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1 Markov chains basics
We introduce the basic definitions necessary to describe Markov chains and provide a first series of examples. For further
reading we recommend the books Lawler ( ) and Levin et al. ( ).2006 2017

4



1.1 Markov chains on a discrete state spaces
Definition 1.1 (Stochastic process) A discrete time stochastic process is a infinite sequence of random variables

 where all  take values in some space , called the state space of the process. We think of  as time

and  as the initial condition.

Formally we can think of a stochastic process as a probability measure on  (the joint distribution of all ) but it is not

convenient to put your hands on this object directly. A famous result in measure theory called 
 say that is enough to specify all the joint distribution of  for all choices of  and 

.

To start, in this chapter, we assume that  is discrete (either finite or countable) and without loss of generality we can

write  with  finite or not (by relabeling the state as needed). In this context we only need to

specify the finite dimensional distributions

which we have written in terms of conditional probabilities using the product rule.

X ​,X ​,X ​, ⋯0 1 2 X ​n S n

X ​0

S∞ X ​n

Kolmogorov extension
theorem X ​,X ​, ⋯ ,X ​n ​1 n ​2 n ​k

k n ​ <1

n ​ ⋯ <2 n ​k

S

S = {1, 2, ⋯ ,N} N

​

P X ​ = i ​,X ​ = i ​, ⋯ ,X ​ = i ​ = P X ​ = i ​ P X ​ = i ​∣X ​ = i ​ P X ​ = i ​∣X ​ = i ​,X ​ = i ​ ⋯( 0 0 1 1 n n) ( 0 0) ( 1 1 0 0) ( 1 2 1 1 0 0)

⋯P X ​ = i ​∣X ​ = i ​, ⋯ ,X ​ = i ​( n n n−1 n−1 0 0)
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The Markov property is an assumption on the structure of these conditional probabilities: the future depends only on the
present and not on the past.

Definition 1.2 (Markov Chains) A Markov chain is a stochastic process with a discrete state space  such that, for all ,

all states , we have

that is the probability to move to state  at time  depends only on the current position at times .

The Markov chain is time-homogeneous if  is independent of , that is the probability to move

from state  to state  does not depend on the time  of the move.

As a consequence for a Markov the joint pdf can be written as

S n

i ​, ⋯ i ​0 n

P X ​ = i ​∣X ​ = i ​, ⋯ ,X ​ = i ​ =( n n n−1 n−1 0 0) P (X ​ =n i ​∣X ​ =n n−i i ​)n−1

j n n − 1

P (X ​ =n j∣X ​ =n−1 i) n

i j n

P X ​ = i ​,X ​ = i ​, ⋯ ,X ​ = i ​ =( 0 0 1 1 n n) P X ​ = i ​ P X ​ = i ​∣X ​ = i ​ ⋯P X ​ = i ​∣X ​ = i ​( 0 0) ( 1 1 0 0) ( n n n−1 n−1)
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1.2 Matrix notation
For time homogeneous Markov chains it is natural to use the (possibly infinite) vector/matrix notation:

7



Without loss of generality, we can relabel the states so that  (with ). It will be convenient

to set

that is  is a row vector whose entries are the initial distribution.

Also we will write  for the  matrix whose entries are 

We denotethen  the row vector with entries

S = {1, 2, 3, ⋯ ,N} N ≤ ∞

μ = (μ(1),μ(2), ⋯ ,μ(N))

μ

P N × N P (i, j)

P = ​ ​ ​ ​ ​ ​

⎝
⎛ P (1, 1)

P (2, 1)

⋮
P (N , 1)

P (1, 2)
P (2, 2)

⋮
P (N , 2)

⋯
⋯

⋯

P (1,N)
P (2,N)

⋮
P (N ,N) ⎠

⎞

μP

μP (i) = ​
μ(j)P (j, i)

j

∑
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1.3 Kolmogorov equations
Proposition 1.1 (Kolmogorov equations) For a Markov process with initial distribution  and transition probabilities

:

1.The -step transition probabilities are given by

where  is the matrix product .

2. If  is the distribution of  then

is the distribution of .

3. If  is a column vector ( you may think of  as a function ) then we have

Proof. For 1. we use induction and assume the formula is true for . We condition on the state at time  , use the

formula , the Markov property, to find

μ

P

n

P (X ​ =n j∣X ​ =0 i) = P (i, j)n

P n
​

 n times

​P ⋯P

μ(i) = P (X ​ =0 i) X ​0

P (X ​ =n i) = μP (i)n

X ​n

f = (f(1), ⋯ , f(n))T f f : S → R

P f(i) =n E f(X ​)∣X ​ = i .[ n 0 ]

n − 1 n − 1
P (AB∣C) = P (A∣BC)P (B∣C)
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For 2. note that  is a probability vector since

Furthermore by the formula for conditional probabilities part 1.

For 3. we have

​ ​

P X ​ = j∣X ​ = i( n 0 ) = ​P X ​ = j ,X ​ = k∣X ​ = i

k∈S

∑ ( n n−1 0 )

= ​P X ​ = j∣X ​ = k ,X ​ = i P X ​ = k∣X ​ = i

k∈S

∑ ( n n−1 0 ) ( n−1 0 )

= ​P X ​ = j∣X ​ = k P X ​ = k∣X ​ = i

k∈S

∑ ( n n−1 ) ( n−1 0 )

= ​P (i, k)P (k, j) = P (i, j) .
k∈S

∑ n−1 n

μP

​μP (i) =
i

∑ ​ ​
μ(j)P (j, i) =

i

∑
j

∑ ​
μ(j)

​P (j, i) =
j

∑
i

∑ ​
μ(j) .

j

∑

P (X ​ =n j) = ​P (X ​ =
k∈S

∑ n j∣X ​ =0 k)P (X ​ =0 k) = ​μ(k)P (k, j) =
k

∑ n μP (j) .n

P f(i) =n
​P (i, k)f(k) =

k

∑ n
​f(k)P (X ​ =

k

∑ n k∣X ​ =0 i) = E[f(X ​) ∣X ​ =n 0 i] .
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1.4 Memoryless property
Markov chains forgets their past. For example if we observe that  for some  then the Markov chain starts

anew at : conditional on the event , the stochastic process ,  is a Markov chain

with transition matrix  and initial condition .

Indeed we have

Actually a stronger statement holds and shows that the Markov chain after time  is independent of the past!

Theorem 1.1 Suppose the Markov chain is time homogeneous and  is any event which depends only 

(the past) then we have

Proof. See Homework . Any such even  can be written as a union of event of the form 

.

Using the language of measure theory  belong to the -algebra .

