)

E[M ​1 ​] =n {T>n} ​ (1 −
2n
1

2 ) →n −1 as n → ∞

0 1 E[M ​] =T 1
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Theorem 3.2 (Optional Sampling Theorem (general version)) Suppose  is a martingale and  is a finite stopping

time (i.e.  ). If  and

then .

Remark If the sequence  is uniformly bounded, i.e.   then the optional sampling theorem holds since

.

Remark Another condition which gurantees the optional sampling theorem is if . Indeed if this

holds given  we have

Taking  shows that .

M ​n T

P (T < ∞) = 1 E[∣M ​∣ <T ∞]

​E[∣M ​∣1 ​] =
n→∞
lim n {T>n} 0

E[M ​] =T M ​0

M ​n ∣M ​∣ ≤n C

E[∣M ​∣1 ​] ≤n {T>n} CP (T > n)

C = sup ​ E[M ​] <n n
2 ∞

ϵ > 0

​ ​

E[∣M ​∣1 ​]n T>n = E[∣M ∣1 ​1 ​] + E[∣M ​∣1 ​1 ​]n ∣M ​∣>C/ϵn T>n n ∣M ​∣≤C/ϵn T>n

≤ ​E[∣M ​∣ 1 ​] + ​P (T > n) ≤ ϵ + ​P (T > n)
C

ϵ
n

2
{T>n}

ϵ

C

ϵ

C

n → ∞ lim ​ E[∣M ​∣1 ​] ≤n n {T>n} ϵ
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3.4 Applications of the optional sampling theorem.
Example: Gambler’s ruin probability. Define  and  where  arre IID fair bets

.

Then  is a martingale and consider the stopping time

which describe the time at which a gambler starting with a fortune  either go bankrupt or reach a fortune of . Note

that if  then  and thus  as .

But we get then

This gives another (computation free) derivation of the gambler’s ruin formula! The case  can also be treated using

a (different) martingale and will be considered in the homework.

S ​ =0 a S ​ =n a + X ​ +1 ⋯ + X ​n X ​i

P (X ​ =i −1) = P (X ​ =i 1) = ​2
1

S ​n

T = min{n : S ​ =n 0 or s ​ =n N}

a N

T > n S ​ ≤n N E[∣S ​∣1 ] ≤n {T>n} NP (T > n) → 0 n → ∞

E[S ​] =T E[S ​] =0 a.

a = E[S ​] =T NP (S ​ =T N) ⟹ P (S ​ =T N) = ​

N

a

p = ​2
1
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Example: Gambler’s ruin playing time. Suppose  is like in the previous example. Then  is also martingale

since

To apply the optional sampling theorem we note that  since  is a hiting time for a finite state Markov

chain.
Therefore we have  and we can apply the optional sampling theorem and

But, using the previous example we find

and thus

which gives the expected length of play.

S ​n M ​ =n S ​ −n
2 n

E[S ​ −n+1
2 n + 1∣F ​] =n E[S ​ +n

2 2X ​S ​ +n+1 n X ​ −n+1
2 n + 1∣F ​] =n S ​ +n

2 1 − (n + 1) = S ​ −n
2 n

P (T > n) ≤ Cρn T

E[∣M ​∣1 ​] ≤n {T>n} (N +2 n )Cρ →2 n 0

E[M ​] =T E[M ​] =0 a2

a =2 E[M ​] =T E[S ​] −T
2 E[T ] = N P (S ​ =2

T N) − E[T ] = aN − E[T ]

E[T ] = a(N − a)
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3.5 The Voter Model
We can use martingale like for the gambler’s ruin to analyze much more complicated models. The voter model is a simple
opinion dynamics model. Here are the ingredients.

A graph  is given. At each vertex of the graph is an agent who can be either in state  or in state . We

view this as two different possible opinions for the agent. We describe the state of the system by a vector

and the state space is .

We think of  as a weighted directed graph. To every directed edge we associate a weight function  and

define . We do not need assume that . But we assume that the graph is

connected: there is path along directed edges between any pair of two vertices. To this weight we can associate
transition probabilities

Let  be the Markov chain on the state state space  with transtion probaility . It is irreducible and has a

stationary distribution . If  then the Markov chain  is irreducible and we know that the

stationary distribution is  where . In general  might be difficult to compute explicitly.

G = (V ,E) 0 1

σ = σ(v) ​  with σ(v) ∈( )v∈V {0, 1}

S = {0, 1}∣V ∣

G c(v,w) > 0
c(v) = ​ c(v,w)∑w c(v,w) = c(w, v)

p(v,w) = ​

c(v)
c(v,w)

Y ​n V p ​vw

π(v) c(v,w) = c(w, v) Y ​n

π(v) = ​

c ​G

c(v)
c ​ =G ​ c(v)∑v π
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In the voter model, at each unit time you pick a voter, say voter at vertex . The voter picks one of his neighbor  with

probability  and, if his neighbor at vertex  has a different opinion than his opinion, the voter at  adopts the opinion

of . This is admittedly a pretty simplistic model but let us analyze it nonetheless.

Let denote by  the corresponding Markov chain on . The transition probabilities are given by

where  is the state with  and  if .

The key insight is the following

Theorem 3.3 For the voter model

is a martingale.

v w

p ​vw w v

w

X ​n S

​ ​

P (σ,σ + e ​)v

P (σ,σ − e ​)v

= ​ 1 ​ ​p(v,w)
∣V ∣
1

{σ(v)=0}

w:σ(w)=1

∑

= ​ 1 ​ ​p(v,w)
∣V ∣
1

{σ(v)=1}

w:σ(w)=0

∑

e ​v e ​(v) =v 1 e ​(w) =v 0 w = v

M ​ =n πX ​ =n ​π(v)X ​(v)
v

∑ n
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Proof. By the Markov property

so it enough to show that .

To see this we note that

Therefore

Now we rewrite

and thus

E[M ​ −n+1 M ​∣X ​, ⋯ ,X ​] =n 0 n E[M ​ −n+1 M ​∣X ​]n n

E[M ​ −n+1 M ​∣X ​ =n n σ] = 0

X ​ =n+1 X ​ ±n e ​ ⟹v M ​ −n+1 M ​ =n ±π(v)

E[M ​ −n+1 M ​∣X ​ =n n σ] = ​ ​π(v)p(v,w) 1 ​1 ​ − 1 ​1 ​

∣V ∣
1

v

∑
w

∑ ( {σ(v)=0} {σ(w)=1} {σ(v)=1} {σ(w)=0})

​ ​

1 ​1 ​ − 1 ​1 ​{σ(v)=0} {σ(w)=1} {σ(v)=1} {σ(w)=0} = 1 ​(1 − 1 ​) − 1 ​1 ​{σ(v)=0} {σ(w)=0} {σ(v)=1} {σ(w)=0}

= 1 ​ − 1 ​{σ(v)=0} {σ(w)=0}

E[M ​ −n+1 M ​∣X ​ =n n σ] = ​ ​ ​π(v)p(v,w) −
∣V ∣
1

v:σ(v)=0

∑
w

∑ ​ ​π(v)p(v,w)
w:σ(w)=0

∑
v

∑
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Using the fact that  is the stationary distribution we have the balance equation

Using this and then exchanging the indices  and  we find

which implies that

and therefore  is a martingale. 

We can now apply  where we take the stopping time to be the consensus time at which everyone is
agreement.

Note that these are absorbing states and since the Markov chain has finite state space  and  is

bounded (in fact ). We have, similarly to the gambler’s ruin,

which is the absorbtion probabilties.

π

​π(v)p(v,w) =
v

∑ ​π(w)p(w, v)
v

∑

v w

​ ​π(v)p(v,w) =
w:σ(w)=0

∑
v

∑ ​ ​π(w)p(w, v) =
w:σ(w)=0

∑
v

∑ ​ ​π(v)p(v,w)
v:σ(v)=0

∑
w

∑

E[M ​ −n+1 M ​∣X ​ =n n σ] = 0

M ​n ■

Theorem 3.1

T = inf{n,X ​(v) =n 0 for all v or X ​(v) =n 1 for all v}

P (T < ∞) = 1 M ​n

0 ≤ M ​ ≤n 1

P (X ​ =T (1, ⋯ , 1)) = E[M ] =T E[M ​] =0 πX(0)
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Example If the underlying model is a random walk on the graph  then  and we can

easily compute
. For example if we consider the complete graph on  vertices or any regular graph such that all vertices have the

same degree then  is simply equal to the proportion of vertices with opinion .

c(v,w) = c(w, v) = 1 π(v) = ​2∣E∣
deg(v)

πX ​0 N

P (X ​ =T (1, ⋯ , 1)) 1
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3.6 Exercises
Exercise 3.1 Here is another version of the optional sampling theorem. Suppose that  is martingale. The increments

 of the martingales are given by .

Show that if the stopping time  hase finite expectation  and if the martingale  has uniformly bounded

increments, i.e. 

then .

Hint: Bound  and then use the dominated convergence theorem to take .

Exercise 3.2 (Wald’s identity) As we have seen before, if  are IID copies of a random variable  and  is integer

value RV which is independent of the  then .

Prove the folliwing generalization: If  is a stopping time with  finite then . Hint:

Consider a suitable martingale and use .

M ​n

B ​n B ​ =n M ​ −n M ​n−1

T E[T ] < ∞ M ​n

​E[∣B ​∣] ≤
n

sup n C

E[M ​] =T E[M ​]0

E[∣M ​ −T ​n
M ​∣]0 n → ∞

(X ​)i X N

X ​si
′ E[ ​ X ​] =∑k=1

N
i E[X]E[N ]

T E[T ] E[ ​ X ​] =∑
k=1
T

i E[X]E[N ]
Exercise 3.1
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Exercise 3.3 (Gambler’s ruin probabilities and expected playing time) Suppose 

 and let . And let 

1. Show that  is a martingale with respect to .

2. Use part 1. and the optional sampling theorem to compute .

3. Use the martingale  and part 2. to compute .

P (X ​ =i 1) = p,P (X ​ =i −1) =
q = 1 − p S ​ =n a + X +0 ⋯ + X ​n T = min{n : S ​ =n 0 or s ​ =n N}

M ​ =n ​(
p
q)S ​n

X ​,X ​, ⋯1 2

P{S ​ =T 0}

Z ​ =n S ​ +n (1 − 2p)n E[T ]
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4 Martingale Convergence
Theorem

43



4.1 The convergence theorem
The martingale convergence theorem asserts that, under quite general circumstances, a martingale  converges to a

limiting random variabel .

Theorem 4.1 (Martingale convergence theorem (version 1)) If  is a martingale such that  for all 

then there exists a random variable  such that  converge to  almost surely.

Proof. Pick two (arbitrary) numbers . The idea of the proof is to show that the probability that the martingale

fluctuate infinitely often between  and  is zero. Since this will be true for any  this shows almost sure convergence.

Consider the following betting strategy. Think of  as the cumulative gain from a sequence of fair games and thus

 is the gain from the st game. Take make the following sequence of bets

If  makes bets  until the martingale  reaches or exceeds the value .

Once  reaches , stop betting (that is ) until  comes back to less than .

Continue this process. If the martingale fluctuates infinitely often between  and  then the betting strategy will provide

a long term gain and we show that this cannot happen because of the martingale property.

M ​n

M ​∞

M ​n E[∣M ​∣] ≤n c n

M ​∞ M ​n M ​∞

a < b

a b a, b

M ​n

M ​ −n+1 M ​n n + 1

M ​ <n a B ​ =n 1 M ​n b

M ​n b B ​ =n 0 M ​n a

a b
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The gain from this strategy after  games is given by

where  is either  or  depending on the position of the martingale. Since  is a martingale then  is a martingale

with respect . Indeed we we have .

Let  the number of upcrossing up to step  that is the number of times the martingales goes from below  to above .

Then from the structure of the betting

since  overestimate the loss during the last interval of play (if ). Since  we have

Since the right hand side is independent of , the number of upcrossing up to infinity  has finite expection and thus

 is finite almost surely. 

n

W ​ =n ​B ​(M ​ −
j

∑ j j M ​)j−1

B ​j 0 1 M ​j W ​n

M ​,M ​,M ​0 1 2 E[M ​ −n+1 M ​∣F ​] =n n 0

E[W ​∣F ​] =n+1 n E[B ​(M ​ −n+1 n+1 M ​)∣F ​] +n n E[W ​∣F ​] =n n W ​.n

U ​n n a b

W ≥n (b − a)U ​ −n (W ​ −n a) ​−

(W ​ −n a) ​− B ​ =n 1 E[W ​] =n E[W ​]0

E[W ​] =0 E[W ​] ≥n (b − a)E[U ​] −n E[(W ​ −n a) ​] ⟹− E[U ​] ≤n ​ ≤
b − a

E[(W ​ − a) ​]n −
​

b − a

c + a

n U ​∞

U ​∞ ■
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4.2 Uniform integrability
From the convergence theorem we have  almost surely. In general it does not imply that 

 without further assumption on . For example, for the martingale betting system we have  for

all . However if we stop betting at time  (first win) then our gain after that stay at 1 and thus we have 

 almsot surely so  and clearly  does not converge to !

In order to obtain convergence we need a stronger condition on  than our assumption .

The proper mathemtical asuumption is that the sequence  should be uniformly integrable (see Math 605 for more

details). The sequence  is uniformaly integrable if

This means that the tail behavior of  is controlled uniformly. We have the following

Theorem 4.2 If  converges almost surely to  and  is uniformly integrable then .

For example if  then the  are uniformly integrable. The argument is the same as the one

used after 

Theorem 4.3 (Martingale convergence theorem (version 2)) If  is a martingale and  are uniformly integrable

then there is a random variable  such that  almost surely and 

M ​ →n M ​∞ lim ​ E[M ​] =n n

E[M ​]∞ M ​n E[M ​] =n 0
n T lim ​ W ​ =n n

1 M ​ =∞ 1 E[M ​]n E[M ​]∞

M ​n sup ​ E[∣M ​∣] ≤n n C < ∞
M ​n

{X ​}n

​E[∣X ​∣1 ​] →
n

sup n ∣X ​∣≥Rn
0 as R → ∞

X ​n

X ​n X {X ​}n lim ​ E[X ​] =n n E[X]

sup ​ E[∣∣X ​] ≤n n
2 c < ∞ {X ​}n

Theorem 3.2

M ​n {M ​}n
M ​∞ M ​ →n M ​∞ lim ​ E[M ​] =n→∞ n E[M ​]∞

46



4.3 Random Harmonic series
Random harmonic series It is well-known that the harmonic series  diverges while the alternating

harmonic series  converges.

What does happen if we chose the sign in the series randomly? Let  be IID random variables with 

. Let  and for  define

Since  is a sum of independent random variable with mean , it is a martingale and we have  for all .

By the martingale convergence theorem we have  converges almost surely. Therefore the random harmonic

series  converges almost surely.

Note that by independence  and thus  is uniformly integrable and .

1 + ​ +2
1

​ +3
1 ⋯

1 − ​ +2
1

​ −3
1 ⋯

X ​i P (X ​ =i −1) =
P (X ​ =i 1) = ​2

1 M ​ =0 0 n > 0

M ​ =n ​ ​X ​ .
j=1

∑
n

j

1
j

M ​n 0 E[M ​] =n 0 n

M ​ →n M ​∞

​ ​X ​∑j=1
∞

j
1

j

E[M ​] =n
2

​ ​ <∑j=1
n

j2
1 ∞ M ​n E[ ​ ​X ​] =∑j=1

∞
j
1

j 0
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4.4 Branching process
Suppose  is a branching process with offspring distribution given by a random variable  with mean .