X ​ =m i i ∈ S

i {X ​ =m i} Y ​ =n X ​m+n n = 0, 1, 2, ⋯
P i

​ ​

P (X ​ = i ​ ⋯X ​ = i ​∣X ​ = i) = ​m+1 m+1 m+n m+n m
P (X ​ = i)m

P (X ​ = i,X ​ = i ​ ⋯X ​ = i ​)m m+1 m+1 m+n m+n

= ​ = P (i, i ​) ⋯P (i ​, i ​)
μP (i)m

μP (i)P (i, i ​) ⋯P (i ​, i ​)m
m+1 m+n−1 m+n

m+1 m+n−1 m

n

A X ​, ⋯ ,X ​0 n−1

P ({X ​ =m+1 i ​ ⋯X ​ =m+1 m+n i ​} ∩m+n A∣X ​ =n i) = P (X ​ =1 i ​ ⋯X ​ =m+1 n i ​∣X ​ =m+n 0 i)P (A∣X ​ =n i)

Exercise 1.3 A {X ​ =0

i ​, ⋯ ,X ​ =0 m−1 i ​}m−1

A σ σ(X ​, ⋯ ,X ​)0 m−1
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1.5 Stationary and limiting distributions
Basic question: For Markov chain understand the distribution of  for large , for example we may want to know

whether the limit

exists or not, whether it depends on the choice of initial distribution  and how to compute it.

Definition 1.3 (Stationary and limiting distributions)  

A probability vector  is called a limiting distribution if the limit  exists.

A probability vector  is called a stationary distribution if .

Remark: Limiting distributions are always stationary distributions: If  then

Remark: If  is stationary and is the initial condition then  is a sequence of identically distributed random variables.

X ​n n

​P (X ​ =
n→∞
lim n i) = ​μP (i)

n→∞
lim n

μ

π lim ​ μP =n→∞
n π

π πP = π

lim ​ μP =n→∞
n π

πP = ( ​μP )P =
n→∞
lim n

​μP =
n→∞
lim n+1

​μP =
n→∞
lim n π .

π X ​n
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1.6 Examples

Example 1.1 (2-state Markov chain) Suppose  with transtion matrix 

The equation for the stationary distribution,  gives

that is . Normalizing to a probability vector gives .

We show  is a limiting distribution. Set  and consider the difference . Using 

we get the equation

By induction . If either  or  then 

 and this implies that  as well.

If either  or  does not vanish then  converges to a stationary distribution for an arbitrary choice of the

initial distribution .

S = {1, 2} P = ​ ​ .( 1 − p

q

p

1 − q
)

πP = π

π(1)(1 − p) + π(2)q = π(1) π(1)p + π(2)(1 − q) = π(2)

pπ(1) = qπ(2) π = ​ , ​(
p + q

q

p + q

p )
π μ ​ ≡n μP n μ ​ −n π μ ​(2) =n 1 − μ ​(1)n

​ ​

μ ​(1) − π(1)n = μ ​P (1) − π(1) = μ ​(1)(1 − p) + (1 − μ ​(1))q − ​n−1 n−1 n−1
p + q

q

= μ ​(1)(1 − p − q) − ​ (1 − p − q) = (1 − p − q)(μ ​(1) − π(1))n−1
p + q

q
n−1

μ ​(1) −n π(1) = (1 − p − q) (μ ​(1) −n
0 π(1)) p > 0 q > 0 lim ​ μ ​(1) =n→∞ n

π(1) lim ​ μ ​(2) =n→∞ n π(2)

p q μ ​ =n μP n

μ
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Example 1.2 (Coupon collecting) A company offers toys in breakfast cereal boxes. There are  different toys available

and each toy is equally likelky to be found in any cereal box.

Let  be the number of distinct toys that you collect after buying  boxes and is natural to set . Then  is a

Markov chain with state space  and it has a simple structure since  either stays the same of

increase by  unit.

The transition probabilities are

The Markov chain  will eventually reach the state  and stays there forever (  is called an absorbing state). Let us

denote by  the (random) finite time  it takes to reach the state . To compute its expectation, , let us write

where  is the time needed to get a new toy after you have gotten your  toy. The ’s are independent and

have  has a geometric distribution with . Thus

N

X ​n n X ​ =0 0 X ​n

{0, 1, 2, ⋯ ,N} X ​n

1

​ ​

P (j, j + 1)

P (j, j)

= P{  new toy ∣ already j toys} = ​

N

N − j

= P{  no new toy ∣ already j toys} = ​

N

j

X ​n N N

τ τ N E[τ ]

τ = T ​ +1 ⋯ + T ​ ,N

T ​i (i − 1)th T ​i

T ​i p ​ =i (N − i)/N

E[τ ] = ​E[T ​] =
i=1

∑
N

i ​ ​ =
i=1

∑
N

N − i

N
N ​ ​ ≈

i=1

∑
N

i

1
N ln(N) .
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Example 1.3 (Random walk on a graph) Consider an undirected graph  consists with vertex set  and edge set  (each

edge  is an (unordered) pair of vertices). We say that the vertex  is a neighbor of the vertex , and write

, if  is an edge. The degree of a vertex , denoted , is the number of neighbor of .

Given such a graph  the simple random walk on  is the Markov chain with state space  and transition

matrix

The invariant distribution for the random walk on graph is given by  where is the number of edges. First

note that  since each edge connects two vertices. To show invariance note that

 

G V E

e = {v,w} v w

v ∼ w {v,w} v deg(v) v

G = (V ,E) G V

P (v,w) = ​ .{ ​deg(v)
1

0
 ifw ∼ v

 otherwise

π(v) = ​2∣E∣
deg(v)

​ π(v) =∑v 1

πP (v) = ​π(w)P (w, v) =
w

∑ ​ ​ ​ =
w;w∼v

∑
2∣E∣

deg(w)
deg(w)

1
​ ​ 1 =

2∣E∣
1

w;w∼v

∑ π(v) .

P = ​ ​ ​ ​ ​ ​ ​

⎝

⎛ 0
​4

1

​3
1

​3
1

0

​3
1

0
​3

1

​3
1

​3
1

​3
1

​4
1

0
0

​3
1

​3
1

​4
1

0
0

​3
1

0

4
1

3
1

3
1

0 ⎠

⎞
π = ​ , ​ , ​ , ​ , ​( 16

3
16
4

16
3

16
3

16
3 )
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Example 1.4 (Random walk on the hypercube)  

The -dimensional hypercube graph  has for vertices the binary -tuples

Two vertices are connected by an edge when they differ in exactly one coordinate
(flipping a  into  or vice-versa).

The simple random walk on  moves from one vertex  by

choosing a coordinate  uniformly at random and setting

.

The degree of each vertex is , the number of vertices is  and the number of

edges is .

The stationary distribution is ,the uniform distribution on .

Variation on this random walk
have many applications, you can

intepret the vector  as

describing which one of 

objects is on a list (see the
section on Monte-Carlo
Markov chains)

d Q ​d d

x = (x ​, ⋯ ,x ​)  with x ​ ∈1 d k {0, 1}

0 1

Q ​d x = (x , ⋯ ,x ​)1 d

j ∈ {1, 2, ⋯ , d}
x ​ →j (1 − x ​)j

d 2d

2 ​

d
2
d

π(x) = ​2d
1 Q ​d

x
d
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Example 1.5 (Assymetric random walks on {0,1, , N}) State space  and the Markov chain goes up

by  with probability  and down by  with probaility .

We can pick different boundary conditions (BC) at  and :

Absorbing BC: 

Reflecting BC: 

Partially reflecting BC: 

Periodic BC: 

S = {0, 1, ⋯ ,N}
1 p 1 1 − p

P (j, j + 1) = p, P (j, j − 1) = 1 − p , for j = 1, ⋯ ,N − 1

0 N

P (0, 0) = 1,P (N ,N) = 1

P (0, 1) = 1,P (N ,N − 1) = 1

P (0, 0) = (1 − p) ,P (0, 1) = pP (N ,N − 1) = (1 − p) ,P (N ,N) = p

P (0, 1) = p ,P (0,N) = (1 − p) , P (N , 0) = p ,P (N ,N − 1) = (1 − p)
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Example 1.6 (Ehrenfest urn model) Suppose  balls are distributed among two urns, urn  and urn . At each move

one ball is selected uniformly at random among the  balls and is transferred from its current urn to the other urn. If

 is the number of balls in urn  then the state space is  and the transition probabilities

We show that the invariant distribution is binomial with paramters , that is .

This Markov chain is closely related to the simple random walk  on the hypercube . Indeed selecting randomly

one of the  balls and moving it the other urn is equivalent to selecting a random coordinate  of 

and changing it to . If we denote by  to be the number of s in . Then

d A B

d

X ​n A S = {0, 1, ⋯ , d}

P (j, j + 1) = ​ , P (j, j −
d

d − j
1) = ​ .

d

j

(d, ​ )2
1 π(j) = ​ ​(

j
d) 2d

1

​ ​

πP (j) = ​π(k)P (k, j) = π(j − 1)P (j − 1, j) + π(j + 1)P (j + 1, j)
k

∑

= ​ ​ ​ + ​ = ​ ​ .
2d
1 [(

j − 1
d )

d

d − (j − 1) (
j + 1
d )

d

j + 1] (
j

d)
2d
1

Y ​n Q ​d

d y ​k y = (y ​, ⋯ , y ​)1 d

1 − y ​k j = ∣y∣ = y ​ +1 ⋯ + y ​d 1 y

P (X ​ =n j + 1∣X ​ =n j) = P ( choose k such that y ​ =k 0) = ​

d

d − j
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1.7 Simulation of Markov chains
It is relatively easy to compute the distribution of  by matrix multiplication, that is  if  is not too large.

It is also not difficult to generate the paths  of the Markov chain.

Set  (or generate the random variable  with distribution )

Generate the RV  with probability distribution  and set .

and so on.

To generate a discrete RV with finite state space do

X ​n μP n P

X ​,X ​,X ​, ⋯0 1 2

X ​ =0 i X ​0 μ

Z (P (i, 1), ⋯P (i,n)) X ​ =1 Z

import numpy as np1
2

# Create an array to describe the state space3
elements = np.array([1, 2, 3, 4, 5])4

5
# Define nonuniform probabilities for each element6
probabilities = np.array([0.1, 0.2, 0.3, 0.2, 0.2])7

8
# Use random.choice with nonuniform probabilities9
random_element = np.random.choice(elements, p=probabilities)10

19

https://luc-umass.github.io/html/Markov.html?print-pdf=
https://luc-umass.github.io/html/Markov.html?print-pdf=
https://luc-umass.github.io/html/Markov.html?print-pdf=
https://luc-umass.github.io/html/Markov.html?print-pdf=
https://luc-umass.github.io/html/Markov.html?print-pdf=
https://luc-umass.github.io/html/Markov.html?print-pdf=
https://luc-umass.github.io/html/Markov.html?print-pdf=
https://luc-umass.github.io/html/Markov.html?print-pdf=
https://luc-umass.github.io/html/Markov.html?print-pdf=
https://luc-umass.github.io/html/Markov.html?print-pdf=
https://luc-umass.github.io/html/Markov.html?print-pdf=
https://luc-umass.github.io/html/Markov.html?print-pdf=
https://luc-umass.github.io/html/Markov.html?print-pdf=
https://luc-umass.github.io/html/Markov.html?print-pdf=
https://luc-umass.github.io/html/Markov.html?print-pdf=
https://luc-umass.github.io/html/Markov.html?print-pdf=
https://luc-umass.github.io/html/Markov.html?print-pdf=
https://luc-umass.github.io/html/Markov.html?print-pdf=
https://luc-umass.github.io/html/Markov.html?print-pdf=
https://luc-umass.github.io/html/Markov.html?print-pdf=
https://luc-umass.github.io/html/Markov.html?print-pdf=
https://luc-umass.github.io/html/Markov.html?print-pdf=
https://luc-umass.github.io/html/Markov.html?print-pdf=
https://luc-umass.github.io/html/Markov.html?print-pdf=
https://luc-umass.github.io/html/Markov.html?print-pdf=
https://luc-umass.github.io/html/Markov.html?print-pdf=
https://luc-umass.github.io/html/Markov.html?print-pdf=
https://luc-umass.github.io/html/Markov.html?print-pdf=
https://luc-umass.github.io/html/Markov.html?print-pdf=
https://luc-umass.github.io/html/Markov.html?print-pdf=


1.8 Exercises
Exercise 1.1 A standard die is rolled repeatedly. Which of the following are Markov chains? For those that are, supply
the transition matrix.

1. The largest number  shown up to the nth roll.

2. The number  of sixes in n rolls.

3. At time r the time , since the most recent six.

4. At time r, the time  until the next six.

Solution

Exercise 1.2 Suppose  is a Markov chain on the state space . Is it true that

Prove or disprove.

X ​n

N ​n

C ​r

B ​r

X ​n {1, 2, 3, 4, 5, 6}

P (X ​ =2 6∣X ∈1 {3, 4},X ​ =0 2) = P (X ​ =2 6∣X ​ ∈1 {3, 4})?