First we prove that  is a martingale. We have, using the Markov property, that 

 and

and thus . This proves that  is a Martingale.

If  we have proved that the probability of extinction is  and thus  for all  sufficiently large and thus 

converges to  almost surely.

If  and then . By the Martingale convergence theorem we have . We show that  is

a non-trivial random variable by showing that  (if we start with single individual).

To do this we need to show uniform integrability. Suppose . We have the formula

and so

To compute the second term note that

X ​n Z μ = E[Z]

M ​ =n μ X ​

−n
n E[X ​∣F ​] =n+1 n

E[X ​∣X ​]n+1 n

E[X ​∣X ​ =n+1 n k] = E[Z ​ +1
(n) ⋯ + Z ​] =k

(n)
μk

E[X ​∣X ​] =n+1 n μX ​n μ X ​

−n
n

μ ≤ 1 1 X ​ =n 0 n M ​n

0

μ > 1 M ​ =n X ​/μn
n M ​ →n M ​∞ M ​∞

E[M ​] =∞ lim ​ E[M ​] =n n 1

σ =2 V (Z)

E[(M ​ −n+1 M ​) ∣F ​] =n
2

n E[M ​∣F ​] −n+1
2

n 2E[M ​M ​∣F ​] +n+1 n n E[M ​∣F ​] =n
2

n E[M ​∣F ​] −n+1
2

n M ​n
2

E[M ​∣F ​] =n+1
2

n M ​ +n
2 E[(M ​ −n+1 M ​) ∣F ​]n

2
n

E[(M ​ −n+1 M ​) ∣F ​] =n
2

n E[(μ X ​ −−(n+1)
n+1 μ X ​) ∣F ​] =−n

n
2

n μ E[(X ​ −−2(n+1)
n+1 μX ​) ∣F ​]n

2
n
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Now

and so .

Combining all this gives (using again that )

Using that  we find  and by induction

This proves that  and thus  is uniformly integrable.

Thus  is non-trivial.

E[(X ​ −n+1 μX ​) ∣X ​ =n
2

n k] = E[(Z ​ +1
(n) ⋯ + Z ​ −k

(n)
μk) ] =2 kσ2

E[(X ​ −n+1 μX ​) ∣X ​] =n
2

n X ​σn
2

E[μ X ​] =−n
n E[M ​] =n 1

E[M ​] =n+1
2 E[M ​] +n

2 μ σ E[X ​] =−2(n+1) 2
n E[M ] +n

2
​

μn+2

σ2

E[M ​] =0
2 1 E[M ​] =1 1 + ​

μ2
σ2

E[M ​] =n
2 1 + σ ​ ​

2

k=2

∑
n+1

μk
1

sup ​ E[∣M ​∣ ] <n n
2 ∞ M ​n

M ​∞



4.5 Estimating the mean in Bayesian statistics
Estimation problem Suppose  are IID random variables whose mean  is unknown. In a Bayesian

spirit we equip  with a probability distribution (called the prior distribution) and called this random variable .

Example: The simplest model is when  are Bernoulli random variables with a unknown probability of success . A

natural prior distribution for  is the uniform distribution on . In this case we would have the joint distribution

There is a natural martingale associated, namely

This means that  is the expectation of  under the prior distribution  and  is the expectation of  inder the

posterior distribution .

By the martigale convergence theorem (under suitable assumptions on  to assure uniform integrability of , for

example if  is bounded) we have

where  is a random variable which depends on the infnite sequence .

Since for  we have  taking  shows that .

Since  is the mean, by the LLN, for fixed  we have

X ​,X ​, ⋯1 2 E[X ​] =i θ∗

θ Θ

X ​i θ

Θ [0, 1]

f(x ​, ⋯ ,x ​, θ) =1 n f(x ​, ⋯ ,X ​∣θ)f(θ) =1 n ​ θ (1 −(
k

n) x ​+⋯+x ​1 n θ)n−x ​+⋯+x ​1 n

M ​ =0 E[Θ], M ​ =n E[Θ∣X ​, ⋯ ,X ​]1 n

M0 θ f(θ) M ​n θ

f(θ∣x ​, ⋯ ,x ​)1 n

θ M ​n

Θ

​M ​ =
n→∞
lim n M ​∞

M ​∞ X ​,X ​, ⋯1 2

m > n M ​ =n E[M ​∣X ​, ⋯ ,X ​]m 1 n m → ∞ M ​ =n E[M ​∣X ​, ⋯ ,X ​]∞ 1 n

θ θ
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and thus  is a function of . This shows that  and thus

In our simple example we can compute the posterior distribution by Bayes rule (after dusting up our knowledge of the
Beta random variables)

which a beta random variable with parameter  and . The mean of beta random variables with

parameters  and  is 

This is related to the Polya’s urn. To see this let us compute 

under that model. By conditioning we find

which is the same transition as Polya’s urn.

θ = ​ ​

n→∞
lim

n

X ​ + ⋯ + X ​1 n

θ X ​,X ​, ⋯1 2 M ​ =∞ θ

​E[Θ∣X ​, ⋯ ,X ​] =
n→∞
lim 1 n θ

f(θ∣x ​, ⋯ ,x ​) =1 n ​ =
​ ​ θ (1 − θ) dθ∫0

1 (
k
n) x ​+⋯+x ​1 n n−x ​+⋯+x ​1 n

​ θ (1 − θ)(
k
n) x ​+⋯+x ​1 n n−x ​+⋯+x ​1 n

​θ (1 −
k!(n − k)!
(n + 1)! x ​+⋯+x ​1 n θ)n−x ​+⋯+x ​1 n

α = k + 1 β = n + 1 − k

α β ​

α+β
α

E[Θ∣X ​, ⋯ ,X ​] =1 n ​

n + 2
1 + X ​ + ⋯ + X ​1 n

P (X ​ +1 ⋯ + X ​ =n+1 k + 1∣X ​ +1 ⋯ + X ​ =n k)

​ ​

P (X ​ + ⋯ + X ​ = k + 1∣X ​ + ⋯ + X ​ = k)1 n+1 1 n

= ​ P (X ​ = 1∣Θ = θ)f(θ∣X ​ + ⋯X ​ = k)dθ = E[θ∣X ​ + ⋯X ​ = k] = ​∫
0

1

n+1 1 n 1 n
n + 2
k + 1



4.6 Polya’s urn
Let us consider the general Polya’s urn starting with  red balls and  green balls. At each time a ball is drawn at random,

replaced in the urn together with  extra balls of the same color.

Theorem 4.4 (Polya’s urn is a martingale) Let  be the number of green balls in the Polya’s urn at time . Then

, that is the fraction of green balls at time  is a martingale with respect to .

Proof. At time  there is a total of  balls in the urn. The sequence  form a time-inhomogenous Markov

chain with transition probabilities

By the Markov property  and we have

and thus . 

r g

c

X ​n n

M ​ =n ​

r+g+nc
X ​n n X ​,X ​, ⋯0 1

n r + g + nc X ​n

P (X ​ =n+1 j + c∣X ​ =n j) = ​ P (X ​ =
r + g + nc

j
n+1 j∣X ​ =n j) = ​

r + g + nc

r + g + nc − j

E[M ​∣X ​, ⋯ ,X ​] =n+1 0 n E[M ​∣X ​]n+1 n

​ ​

E[M ​∣X ​ = j]n+1 n =
​

+
​ ​

r + g + (n + 1)c
j + c

r + g + nc

j

r + g + (n + 1)c
j

r + g + nc

r + g + nc − j

= ​ = ​

(r + g + (n + 1)c)(r + g + nc)
j(r + g + (n + 1)c)

r + g + nc

j

E[M ​ +n 1∣X ​] =n ​ =
r+g+nc
X ​n M ​n ■
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By the martingale convergence theorem we know that  almost surely and we know identify the distribution

of  by computing the distribution of .