P (X ​ =2 6∣X ​ =1 3,X ​{2, 5}) =0 P (X ​ =2 6∣X ​ =1 3)?
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Exercise 1.3 (More on the Markov property) We have introduced the Markov property as meaning that the future
depends on the present but not on the past, see . Show that for a Markov chain the following two
condition hold

1. The past depends only on the present but not on the future:

2. Conditioned on the present, the past and the future are independent,:

3. Generalize part b. and show that for any event  which depends only on  we have

Solution

Definition 1.2

P (X ​ =0 i ​ ∣X ​ =0 1 i ​, ⋯X ​ =1 n i ​) =n P (X ​ =0 i ​ ∣X ​ =0 1 i ​) .1

P (X ​ =n+1 i ​,X ​ =n+1 n−1 i ​∣X ​ =n−1 n i ​) =n P (X ​ =n+1 i ​∣X ​ =n+1 n i ​)P (X ​ =n n−1 i ​∣X ​ =n−1 n i ​)n

A {X ​, ⋯ ,X ​}0 n−1

​ ​

P ({X ​ = i ​, ⋯X ​ = i ​} ∩ A∣X ​ = i)n+1 n+1 n+m n+m n

= P (X ​ = i ​, ⋯X ​ = i ∣X ​ = i)P (A∣X ​ = i)n+1 n+1 n+m n+m n n
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Exercise 1.4 (2-steps Markov chain) Suppose that  is a Markov chain with state space , transition probabilities

 and stationary distribution . Show that

is a Markov chain. What are (a) the state space, (b) the transition probabilities, and (c) the stationary distribution?

Solution

Exercise 1.5 (Markov chain finite memory) Instead of the Markov property let us assume  depends on the previous

two steps: i.e we have for all  and states

This is called a -Markov chain and if it is time-homogeneous it is specified by the numbers 

. Show that

is a Markov chain. Describe its state space and transition probabilities.

Solution

X ​n S

P (i, j) π(i)

Z ​ =n (X ​,X ​)n n+1

X ​n

n

P{X ​ =n i ​ ∣X ​ =n n−1 i ​, ⋯X ​ =n−1 0 i ​} =0 P{X ​ =n i ​ ∣X ​ =n n−1 i ​,X ​ =n−1 n−2 i ​} .n−2

2 Q ​ =i,j,k P{X ​ =n

k ∣X ​ =n−1 j,X ​ =n−2 i}

Z ​ =n (X ​,X ​)n n+1
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Exercise 1.6 Suppose  are independent indentically distributed random variables taking values in . Determine

which of the following are Markov chains.

1. 

2.  (with )

3.  (with  so )

4. 

5. 

Solution

{X ​}n Z

X ​n

S ​ =n X ​ +1 ⋯ + X ​n S ​ =0 0

Y ​ =n X ​ +n X ​n−1 X ​ =−1 0 Y ​ =0 X ​0

Z ​ =n ​ S ​∑k=0
n

k

(S ​,Z ​)n n
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Exercise 1.7 (Umbrella Markov chain) Jane possesses  umbrellas which she uses going from her home to her office in

the morning and vice versa in the evening. If it rains in the morning or in the evening she will take an umbrella with her
provided there is one available. Assume that independent of the past it will rain in the morning or evening with
probability . Let  denote the number of umbrellas at her home before she gets to work.

1. Give the state space and the transition probabilities describing the Markov chain .

2. Find the stationary distribution .

3. Estimate the number of times in a year where Jane gets wet.

Solution

r

p X ​n

X ​n

π(j)
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Exercise 1.8 (Simulation of Markov chains) Write codes which simulate the umbrella Markov chain in the previous
exercise (or other Markov chains where the transition matrix is not too big). The input should be the initial distribution,
or initial state, and the transition probability matrix. Your code should return as outputs

 for sufficently large .

One sufficently long path  of the Markov chain using the simulation algorithm in .

Use this path to extract the path statistics: find the proportion of time spent in every state (for example do an
histogram).

What do you observe for the umbrella Markov chains?

Exercise 1.9 Suppose  is a Markov chain with state space  and  is a function.

Show that if  is one-to-one then  is a Markov chain.

Show that if  is not one-to-one then  is not a Markov chain in general.

If  is not one-to-one and  is a Markov chain then the Markov chain  is called lumpable.

Show that the random walk on the hypercube is lumpable if .

P n n

X ​,X ​,X ​, ⋯ ,X ​0 1 2 n Section 1.7

X ​n S h : S → T

h Y =n h(X ​)n

h Y ​ =n h(X ​)n

h Y ​n X ​n

h(x ​, ⋯ ,x ​) =1 d x ​ +1 ⋯x ​d
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Exercise 1.10 (Canonical representation of Markov chains)  

1. A general way to construct a Markov chain is to use a noise model. Take  to be IID random variables

taking value in some arbitary space . If  is a function show that

defines a Markov chain. For example you can think of  as determinstic evolution plus noise.

2. Conversely show that any Markov chain can be represented in this form.
Hint: Pick  to be independent uniform random variable on  and use the simulation algorithm in Section

.

Solution

Z ​,Z ​,Z ​ ⋯1 2 3

E f : S × E → S

X ​ =n+1 f(X ​,Z ​)n n+1

f(X ​) +n Z ​n+1

Z ​n [0, 1]
Section 1.7
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2 Ergodic theory of finite
state space Markov chains
We present the basic convergence theory for finite state Markov chains and introduce the concept of irreducubility and
period of a Markov chain. This is very classical stuff, see e.g. Lawler ( ) and Levin et al. ( ).2006 2017

28



2.1 Existence of stationary distributions
Stationary distributions always exist for finite state Markov chains. This will not be the case if the state space is
countable.

Theorem 2.1 (Existence) Let  be a Markov chain on a finite state space . Then  has at least one stationary

distribution.

X ​n S X ​n

Proof. Boltzano Weierstrass theorem asserts that any bounded sequences  in  has a convergence subsequence.

Choose  to be an arbitrary initial distribution and let . Appling Boltzano Weierstrass directly to the

sequence  will not work but consider instead the time averages sequences

The sequence  is bounded since  and thus  are probability vector. Therefore there exists a convergent

subsequence  with  and  is a probability vector as well. We show that  is a stationary distribution.

Note

To conclude we note that

x ​k Rd

μ ​0 μ ​ =n μP n

μ ​n

ν ​ =n ​

n

μ + μP + ⋯μP n−1

ν ​n μ ​n ν ​n

ν ​n ​k
lim ​ν ​ =k n ​k

π π π

ν ​P −n ν ​ =n ​ =
n

μP + ⋯μP − μ − ⋯ − μPn n−1

​  and thus  ν ​P (j) − ν (j) ≤
n

μP − μn

∣ n n ∣ ​

n

1
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2.2 Uniqueness of stationary distributions
It is easy to build examples of Markov chain with multiple stationary distributions, for example

If the Markov chain starts in state  or  it will only visits states  and  in the future and so we can build a stationary

distribution (by  using an initial  which vanishes on  and  ) which will vanish on the state  and .

Definition 2.1 (communication and irreducibility)  

We say that  is accessible from , symbolically  if there exists  such that .

We say that  and  communicate, symbolically  if  and .

A Markov chain  is irreducible if every state  communicate with every other state , that is, for any

pair of states  in  there exists  such that .

In an irreducible Markov chain, starting with any state the Markov chain will eventually visit any other state.