The basic observation is that the probability to get first  green balls and then  red balls is given by

Note also that if we pick  green balls and  red balls in any order then the probability of that event will have the

same probability. Indeed the denominator in  will be the same and the terms in the numnerators with also be
the same but will permuted and appear in a different order.

As a warm up let us consider the special case  we obtain from 

Therefore  is uniformly distributed on .

This shows  converges in dsitribution to the uniform distribution on . Indeed for any bounded continuous

function  we have by a Riemann sum argument

M ​ →n M ​∞

M ​∞ M ​n

m n − m

​ ​ ⋯ ​ ​ ⋯ ​

g + r

g

g + r + c

g + c

g + r + (m − 1)c
g + (m − 1)c

g + r + mc

r

g + r + (n − 1)c
r + (n − m − 1)c

(4.1)

m n − m

Equation 4.1

r = g = c = 1 Equation 4.1

P (X ​ =n m + 1) = ​ ​ =(
m

n)
(n + 1)!

m!(n − m)!
​ m =

n + 1
1

0, 1, 2, ⋯ ,n

M ​n ​ , ​ , ⋯ , ​

n+2
1

n+2
1

n+2
n+1

M ​n [0, 1]
h : [0, 1] → R

E[h(M ​)] =n ​h ​ ​ →
k=1

∑
n+1

(
n + 2
k )

n + 1
1

h(x)dx∫
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In general we have

Theorem 4.5 (Asymptotic distribution in the Polya’s urn) The proportion of green balls in the the Polya’s urn with
paramter  converges to a beta distribution with paramter  and 

Proof. We prove it only for  and leave the general case  to the reader. Starting from  we find for

the number of green balls

We now take the limit  and  such that  and  Note that

The other terms in the last fraction likewise converge to .

r, g, c ​

c
g

​

c
r

c = 1 c > 1 Equation 4.1

​ ​

P (X ​ = m + g)n = ​ ​(
m

n)
(g + r)(g + r + 1) ⋯ (g + r + (n − 1))

g(g + 1) ⋯ (g + m − 1)r(r + 1) ⋯ (r + n − m − 1)

= ​ ​ ​

(r − 1)!(g − 1)!
(g + r − 1)!

m!(n − m)!
n!

(g + r + (n − 1))!
(g + m − 1)!(r + n − m − 1)!

= ​ ​ ​

(r − 1)!(g − 1)!
(g + r − 1)!

nr+g−1

m (n − m)g−1 r−1

​

n!nr+g−1
(g+r+(n−1))!

​ ​

m!mg−1
(g+m−1)!

(n−m)!(n−m)r−1
(r+n−m−1)!

n → ∞ m → ∞ ​ →
n
m x ​ →

n
n−m 1 − x

​ =
m!mg−1

g + (m − 1)!
​ ​ ​ →

m

(m + 1)
m

m + 2
m

m + g − 1
1  as m → ∞

1
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Therefore as 

By a Riemann sum argument this shows that the distribution of  converges to beta random variable with parameters

 and . 

The case when  is handled in a similarly manner using the Gamma function and details are left to the interested

reader.

n → ∞

P M ​ = ​ ≈( n
g + r + n

g + r + m) ​ ​ ​

(r − 1)!(g − 1)!
(g + r − 1)! (

n

m)r−1 (
n

n − m)g−1

n

1

M ​n

g r ■

c > 1
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4.7 Exercises
Exercise 4.1 In this problem we consider a Branching process with a geometric distribution of the offsprings 

, Note that  has moment generating function .

1. We will need to compute the -fold composition $f^n = f f $. To do this we will use fact from geometry about

fractional linear transformation.

2. 

3. To identify the distribution of  we compute for 

$

P (Z =
k) = pqk Z E[θ ] =Z

​1−qθ
1

n

M ​∞ λ ≥ 0

E[e M ​] =−λ
∞ ​

n→∞
lim
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5 Martingale concentration
inequalities

56



5.1 Conditional Jensen inequality
Suppose  is a convex function. There are two equivalent ways to characterize convexity.

1.  is conevx if and only if, for all  and  we have

that is, the line segment between  and  lies above the graph of  for  between  and .

2.  is convex if and only if for any  there exists  such that

that is there exists a line which lies below the graph of  and interesects the graph at . If  is differentiable

then  and  lies above its linear approximation at any point .

Both characterizations of convex function will come handy. An fairly immediate condition of convexity is Jensen
inequality which we present here in its conditional version.

ϕ : R → R

ϕ x, y 0 < α < 1

ϕ(αx + (1 − α)y) ≤ αϕ(x) + (1 − α)ϕ(y)

(x,ϕ(x)) (y,ϕ(y)) ϕ(t) t x y

ϕ x ​0 a

ϕ(x) ≥ ϕ(x ​) +0 a(x − x ​)0

ϕ x = x ​0 ϕ

a = ϕ (x ​)′
0 ϕ x ​0
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Theorem 5.1 (Conditional Jensen inequality) Suppose  is a random variable with  and  a

convex function. Then we have

In particular we have  (Jensen inequality).

Proof. Choosing  we have

where  is a random variable which is measurable with respect to .

Taking conditional expectation with respect to  and using the property of conditional expectation we have

and this proves Jensen inequality. .

X E[∣X∣] < ∞ ϕ : R → R

ϕ(E[X∣Y ]) ≤ E[ϕ(X)∣Y ] conditional Jensen inequality

ϕ(E[X]) ≤ E[ϕ(X)]

x ​ =0 E[X∣Y ]

ϕ(X) ≥ ϕ(E[X∣Y ]) + a(X − E[X∣Y ])

a = a(Y ) Y

Y

​ ​

E[ϕ(X)∣Y ] ≥ E[ϕ(E[X∣Y ])∣Y ] + E[a(Y )(X − E[X∣Y ])∣Y ]

= ϕ(E[X∣Y ]) + a(Y )(E[X∣Y ] − E[X∣Y ]) = ϕ(E[X∣Y ])

■
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5.2 Hoeffding’s bound
Recall that if  is a normal random variable then its moment generating function is given by  which

implies, by Chernov bound the concentration bound

Note that we also have a similar bound for the left tail,  prove in the same way.

It turns out that bounded random variables also satisfies such Gaussian concentration bound. To do this we need the
following fact which expresses the fact that among all random variable supported on the interval  with mean 

the one which is most spread out is a random variable concentrated on the endpoints  and .

Theorem 5.2 (Hoeffdings bound in conditional form) Suppose  is a random variable such that  and

. Then for any convex function we have

In particular if , we have

X E[e ] =tX eμt+ ​2
σ t2 2

P (X − E[X] ≥ ϵ) ≤ ​ ​ =
t≥0
inf

etϵ
E e[ t(X−E[X])]

e =− sup ​ tϵ− ​t≥0{ 2
σ t2 2 } e− ​

2σ2
ϵ2

P (X − E[X] ≤ −ϵ) ≤ e− ​

2σ2
ϵ2

[−A,B] 0
−A B

X E[X∣Y ] = 0
−A ≤ X ≤ B

E[ϕ(X)∣Y ] ≤ ϕ(−A) ​ +
A + B

B
ϕ(B) ​

A + B

A

A = B

E[e ] ≤tX cosh(At) ≤ e ​2
A t2 2
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Proof. If  let us write  as a convex combination of  and , that is

The convexity of  implies that

and taking conditional expectation with respect to  and uising that  gives the result.

Taking now  and  we find

x ∈ [−A,B] x −A B

x = ​ (−A) +
A + B

B − x
​B .

A + B

A + x

ϕ

ϕ(X) ≤ ​ϕ(−A) +
A + B

B − X
​ϕ(B) .

A + B

A + X

Y E[X∣Y ] = 0

ϕ(x) = etx A = B

E[e ] ≤tX
​ (e +

2
1 −At e ) =At cosh(At) = ​ ​ ≤

n=0

∑
∞

(2n)!
A t2n 2n

​ ​ =
n=0

∑
∞

2 n!n

A t2n 2n

e ​2
t A2 2
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5.3 Azuma-Hoeffdings concentration inequality
The next theorem provides concentration inequality for martingales with bounded increments.

Theorem 5.3 (Azuma-Hoeffding’s theorem) Suppose  is a martingale with  and with bounded increments,

i.e.   satisfies the bound

Then we have the Gaussian concentration bound

Proof. Using the Martingale property and 

Iterating we find  and Chernov bound gives the result.

M ​n M ​ =0 0
B ​ =n M ​ −n M ​n−1

∣B ​∣ ≤n σ ​ .n

P (M ≥n ϵ) ≤ e
− ​

2 ​ σ ​∑
k=1
n

k
2

ϵ2

Theorem 5.2

​E[e ] = E[E[e ∣F ​]] = E[E[e e ∣F ​]] = E[e E[e ∣F ​]] ≤ e E[e ]tM ​n tM ​n
n−1

tM ​n−1 tB ​n
n−1

tM ​n−1 tB ​n
n−1

​2
t σ ​

2
n
2

tM ​n−1

E[e ] ≤tM ​n e ​2
t ​ σ ​

2 ∑
k=1
n

k
2
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5.4 McDiarmid Theorem
McDiarmid theorem is an application of Azuma-Hoeffdings theorem and provides concentration bounds for (nonlinear)
function of independent random variables , under certain conditions.

Definition 5.1 We say that  satisifies the bounded difference property if there exist constants 

such that for all 

that is we control the change of  when changing only one coordinate at a time.

Theorem 5.4 (McDiarmid Theorem) Suppose  are independent RVs and  satisfies the

bounded difference property (almost surely). Then we have

X ​, ⋯ ,X ​1 n

h(x ​,x ​, ⋯ ,x ​)1 2 n c ​k

x ​,x ​k k
′

∣h(x ​, ⋯ ,x ​, ⋯ ,x ​) −1 k n h(x ​, ⋯ ,x ​, ⋯ ,x ​)∣ ≤1 k
′

n c ​k

h

X ​, ⋯X ​1 n h(x ​, ⋯ ,x ​)1 n

​ ​P h(X ​, ⋯ ,X ​) − E[h(X ​, ⋯ ,X ​)] ≥ ε ≤( 1 n 1 n ) e
− ​

2 ​ c ​∑
k=1
n

k
2

ε2
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Proof. “Martingale trick”: We construct a suitable martingale. Let us define random variable  by 

 and, for ,

Note that  and by construction  that is  is a martingale and so

is . To use  we need to prove that the increment

is bounded.

Duplication trick: Let  be an independent copy of the random variable . Then by linearity of the expectation and

the bounded difference property we have, almost surely,

Furthermore we have

The first equality holds because  and  are identically distributed and left-hand side is a function of .

The second equality holds because  and  are idependent. Combining  and  shows that

 almost surely. 

Y ​k Y ​ =0

E[f(X ​, ⋯ ,X ​)]1 n 1 ≤ k ≤ n

Y ​ =k E[h(X ​, ⋯ ,X ​)∣X ​, ⋯ ,X ​]1 n 1 k

Y ​ =n h(X ​, ⋯ ,X ​)1 n E[Y ​∣X ​, ⋯ ,X ​] =k 1 k−1 Y ​k−1 Y ​n

M ​ =n Y ​ −n Y ​0 Theorem 5.3

Y ​ −k Y ​ =k−1 E[h(X ​, ⋯ ,X ​, ⋯ ,X ​)∣X ​, ⋯ ,X ​] −1 k n 1 k E[h(X ​, ⋯ ,X ​, ⋯ ,X ​)∣X ​, ⋯ ,X ​]1 k n 1 k−1

​Xk X ​k

​E[h(X ​, ⋯ ,X ​, ⋯ ,X ​)∣X ​, ⋯ ,X ​] − E[h(X ​, ⋯ , ​, ⋯ ,X ​)∣X ​, ⋯ ,X ​] ​ ≤
∣
∣

1 k n 1 k 1 Xk n 1 k ∣
∣

c ​k (5.1)

​ ​

E[h(X ​, ⋯ ,X ​, ⋯ ,X ​)∣X ​, ⋯ ,X ​]1 k n 1 k−1 = E[h(X ​
, ⋯ ,

​
, ⋯ ,X ​

)∣X ​
, ⋯ ,X ​

]1 Xk n 1 k−1

= E[h(X ​, ⋯ , ​, ⋯ ,X ​)∣X ​, ⋯ ,X ​]1 Xk n 1 K

(5.2)

X ​k ​Xk X ​, ⋯ ,X ​1 k−1

X ​k ​Xk Equation 5.1 Equation 5.2

∣Y ​ −k Y ​∣ ≤k−1 c ​k ■
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5.5 Appplication to statistical estimators
Example: empirical mean Suppose  is a sum of IID random variables such that  and

. Then the function  satisfies the bounded difference property with 

 and we recover the classical Hoeffding’s theorem for bounded random variables

Example: empirical variance Suppose we are interested in estimating the variance . Then using the unbiased variance

estimator

with . If we change  into  then  and so

S ​ =n X ​ +1 ⋯ + X ​n E[X ​] =i μ

a ≤ X ​ ≤i b h(x ​, ⋯ ,x ​) =1 n ​

n
x ​+⋯+x ​1 n c ​ =k

​

n

(b−a)

​ ​

P ​ − μ ≥ ε(
n

X ​ + ⋯ + X ​1 n ) ≤ e  − ​

(b−a)2
2nε2

σ2

V ​ =n ​ ​ X ​ − ​ =
n − 1

1

k=1

∑
n

( i
n

S ​n)2

​ ​X ​ −
n − 1

1

i=1

∑
n

i
2

​

(n − 1)n
S ​n

2

E[V ​] =n σ2 X ​1 ​X1 S ​(X ​, ⋯ ,X ​) −n 1 n S ​( ​, ⋯ ,X ​) =n X1 n X ​ −1 ​X1

V ​(X ​, ⋯ ,X ​) −n 1 n V ​( ​, ⋯ ,X ​) =n X1 n ​ −
n − 1

X ​ − ​1
2 X1

2

​ ​ + ​

n − 1
X ​ − ​1 X1 (

n

S ​(X ​, ⋯ ,X ​)n 1 n

n

S ​( ​, ⋯ ,X ​)n X1 n )
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Let us assume , since we can replace  by  without changing  we can instead assume

that  and then find the bounded difference bound

and thus by McDiarmid we get

and this decay exponentially in  again. This can be used for a non-asymptotic confidence interval for the variance.

a ≤ X ​ ≤i b X ​i X ​ −i (a + b/2) V ​n

− ​ ≤2
(b−a) X ​ ≤i ​2

(b−a)

∣V ​(X ​, ⋯ ,X ​) −n 1 n V ​
(

​
, ⋯ ,X ​

)∣ ≤n X1 n ​ =
n − 1

​ (b − a)4
5 2

c ​k

P (V ​ −n σ ≥2 ε) ≤ e ≤
− ​

2 ​ c ​∑
k=1
n

k
2

ε2

e
− ​ ​

n

(n−1)2

25(b−a)4
8ε2

N
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5.6 Balls and Bins
Another classical example in probability is the so-called “Balls and Bins problem”: suppose we have  balls that are

thrown in  bins, the location of each ball is chosen at random independently of the other balls. It turns out this problem

occur in many algorithmic optimization problems. We can ask many questions realated to this problem. For example what
is the probability that one bin has more than two balls in it (this is a version of the famous birthday problem!), or we can
ask what is the maximal number of balls in a bin or the number of empty bins, and so on…