P = ​ ​ ​ ​ ​ ​ π ​ =

⎝
⎛ ​2

1

​3
1

0
0

​2
1

​3
2

0
0

0
0

​6
1

​5
4

0
0

​6
5

​5
1 ⎠
⎞

1 ​ , ​ , 0, 0  and π ​ =(
5
3

5
2 ) 2 0, 0, ​ , ​  are stationary(

49
25

49
24)

1 2 1 2
Theorem 2.1 μ ​0 3 4 3 4

j i i⇝ j n ≥ 0 P (i, j) >n 0

i j i↭ j i⇝ j j ⇝ i

X ​n i ∈ S j ∈ S

i, j S n P (i, j) >n 0
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Theorem 2.2 (Uniqueness) Suppose  is an irreducible Markov chain with finite state space .

1. If  is a stationary distribution then  for all ,

2. Suppose  is a column vector such that  then  is a constant vector.

3. The Markov chain  has a unique stationary distribution .

X ​n S

π π(j) > 0 j ∈ S

h Ph = h h = c(1, 1, ⋯ , 1)T

X ​n π

Proof. For 1. choose  with . If  is such that  then  for some  and thus

Since  is irreducible,  for any .

For 2. suppose that  and  such that . If  is not a constant vector there exists 

with  but  and . Since ,

and this is a contradiction.

For 3. part 2. shows that the geometric multiplicity of the eigenvalue  matrix  is equal to  and thus so is the geometric

multiplicity of the eigenvalue  for the adjoint  and thus  has at most one left eigenvector .

i π(i) > 0 j i⇝ j P (i, j) >r 0 r

π(j) = πP (j) =r
​π(k)P (k, j) ≥

k

∑ r π(i)P (i, j) >r 0 .

X ​n π(j) > 0 j ∈ S

Ph = h i ​0 h(i ​) =0 max ​ h(i) ≡i∈S M h j

i ​ ⇝0 j h(j) < M P (i ​, j) >r
0 0 P h =r h

M = h(i ​) =0 P h(i ​) =r
0 P (i ​, j) ​ +r

0

<M

​h(j) ​P (i ​, l) ​ <
l=i ​ 0

∑ r
0

≤M

​h(l) M ​P (i , l) =
l

∑ r
0 M ,

1 P 1
1 P T P π
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2.3 Convergence to stationary distribution
Question: If we have a unique stationary distribution is it correct that ?lim ​ μP =n→∞

n π

Without further assumption the answer is NO, because of possible periodic behavior. Consider for example the
random walk on  with, for example, periodic boundary conditions. The stationary distribution is uniform

. But if  is even then  is odd and then alternating periodically between odd and even

positions. For example for

and

and  does not converge, oscillates, asymptotically between , and .

{1, ⋯ , 2N}
π = ​ , ⋯ , ​( 2N

1
2N
1 ) X ​0 X ​1

P = ​ ​ ​ ​ ​ ​ π =

⎝
⎛ 0

3/4
0

1/4

1/4
0

3/4
0

0
1/4
0

3/4

3/4
0

1/4
0 ⎠
⎞

​ , ​ , ​ , ​  is stationary(
4
1

4
1

4
1

4
1)

P =10
​ ​ ​ ​ ​ ​ P =⎝

⎛0.4995
0

0.5004
0

0
0.4995

0
0.5004

0.5004
0

0.4995
0

0
0.5004

0
0.4995⎠

⎞
11

​ ​ ​ ​ ​ ​⎝
⎛ 0

0.4997
0

0.5002

0.5002
0

0.4997
0

0
0.5002

0
0.4997

0.4997
0

0.5002
0 ⎠

⎞

P (i, j)n 0 1/2
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Definition 2.2 A Markov chain  is called irreducible and aperiodic if there exists an integer  such that 

for all pair  in . (The meaning of the terminology will become clearer later on.)

Theorem 2.3 (Doeblin’s Theorem) Suppose  be an irreducible and aperiodic Markov chain on the finite state space

 with stationary distribution . There exists a constant  and number  with  such that for any

initial distribution  we have

i.e., the distribution of  converges, exponentially fast, to .

Proof. Since the Markov chain is irreducible and aperiodic we can find an integer  such that  has strictly positive

entries. Let  be the stochastic matrix

where every row is the stationary distribution . Note that this corresponds to independent sampling from the stationary

distribution.

X ​n n P (i, j) >n 0
i, j S

X ​n

S π C > 0 α 0 ≤ α < 1
μ

∣μP (j) −n π(j)∣ ≤ Cα ,n (2.1)

X ​n π

r P r

Π

Π = ​ ​ ​ ​ ​ ​

⎝
⎛ π(1)

π(1)

⋮
π(1)

π(2)
π(2)

⋮
π(2)

⋯
⋯

⋯

π(N)
π(N)

⋮
π(N) ⎠

⎞

π

33



Let us set  and by  we define a stochastic matrix  through the equation

Note the following facts:

Since  we have  for any .

For any stochastic matrix  we have  since all rows of  are identical.

Using these two properties we show, by induction, that any integer , . This is true for

 and so let us assume this to be true for . We have

and this concludes the induction step.

From this we conclude that  as . Write  where . We have then

and thus

θ = 1 − δ Equation 2.2 Q

P =r (1 − θ)Π + θQ .

πP = π ΠP =n Π n ≥ 1

M MΠ = Π Π

k ≥ 1 P =kr (1 − θ )Π +k θ Qk k

k = 1 k

​ ​

P = P Pr(k+1) rk r = (1 − θ )Π + θ Q P = (1 − θ )ΠP + θ Q [(1 − θ)Π + θQ][ k k k] r k r k k

= (1 − θ )Π + θ (1 − θ)Π + θ Q = (1 − θ )Π + θ Qk k k+1 k+1 k+1 k+1 k+1

P →rk Π k → ∞ n = kr + l 0 ≤ l < r

P =n P P =kr l [(1 − θ )Π +k θ Q ]P =k k l Π + θ Q P − Πk [ k l ]
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2.4 The period of a Markov chain
As we have seen before Markov chain can exhibit periodic behavior and circle around various part of the state space.

Definition 2.3 The period of state ,  is the greatest common divisor of the set

that is  is set of all times at which the chain can return to  with positive probability.

For example for random walks with periodic boundary conditions the period is 2 is the number of sites is even and 1 if the
number of sites is odd.

j per(j)

T (j) = n ≥ 1 , P (j, j) > 0{ n }

T (j) j
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Lemma 2.1 If  then .

Proof. Suppose  and . There exist integers  and  such that  and  and

thus

which means that  and so  for some integer .

Suppose  then

and . Therefore  divides  since it divides both  and  and this shows that

. Reversing the roles of  and  we find . 

Consequences:

If  is irreducible then all states have the same period and we can define the period of the irreducible Markov chain

 .

If  is irreducible and has period 1 (also called aperiodic) and  is finite then  for all suficiently large 

(compare with our earlier definition of irreducible and paeriodic).

i↭ j per(i) = per(j)

per(j) = d i↭ j m m P (i, j) >m 0 P (j, i) >n 0

P (i, i) >m+n 0 and P (j, j) >m+n 0

m + n ∈ T (i) ∩ T (j) m + n = kd k

l ∈ T (i)

P (j, j) ≥n+m+l P (j, i)P (i, i)P (i, j) >n l m 0

n + m + l ∈ T (j) d l n + m + l n + m

per(j) ≤ per(i) i j per(j) = per(i) ■

X ​n

X ​n

X ​n S P (i, j) >n 0 n
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Decomposing the state space :

Start with a state  and let .

For all  such that  let .

For all  and all  such that  let .

After assigning set to  assign the next states to .

Repeat until all states have been assigned. If  is finite this takes at most  steps.

By construction we get a partition of  into  distinct subsets  and

For example

Iteratively we find

and thus the Markov chain is irreducible with period  and so we have

S = G ​ ∪1 G ​ ∪2 ⋯G ​d

i ∈ S i ∈ G1

j P (i, j) > 0 j ∈ G ​2

j ∈ G ​2 k P (j, k) > 0 k ∈ G ​3

G ​d G ​1

∣S∣ ∣S∣

S d G ​, ⋯ ,G ​1 d

P (i, j) > 0 ⟹ i ∈ G ​ and j ∈k G ​k+1(modd)

P = ​ ​ ​ ​ ​ ​ ​ ​ ​ ​

1
2
3
4
5
6
7⎝

⎛0
0
1
0
.3
.2
0

0
0
0
0
.7
.8
0

0
0
0
.2
0
0
0

1
0
0
0
0
0
0

0
0
0
0
0
0
.7

0
0
0
.8
0
0
.3

0
1
0
0
0
1
0⎠

⎞
1⇝ 4⇝ 3, 6⇝ 1, 2⇝ 4, 7⇝ 3, 5, 6⇝ 1, 2⇝ 4, 7

3

S = {1, 2} ∪ {4, 7} ∪ {3, 5, 6}
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Relabeling the state the transition matrix  takes the following block matrix form

where  describe the transition between states in  and .

Putting the matrix  to the power  we find the block diagonal form

Theorem 2.4 If  is an irreducible Markov chain on a finite state space with stationary distribution  then we have

P

P = ​ ​ ​ ​ ​ ​ ​ ​

G ​1

G ​2

⋮
G ​d−1

G ​d
⎝

⎛ 0
0

⋮
0

P ​G ​G ​d 1

P ​G ​G ​1 2

0

⋮
0
0

0
P ​G ​G ​2 3

⋯
⋯

⋯
⋯

⋮
0
0

0
0

⋮
P ​G ​G ​d−1 d

0 ⎠

⎞

P ​G ​G ​l l+1 G ​l G ​l+1

P d

P =d
​ ​ ​ ​ ​ ​ ​ ​

G ​1

G ​2

⋮
G ​d
⎝
⎛Q ​G ​1

0

⋮
0

0
Q ​G ​2

⋮
0

0
0

⋯

⋯
⋯

0

0
0

⋮
Q ​G ​d

⎠
⎞

X ​n π

​ ​ ​P (i, j) =
n→∞
lim

n

1

k=0

∑
n−1

k π(j) .
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Proof. The matrix , restricted to state space  governs the evolution of an irreducible aperiodic Markov chain and

thus, by , we have

where  is the stationary distribution for . Morever  if  for some .

If  and  then

and  if  for some . Similarly if  and  we have

and  if  for some .

The sequence  is asymptotically periodic where  successive  alternates with a number converging to

 and thus if we define  then  is normalized, stationary and

since the time spend in state  is asymptotically equal to .

Q ​G ​l
G ​l

Theorem 2.3

​P (i, j) =
n→∞
lim nd

​Q ​(i, j) =
n→∞
lim G ​l

n π ​(j)  for i ∈G ​l
G ​, j ∈l G ​l

π ​Gl
Q ​G ​l

P (i, j) =l 0 l = nd n

i ∈ G ​l−1 j ∈ G ​l

​P (i, j) =
n→∞
lim nd+1

​ ​P (ik)P (k, j) =
n→∞
lim

k∈G ​l

∑ nd
​P (ik)π ​(j) =

k∈G ​l

∑ G ​l
π ​(j) ,G ​l

P (i, j) =m 0 m = nd + 1 n i ∈ G ​l−r j ∈ G ​l

​P (i, j) =
n→∞
lim nd+r π ​(j) .G ​l

P (i, j) =m 0 m = nd + r n

P (i, j)n d − 1 0
π ​(j)G ​l

π ≡ ​ (π ​, ⋯ ,π ​)
d
1

G ​1 G ​d
π

​ ​ ​P (i, j) =
n→∞
lim

n

1

k=1

∑
n

k π(k)

j ​π ​(j)
d
1

G ​l
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2.5 Hitting times, return times and the strong Markov property
We now have good understanding the asymptotic behavior of  or  as . When simulating or

observing a Markov chain we usually observe a single sequence

and our next goal is to derive a law large numbers for this sequence of random variables. To do this it will be useful to
track how often the Markov chain visits some state.

Definition 2.4 (Hitting time and return times)  

The Hitting time for the state , , is the first time the Markov chain visits the state .

The return time for the state ,  is the first time the Markov chain returns to the state .

Hitting time and return times are closely related and are distinct only from the way they consider what happen at time 

(both will be useful later on).

P (i, j)n μP n n → ∞

X ​,X ​,X ​, ⋯0 1 2

j σ(j) j

σ(j) = inf{n ≥ 0 ; X ​ =n j} hitting time 

j τ(j) j

τ(j) = inf{n ≥ 1 ; X ​ =n j} return time 

0
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Hitting time and return times are example of stopping times and have the crucial property that to decide the events

 we only need to know what happened in .

Definition 2.5 (Stopping times) A random variable  taking values in the integer is called a stopping time for the

Markov chain  if, for any , the event  depends only on , that is  belong to the

-algebra .

Intuitively stopping times are random times for the Markov chains which are decided only by looking at the past and the
present and not the future, such as hitting time and return times.

Stopping times are very useful for Markov chain: if you run a Markov chain up to a stopping time , then after  the

Markov chain starts anew, that is
 is a Markov chain which is independent of the past. More precisely we have

Theorem 2.5 (Stong Markov property) Consider a stopping time  with . Then conditional on

,  is a Markov chain with transition  and initial condition .