Let us compute first the expected number of empty bins. We write

where  is the  bin is empty and  otherwise. For the first urn to be empty, it must be missed by all balls and this

occur with probbaility  and thus

We prove a concentration bound around the mean using a martingale argument. We consider the sequence of random
variable  to be the bin in which the  ball falls and write . To apply  we check the

bounded difference equality. Consider how  changes when we change the location of the  ball. If the  balls lands in

a bin of its own then changing  may increase  by  or left it unchanged. If it lands in a bin with other balls, then

changing  may decrease  by . Then, by  we have

m

n

N = X ​ +1 ⋯X ​n

X ​ =i 1 ith 0
1 − ​(

n
1 )m

E[N ] = n 1 − ​(
n

1 )m

Y ​i ith N = N(Y ​, ⋯ ,Y ​)1 m Theorem 5.4

N ith ith

Y ​i N 1
Y ​i N 1 Theorem 5.3

P (∣N − E[N ]∣ ≥ ϵ) ≤ 2e− ​

m
2ϵ2
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5.7 Empirical processes
As another application of Azuma-Hoeffding’s theorem we consider empirical processes which are given by

where  are IID random variables and  belongs to a suitable class of function . We assume here that

i.e. the functions  are uniformly bounded. One of the simplest example of empirical process to consider the function

. By the LLN we have

where  is the distribution of the RVs . By Glivenko–Cantelli Theorem we have

that is we have uniform convergence of the empirical distribution to the true distribution.

Z(X ​, ⋯ ,X ​) =1 n ​ ​ ​ ​f(X ​) − E[f(X ​)] ​

f∈F

sup
∣

∣

n

1

k=1

∑
n

i i

∣

∣

X ​i f F

​ ∣f(x)∣ ≤
x

sup B for all f ∈ F

f

f ​(x) =t 1 ​x≤t

​ ​ 1 ​ →
n

1

k=1

∑
n

{X ​≤t}i
P (X ≤ t) = F ​(t)  almost surelyX

F ​X X ​i

​ ∣ ​ ​ 1 ​ −
t∈R
sup

n

1

k=1

∑
n

{X ​≤t}i
F ​(t)∣ →X 0  almost surely
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Empirical processes satisfy the bounded difference property: indeed if we set

Then

from which we conclude that . Interchanging  and 

proves the bounded difference property with . Then  show that, for every .

This tells us that the behavior of  is controlled by its mean . For example if we set  we have

for any .

g(x ​, ⋯ ,x ​) =1 n ​ ​ ​f(x ​) − E[f(X)] ​

∣

∣

n

1

k=1

∑
n

i

∣

∣

g(x ​, ⋯ , ​, ⋯ ,x ​) =1 x~k n ​ ​f(x ​) − E[f(X)] + ​ (f( ​) − f(x ​)) ​ ≤
∣

∣

n

1

k=1

∑
n

i
n

1
x~k k

∣

∣
g(x ​, ⋯ , ​, ⋯ ,x ​) +1 x~k n ​

n

2B

Z(x ​, ⋯ , ​, ⋯ ,x ​) ≤1 x~k n Z(x ​, ⋯ ,x , ⋯ ,x ​) +1 k n ​

n
2B x ​k ​x~k

c ​ =k ​

n
2B Theorem 5.3 ϵ > 0

P (∣Z − E[Z]∣ > ϵ) ≤ 2e− ​

2B2
nϵ2

Z E[Z] δ = e− ​

2B2
nϵ2

∣Z − E[Z]∣ ≤ B ​  with probability at least 1 −​ log ​

n

2
δ

1
2δ

δ > 0
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To go further we need to control the mean  and to do this we need two results.

Theorem 5.5 Suppose  are RVs (no independence needed) with  for .

Then

and

Proof. By Jensen inequality we have

Thus

and optimizing over  yields the result. Note that if  satisfies the condition of the theorem so does  and thus we also

have

E[Z]

Y ​,Y ​, ⋯ ,Y ​1 2 N E[e ] ≤tY ​i e ​2
t σ2 2

i = 1, ⋯ ,N

E[ ​Y ​] ≤
i

max i σ ​2 ln(N)

E[ ​ ∣Y ​∣] ≤
i

max i σ ​2 ln(2N)

e ≤tE[max ​ Y ​]i i E[e ] ≤tmax ​ Y ​i i
​E[e ] ≤

i

∑ tY ​i Ne ​2
t σ2 2

E[ ​Y ​] ≤
i

max i ​ +
t

logN
​

2
tσ2

t Y ​i −Y ​i
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Theorem 5.6 Suppose  are IID Rademacher random variable (i.e. equal to  with probability . Then we have

Proof. We use a duplication trick and consider RVs  which are indepndent copies of . We have then

where in the last line we have used that multiplying  by a factor  is equivalent to exchanging  and

 and thus does not change the expectation. Taking now expectation over  and using the triangle inequality yields the

result.

ϵ ​i ±1 ​ )2
1

E ​ ​ ​ ​f(X ​) − E[f(X)] ​ ≤[
f

sup
∣

∣

n

1

i=1

∑
n

i

∣

∣] 2E ​ E ​ ​ ∣ ​ϵ ​f(X ​)∣X [ ϵ [
f

sup
n

1

i=1

∑
n

i i ]]

Y ​, ⋯Y ​1 n X ​, ⋯X1 n

​ ​

E ​ ∣ ​ ​f(X ​) − E[f(X ​)]∣[
f

sup
n

1

i=1

∑
n

i i ] = E ​ ∣ ​ ​f(X ​) − E[f(Y ​)]∣[
f

sup
n

1

i=1

∑
n

i i ]
= E ​ ​ ​E ​[ ​ ​f(X ​) − f(Y ​)] ​X [

f

sup
∣

∣
Y
n

1

i=1

∑
n

i i

∣

∣]
≤ E ​E ​ ​ ​ ​ f(X ​) − f(Y ​) ​X Y [

f

sup
∣

∣

n

1

i=1

∑
n

i i

∣

∣]
≤ E ​E ​ ​ ​ ​ ϵ ​(f(X ​) − f(Y ​)) ​X Y [

f

sup
∣

∣

n

1

i=1

∑
n

i i i

∣

∣]
(f(X ​) −i f(Y ​))i −1 X ​i

Y ​i ϵ ​i
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This is a very useful since have gotten rid of  which maybe unknown and we have now a quantity which depnds

only on the data . How useful this can be is deonstrated next in the context of Glivenko-Catelli Theorem.

Theorem 5.7 We have

Proof. Using  we bound  for some fixed values of the . Given those values

and since  is a characteristic function of a half interval, as  varies there are only  possible values for

the functions  (To see this order the  in increasing order). Therefore the supremum over  reduces

to a supremum over  values (which depend on )).