Proof. If  is an event determined by  then  is determined by . By the Markov

property at time  we have

τ(j) = k X ​, ⋯X ​0 k

T

X ​n k {T = k} X ​,X ​, ⋯ ,X ​0 1 k {T = k}
σ σ(X ​, ⋯ ,X ​)0 k

T T

Y ​ =n X ​T+n

T P (T < ∞) = 1
X =T i Y ​ =n X ​T+n P i

A X ​, ⋯ ,X ​0 T A ∩ {T = m} X ​, ⋯ ,X ​0 m

m

P (X ​ =T j ​,X ​ =0 T+1 j ​, ⋯ ,X ​ =1 T+n j ​ ∩n A ∩ T = m ∩ X ​ =T i) = P (X ​ =1 j ​, ⋯ ,X ​ =1 n j ​∣X ​ =n 0 i)P (
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2.6 Strong law of large numbers for Markov chains
Irreducibility means that starting from  the Markov chain will reach  and thus for any  we have

If the state space is finite then we have something much stronger. Not only we have , the

expectation of  is actually finite.

i j i

P{τ(j) < ∞∣X ​ =0 i} > 0

P{τ(j) < ∞∣X ​ =0 i} = 1
τ(j)

Lemma 2.2 For an irreducible Markov chain with finite state space  the expected return time S E[σ(j)∣X ​ =0 i] < ∞

Proof. By irreducibility the Markov chain can reach the state  from any state  in a finite time. Since  is finite this time is

uniformly bounded. So there exist a time  and  such that  for some  uniformly in . Using

the strong Markov property this implies that

Therefore, using that  is a decreasing function of 

j i S

m ε > 0 P (i, j) ≥l ϵ l ≤ m i ∈ S

P{σ(j) > km∣X ​ =0 i} ≤ (1 − ε)P{σ(j) > (k − 1)m∣X ​ =0 i} ≤ ⋯ ≤ (1 − ε)k

P{σ(j) > n∣X ​ =0 i} n

E[σ(j)∣X ​ =0 i] = ​P{σ(j) >
n≥0

∑ n∣X ​ =0 i} ≤ m
​P{σ(j) >

k≥0

∑ km∣X ​ =0 i} ≤ m
​
(1 −

k≥0

∑ ε) <k ∞ ■

Remark If  is infinite this is not necessarily true and this will lead to the concepts of transience, recurrence and

positive recurrence.

S
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We will also need the random variable  which counts the number of visits to starte  up to time  that is

Since  and we have

and thus by  or 

This is an important intuition

The next results strengthen that intepretation.

Y ​(j)n j n

Y ​(j) ≡n ​1 ​ =
k=0

∑
n−1

{X ​=j}k
 the number of visits to the state j up to time n

E 1 ​∣X ​ = i =[ {X ​=j}k 0 ] P (i, j)k

​E[Y ​(j)∣X ​ =
n

1
n 0 i] = ​ ​P (i, j)

n

1

k=0

∑
n−1

k

Theorem 2.3 Theorem 2.4

π(j) = ​ ​E ​1 ​ =
n→∞
lim

n

1 [
k=1

∑
n

{X ​=j}k
]  the proportion of time spent in state j in the long run 

π(j) = expected fraction of time that the Markov chain spends in state j in the long run.
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Theorem 2.6 (Ergodic Theorem for Markov chain) Let  be an irreducible Markov chain with an arbitrary initial

condition , then, with probability  we have

this is the ergodic theorem for Markov chain.

Moreover if  is the first return time to  we have the Kac’s formula

X ​n

μ 1

​ ​ ​1 ​ =
n→∞
lim

n

1

k=0

∑
n−1

{X ​=j}n
π(j) ,

τ(j) j

π(j) = ​ .
E[τ(j)∣X ​ = j]0

1

Proof. For a Markov chain starting in some state  consider the successive return to the state . By the strong Markov

property, once the Markov chain has reached  it starts a fresh. So the time when the Markov chain returns to state  for

the  time is

where  are independent copies of the return times . For   is conditioned on starting at  while for

 it depends on the initial condition. Note that by the strong LLN for IID random variables we have

i j

j j

kth

T ​(j) =k τ ​(j) +1 ⋯ + τ ​(j) ,k

τ (j)l τ(j) l ≥ 2 τ ​(j)l j

l = 1

​ ​ =
k→∞
lim

k

T ​(j)k
​ ​ τ ​(j) + ⋯ + τ ​(j) =

k→∞
lim

k

1
( 1 k ) E[τ(j)∣X ​ =0 j] .
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Note further that if the total number of visits to state  up to time  is , it means that that we have returned exactyl 

times and so

So we have

As   too and taking  both extremes of the inequality converge to  with

probability  and thus we conclude that, with probability ,

On the other hand we know that

and thus

Putting all the pieces together gives the theorem. .

j n k k

Y ​(j) = k ={ n } T ​(j) ≤ n < T ​(j){ k k+1 }

​ <
Y ​(j)n

T ​(j)Y ​(j)n
​ ≤

Y ​(j)n

n
​ ​

Y ​(j) + 1n

T ​(j)Y ​(j)+1n

Y ​(j)n

Y ​(j) + 1n

n → ∞Y ​(j) →n ∞ n → ∞ E[τ(j)∣X ​ =0 j]
1 1

​ ​ =
n→∞
lim

n

Y ​(j)n
​ .

E[τ(j)∣X ​ = j]0

1

​ ​ =
n→∞
lim

n

E[Y ​(j)]n
π(j) ,

π(j) = ​ .
E[τ(j)∣X ​ = j]0

1

■
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2.7 Exercises
Exercise 2.1 (Algorithm to compute the stationary distribution) Instead of solving  (that is computation of an

eigenvector) we provide an alternative formula for  which is very easy to implement on a computer. We let  be the

identity matrix and we let  be the matrix whose all entries are .

Prove that if  is an irreducible Markov chain with transition probabilities matrix , then the unique stationary

distribution  is given by

Hint: Assuming first that the matrix  is invertible show . To that  is

invertible is equivalent to proving that . To do this multiply 

 by on the left by  and use that the only solutions of  are of the form .

Add this to your simulation algorithm for Markov chain of 

Solution:

πP = π

π I

M M(i, j) = 1

X ​n P

π

π = (1, 1, ⋯ , 1) I − P + M .( )−1 (2.3)

(I − P + M) Equation 2.3 (I − P + M)
(I − P + M)x = 0 ⟹ x = 0 (I − P +

M)x = 0 π Px = x x = c(1 ⋯ , 1)T

Exercise 1.8
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Exercise 2.2  

1. A transition matrix for a Markov chain is called doubly stochastic if for any  we have

Show that the uniform distribution  is a stationary distribution.

2. Let  be the sum of  independent rolls of a fair dice. Find

. Hint: Define an appropriate Markov chain and apply part 1.

Solution

j ∈ S

​P (i, j) =
i∈S

∑ 1

π(j) = ​∣S∣
1

S ​n n

lim ​ P (S  is a multiple of 8)n→∞ n
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Exercise 2.3 Consider the Markov chain with transition matrix .

1. Is the chain irreducible?

2. What is the period of the chain?

3. Let  be the first return time to state . Compute directly

 by computing the pdf of .

4. Compute the stationary distribution .

Solution

P

P = ​ ​ ​ ​ ​ ​ ​ .