Since  satisfies a Gaussian bound  we have

a bound which is independent of the ’s! Thus by  with  we find

E[f(X ​)]i

X ​, ⋯ ,X ​1 n

P ​ ​ ​ ​ 1 ​ − F ​(t) ​ ≥ 2 ​ + ϵ ≤(
t∈R
sup

∣

∣

n

1

k=1

∑
n

{X ​≤t}i X

∣

∣
2 ​

n

log 2(n + 1) ) e− ​2
nϵ2

Theorem 5.6 E ​[sup ​ ∣ ​ ​ ϵ ​1 ​∣]ϵ t∈R n
1 ∑k=1

n
i {x ​≤t}i

x ​i

f(x) = 1 ​{x≤t} t n + 1
(f(x ​), ⋯ , f(x ​))1 n x ​i t

n + 1 x ​, ⋯ ,x ​1 n

ϵ ​i E[e ] ≤sϵ ​i e ​2
s2

E ​[e ] =ϵ
s ​ ​ ϵ ​1 ​

n
1 ∑

k=1
n

k {x ​≤t}k
​E ​[e ] ≤

k=1

∏
n

ϵ
​ϵ ​1 ​

n
s

k {x ​≤t}k
​e =

k=1

∏
n

​

2n2
s2

e ​2n
s2

x ​i Theorem 5.5 σ =2
​

n
1

E ​[ ​ ∣ ​ ​ϵ ​ ​ 1 ​∣] ≤ϵ
t∈R
sup

n

1

k=1

∑
n

i
n

1
{x ​≤t}i

​ ​2 ln(2(n + 1))
​n

1
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6 Martingale, Markov
chain, and CLT
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6.1 The Dynkin Martingale and Markov chains
Consider a Markov chain  with state space  and transition probabilities  and consider any (bounded) function 

 .

We want to construct a martingale associated to the sequence of random variables , .

If the  were independent it would be enough to assume that they have mean . In general we use the following

construction to build a martingale. If we are given sequence of integrable RV  then we set

and we have then . So we can build a martingale by using  as the increment of the

martingale. We set

Applying this idea to the sequence  generated by a Markov chain with generator  we set

is a martingale increment with respect to the sequence .

X ​j S P f :
S → R

Y ​ =j f(X ​)j j = 0, 1, 2, ⋯

f(X ​)j 0
Y ​,Y ​, ⋯1 2

D =m Y ​ −m E[Y ​∣Y ​, ⋯ ,Y ​]m 0 m−1

E[D ​∣Y ​, ⋯ ,Y ​] =m 0 m−1 0 D ​m

M ​ =n ​D ​ =
j=1

∑
n

j ​(Y ​ −
j=1

∑
n

m E[Y ​∣Y ​, ⋯ ,Y ​]) .m 0 m−1

Y ​ =n f(X ​)n P

D ​ =m f(X ​) −m E[f(X ​)∣X ​, ⋯ ,X ​] =m 0 m−1 f(X ​) −m E[f(X ​)∣X ] =m m−1 f(X ) −m Pf(X ​)m−1

X ​,X ​, ⋯1 2
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We obtain therefore the martingale

for  bounded and where we used the notation . This martingale is called the Dynkin’s martingale.

If we want to apply martingale theory to analyze the sum  then we would like to use the martingale

. To do this we must a find a function  such that

Then we would have a martingale

which, up to the correction term  is equal to .

​ ​

M ​ = ​f(X ​) − Pf(X ​)n

j=1

∑
n

j j−1 = f(X ​) − f(X ​) + ​(f(X ​) − Pf(X ​))n 0

j=0

∑
n−1

j j

= f(X ​) − f(X ​) − ​Af(X ​)n 0

j=0

∑
n−1

j

(6.1)

f A = P − I

​ g(X ​)∑j=1
n

j

Equation 6.1 f

Af = (P − I)f = −g

M ​ =n f(X ​) −n f(X ​) +0 ​g(X ​)  with Af =
j=0

∑
n−1

j −g

f(X ​) −n f(X ​)0 ​ g(X ​)∑j=1
n

j
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6.2 Poisson equation
What we have uncovered to build a martingale from a Markov chain is an important equation

Definition 6.1 (Poisson equation) Let  be a Markov chain with transition matrix . A function  satisfies the Poisson

equation for the function  if

Note that Poisson equation needs not have a solution for arbitrary . We investigate this in the context of finite state

space Markov chain.

Theorem 6.1 Suppose  is an irreducible Markov chain with transition matrix  and stationary distribution . Then

the Poisson equation  has a solution if and only if  has mean  with respect to the stationary distribution,

that is .

The function  is then given by

where  is the matrix whose each row is the stationary distribution .

X ​n P f

g

Af = −g where  A = P − I

g

X ​n P π

Af = −g g 0
πg = ​ π(i)g(i) =∑i 0

f

f = (Π − (P − I)) g−1

Π π
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Proof. By irreducibility the matrix  has a unique right eigenvector  (up to a mutliplicative constant)

and unique left eigenvector  for the eigenvalue  and the algebraic multiplicity of  is also equal to .

The matrix  is a projection,  and we have , that is  projects onto the eigenspace

corresponding to the eigenvalue  and we have . So if  then . As a consequence

 has the same eigenvalues as  except the eigenvalue  which is replaced by the eigenvalue 

and thus  is invertible.

If  solves the Poisson equation then  and thus  which implies

that .

Conversely taking  with  let us set . This implies that

which proves the claim if we can show that . But since  commutes with  we have

provided that . .

P h = (1, ⋯ , 1)T

π 1 1 1

Π Π =2 Π PΠ = ΠP = Π Π
1 Πf = (πf)h πf = 0 (P − Π)f = Pf

(P − Π) = P (I − Π) P 1 0
I − (P − Π)

f (P − I)f = −g πPf − πf = πf − πf = 0 = −πg
πg = 0

g πg = 0 f = (Π − (P − I)) g−1

Πf − (P − I)f = Πf − Af = g

Πf = 0 Π P

Πf = Π(Π − (P − I)) g =−1 (Π − (P − I)) Πg =−1 0

πg = 0 ■
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The object involved in solving the Poisson equation occur in various other contexts and deserve a name.

Definition 6.2 (Fundamental matrix) For an irreducible finite state Markov chain  with transition matrix  and

stationary distribution , the fundamental matrix is given by

where  is the matrix whose every rows is the stationary distribution .

The solution to the Poisson equation  is simply .

Note that if  is irreducible and aperiodic we have proved that  converges exponentially fast to  and using

that  we have the convergent series

X ​n P

π

Z = (I − (P − Π))−1

Π π

Af = −g f = Zg

X ​n P −n Π 0
(P − Π) =n P −n Π

Zf = ​P (f −
n=0

∑
∞

n πf) .

78



6.3 The Central Limit Theorem
We can now use this to prove a central limit theorem for Markov chain.

Theorem 6.2 (central limit theorem for Markov chain) For  with  and for any initial distribution of

, as ,

converges in distribution to a mean zero normal random variable with variance

where  is the solution of the Poisson equation .

Proof. Consider the Dynkin martingale

with increments are .

g : S → R πg = 0
X ​0 n → ∞

​ ​g(X ​)
​n

1

j=0

∑
n−1

j

σ (g) =2 πf −2 π((Pf) )2

f (P − I)f = −g

M ​ =n f(X ​) −n f(X ​) +0 ​g(X ​) =
j=0

∑
n−1

j ​D ​

j=1

∑
n

j

D ​ =j f(X ​) −j Pf(X ​)j−1
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We claim that, for any ,

Indeed, using the properties of conditional expectations we have

Iterating proves the statement. We now use a Taylor expansion and  to find

where  is a bounded random variable. Note that

n

E ​ =[
​ E[e ∣F ​]∏j=1

n iθD ​j
j−1

eiθM ​n ] 1 (6.2)

​ ​

E ​ = E E ​ ∣F ​ = E ​[
​ E[e ∣F ​]∏j=1

n iθD ​j
j−1

eiθM ​n ] [ [
​ E[e ∣F ​]∏j=1

n iθD ​j
j−1

eiθM ​n

n−1]] [
​ E[e D ​∣F ​]∏j=1

n iθ
j j−1

E[e ∣F ​]iθM ​n
n−1 ]

= E ​ = E ​ = E ​[
​ E[e D ​∣F ​]∏j=1

n iθ
j j−1

E[e ∣F ​]iθM ​+D ​n−1 n
n−1 ] [

​ E[e D ​∣F ​]∏j=1
n iθ

j j−1

e E[e ∣F ​]iθM ​n−1 iθD ​n
n−1 ] [

​ E[e D ​∣F ​]∏
j=1
n−1 iθ

j j−1

eiθM ​n−1 ]
E[D ​∣F ​] =j j−1 0

logE[e ∣F ​] =i ​D ​

​n
θ

j
j−1 − ​E[D ​∣F ​] +

2n
θ2

j
2

n−1 ​R ​

n3/2

1
n

R ​n

E[D ​∣F ​] =j
2

n−1 E[(f(X ​) −j Pf(X ​)) ∣X ​] =j−1
2

j−1 Pf (X ​) −2
j−1 (Pf(X ​))j−1

2
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Using the the strong law of large numbers for Markov chain,

Therefore, from , we find that

where

.
Since

and the term  is negligible as  we have shown that  converges in

distribution to a normal random variable with mean  and variance . 

​ ​ logE[e ∣F ​] =
n→∞
lim

j=1

∑
n

i ​D ​

​n
θ

j
j−1 − ​π(Pf −

2
θ2

2 (Pf) ) =2 − ​π(f −
2
θ2

2 (Pf) )  almost surely2

Equation 6.2

​E e =
n→∞
lim [ i ​M ​

​n
θ

n] e− ​2
θ σ2 2

σ (g) =2 π(f −2 (Pf) )2

​M ​ =
​n

1
n ​ f(X ​) − f(X ​) +

​n

1
( n 0 ) ​ ​g(X ​)

​n

1

j=0

∑
n−1

j

​ f(X ​) − f(X ​)
​n

1 ( n 0 ) n → ∞ ​ ​ g(X ​)
​n

1 ∑j=0
n−1

j

0 σ (g)2 ■
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We can rewrite the asymptotic variance in terms of  using the fundamental matrix . Indeed

since  and 

Thus the asymptotic variance is given by

If  is aperiodic then we have  and using, the scalar product 

we get

which is often the form of the asymptotic variance found in the literature.

g Z = (I − (P − Π))−1

f = Zg πf = πg = 0

​ ​

f − (Pf)2 2 = (f − Pf)(f + Pf) = (f − (P − Π)f)(f + (P − Π)f)

= (I − (P − Π))f(I + (P − Π))f = (I − (P − Π))f(2I − (I − (P − Π)))f

= 2gZg − g2

σ (g) =2 π(2gZg − g )2

X ​n Zg = ​(P −∑n=0
∞

π) gn ⟨f , g⟩ ​ =π ​ π(j)f(j)g(j)∑j

σ (g) =2 ⟨g, g⟩ ​ +π 2 ​⟨g,P g⟩ ​

n=1

∑
∞

n
π
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6.4 Peskun theorem
In the context of Monte-Carlo methods one can try and use the central limit theorem as way to compare different Monte-
Carlo Markov chain methods used to sample the same distribution . The idea is that the smaller the variance, the

“better” the Monte-Carlo will perform since the fluctuations around the stationary values  will be smaller. The

following theorem is a result in this direction. It shows that the more a Monte-Carlo Markov chain “jumps”, the smaller the
asymptotic variance will be.

The proof will use result from matrix algebra. Suppose a vector space  is equipped with a scalar product  and  and

 are self-adjoint. We say that  if

and we say that  is positive definite if , in which case  is invertible.

Theorem 6.3 Suppose  and  are positive definite with  then 

Proof. Since  is positive definite then  exists and is also invertible. Then  implies that .

Indeed since  is invertible we can write  and

To conclude we need to show that if  then . Since the eigenvectors  of  can be chosen to be

orthonormal basis of ,  implies that the eigenvalues  of  satisfy .

π

πg

E ⟨⋅, ⋅⟩ A

B A ⪯ B

⟨x,Ax⟩ ≤ ⟨x,Bx⟩  for all x ∈ Rn

A 0 ≺ A A

A B A ⪯ B B ⪯−1 A−1

B B1/2 A ⪯ B B AB ⪯−1/2 1/2 I

B1/2 x = B y−1/2

⟨x,Ax⟩ ≤ ⟨x,Bx⟩ ⟹ ⟨B y,AB y⟩ =−1/2 −1/2 ⟨y,B AB y⟩ ≤−1/2 −1/2 ⟨B y,BB y⟩ =−1/2 −1/2 ⟨y , y⟩

C ⪯ I I ⪯ C−1 e ​i C

E C ⪯ I λ ​i C 0 < λ ​ ≤i 1
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We have, with ,

and thus . Arguing as above this implies that . .

Theorem 6.4 (Peskun Theorem) Suppose  and  are two transition probabilities such that  and  satisfy

detailed balance with respect to the stationary distribution . Assume that

then for all  with  we have

Proof. Suppose  satisfies detailed balance with stationary distribution . Then  is self-adjoint with respect to the

scalar product :

x = ​ x ​e ​∑i i i

⟨x,x⟩ = ​ ∣x ​∣ ≤
i

∑ i
2

​ ​ ∣x ​∣ =
i

∑
λ ​i

1
i

2 ⟨x,C x⟩−1

I ⪯ C =−1 B A B1/2 −1 1/2 B ⪯−1 A−1 ■

P ​1 P ​2 P ​1 P ​2

π

P ​(i, j) ≤1 P ​(i, j) for all i2 = j

g πg = 0

σ ​(g) ≤P ​2

2 σ ​(g) .P ​1

2

P π P

⟨f , g⟩ ​π

⟨f ,Pg⟩ ​ =π ⟨Pf , g⟩ ​ .π
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Consider the so-called Dirichlet form associated to the Markov chain (with )

Using detailed balance, , and then exchanging the indices we find

Therefore, averaging these two formulas, we find

Note that the Dirichlet form does not involve the diagonal terms . Therefore if  for  and

both satisfy detailed balance then we have an inequality between the Dirichlet forms

Note also that if we assume  we can write . Since the since the asymptotic

variances  have the from  the proof is complete by invoking

. .

A = P − I

​

E(f , f) = ⟨f , (−A)f⟩ ​ = ​π(i)f(i) f(i) − ​P (i, j)f(j) = ​π(i)f(i)P (i, j)(f(i) − f(j))π

i

∑ (
j

∑ )
i,j

∑

π(i)P (i, j) = π(j)P (j, i)

​

E(f , f) = ​π(j)f(i)P (j, i)(f(i) − f(j)) = − ​π(i)f(j)P (i, j)(f(i) − f(j))
i,j

∑
i,j

∑

E(f , f) = ​ ​π(i)(f(i) −
2
1

i=j

∑ f(j))P (i, j)(f(i) − f(j))

P (i, i) P ​(i, j) ≤1 P ​(i, j)2 i = j

E ​(f , f) ≤P ​1 E ​(f , f)P ​2

πf = 0 E ​(f , f) =P ​i
⟨f , (I − (P ​ −i Π))f⟩ ​π

σ (g)P ​i

2 σ ​(g) =P ​i

2 2⟨g, (I − (P ​ −i Π)) g⟩ ​ −−1
π ⟨g, g⟩ ​π

Theorem 6.3 ■
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[Example: Metropolis vs Barker]. We can build a Markov chain whose stationary distribution is  by using the transition

probabilities

or

Since, for $

the Metropolis algorithm as a smaller asymptotic variance.

π

P (i, j) = Q(i, j) min 1, ​ Metropolis −{
π(i)P (i, j)
π(j)Q(j, i)} Hastingsalgorithm

P (i, j) = Q(i, j) ​ Barkeralgorithm
1 + ​

π(i)P (i,j)
π(j)Q(j,i)

​

π(i)P (i,j)
π(j)Q(j,i)

x ≥ 0

​ ≤
1 + x

x
min{1,x}
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