⎝

⎛ 0
0
0
1
1

1/3
0
0
0
0

2/3
0
0
0
0

0
1/4
1/2
0
0

0
3/4
1/2
0
0 ⎠

⎞
τ (1) 1

E[τ(1)∣X ​ =0 1] τ(1)

π
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Exercise 2.4 (A Markov chain for card shuffling) Suppose you have a deck of 52 cards. You shuffle your deck of cards
by picking the top card of the deck and insert it uniformly at random in the deck.

1. What is the state space?

2. Show that Markov chain defined in this way is irreducible and aperiodic.

3. What is the stationary distribution.

4. If you shuffle the deck of cards every second. What is the average time (in years) until the deck returns to the
original order?

5. Starting with an arbitrary deck consider the card at the bottom of the deck. What happens to that particular card
after one shuffle? after  shuffle?

6. Suppose that at time  there are  cards under the original bottom card. Show (by induction on ) that each the

possible  ordering of the cards is equally likely.

7. Show that if  is the random time at which the card originally at the bottom reach the top of the deck then at time

 the cards are uniformly distributed on the set of all permutations. That is the system reaches reaches

the stationary distribution at the (random) time .

8. Compute  and . Hint: Coupon collector problem.

Solution

n

n k n

k!

τ

σ = τ + 1
τ + 1

E[σ] Var(σ)
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Exercise 2.5 (More on the Law of Large numbers) Suppose  is irreducible so that the strong Law of Large numbers

holds.

1. Show that for any  (think of  as a column vector) such that  we have

2. Suppose that you observe a sample of an (irreducible) Markov chain  of length  (where 

sufficiently large). Build an estimator for  based on the sample .

Hint: Use part 1. and the result in  in Homework 4 for the Markov chain 

Solution

X ​n

f : S → R f πf = ​ f(j)π(j) <∑j∈S ∞

​ ​ ​f(X ​) =
N→∞
lim

N

1

k=1

∑
N

k πf = ​π(j)f(j)
j∈S

∑

X ​,X ​, ⋯ ,X ​0 2 N−1 N N

P (i, j) X ​,X ​, ⋯ ,X ​0 2 N−1

Exercise 1.4 (X ​,X ​)n n+1
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Exercise 2.6 (Chess)  

1. A chess piece performs a random walk on a chessboard; at each step it is equally likely to make any one of the
available moves. What is the mean return time of a corner square if the piece is a: (a) king? (b) queen? (c) bishop? (d)
knight? (e) rook?

2. A rook and a bishop perform independent random walks with synchronous steps on a 4 x 4 chessboard (16
squares). If they start together at a corner, show that the expected number of steps until they meet again at the
same corner is 448/3.

Solution
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Exercise 2.7 (Cesaro limit) A sequence of numbers  converges in the sense of Cesaro to  if the sequence 

 converges to .

1. Prove that if a sequence  converges to  then  also converges to  in the sense of Cesaro.

2. Show that he converse is generally not true.

Details

Exercise 2.8 (Simulation of Markov chains, continued) Improve your code of  such that given a sufficently
long path  of a Markov chain it will returns estimates of both the stationary distribution 

and the transition probabilities . You will need part 2 of .

Exercise 2.9 (Simulation of Markov chains, irreducibility and period)  

Write a code which determines whether a Markov chain is irreducible or not. The input is the transition matrix .

Write a code which computes the period of the states for a given Markov chain. The input is the transition matrix .

{a ​} ​n n=1
∞ a b ​ =n

​

n
a ​+⋯+a ​1 n a

a ​n a a ​n a

Exercise 1.8
X ​,X ​,X ​, ⋯ ,X ​0 1 2 n π(i)

P (i, j) Exercise 2.5

P

P

52



3 Transient behavior of
Markov chains
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3.1 Decomposition of state space
We now drop the assumption of irreducibility.

The communication relation  is an equivalence relation. We use the convention  (the identity matrix)

and then also that  (  communicates with itself ).

1. It is reflexive : .

2. It is symmetric:  implies .

3. It is transitive:  and  implies .

Using this equivalence relation we can decompose the state space  into mutually disjoint communication classes

Definition 3.1 (transient and closed classes)  

A class  is called transient if there exists  and  with .

It means it is possible to exit the class  and never come back.

A class  is called closed classes if it is not transient that is, for any pair  and  we have .

Clearly it is impossible to exit a closed class.

i↭ j P =0 I

i↭ i i P (i, i) =0 1

i↭ i

i↭ j j↭ i

i↭ j j↭ l i↭ l

S

S = C ​ ∪1 C ​ ∪2 ⋯ ∪ C ​ .M

C i ∈ C j ∈ S ∖ C i⇝ j

C

C i ∈ C j ∈ S ∖ C i ⇝ j
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The next result state if you start in a finite transient class you will always eventually exit it (this may not be true any more

 is infinite).

Lemma 3.1 Suppose  is finite and  where  is a transient class. Then  exits  after a finite time with

probability . As a consequence for  we have

S

S X ​ ∈0 C C X ​n C

1 i, j ∈ C

​P (i, j) =
n→∞
lim n 0 .

Proof. By irreducibility  can exit  starting from any  after a finite time. Since  is finite, there exists

 and  such that have

Using the (strong) Markov property this implies that  and so so the probability to stay in

transient class goes to  as time goes by. If  and  both belong to the transient class  this can be re-expressed as

.

X ​n C i ∈ C C

k θ < 1

P{X ​ ∈k C∣X ​ =0 i} ≤ θ  for all i ∈ C .

P{X ​ ∈nk C∣X ​ =0 i} ≤ θn

0 i j C

​P (i, j) =
n→∞
lim n 0 .

■
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3.2 Communication diagram
To figure out the class structure it is convenient to build a directed graph where the vertices are the state and each
directed edges corespond to a pair  with .

For example

(i, j) P (i, j) > 0

P = ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​

1
2
3
4
5
6
7
8⎝

⎛0
.3
0
0
0
0
0
0

.4

.7
0
0
0
0
0
0

.6
0
0
.2
0
0
0
0

0
0
.5
0
0
0
0
0

0
0
0
.8
0
0
0
0

0
0
0
0
1
0
.3
1

0
0
0
0
0
1
0
0

0
0
.5
0
0
0
.7
0⎠

⎞

There are 4 classes: , ,  are all transient and  which is closed.T ​ =1 {1, 2} T ​ =2 {3, 4} T ​ =3 {5} C = {6, 7, 8}
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3.3 Decomposition of reducible Markov chains
Markov chain with closed classes  and transient classes denoted by  (set ). After

reordering the states the transition matrix has the block form

where  gives the transition probabilities within the class ,  the transition within the transient classes and 

the transition from the transient classes into the closed classes.

It is easy to see that  has the form

for some matrix .

R ​, ⋯R ​1 L T ​, ⋯T ​1 K T = T ​ ∪1 ⋯T ​K

P = ​ ​ ​ ​ ​ ​ ​ ​ ​

R ​1

R ​2

R ​3

⋮
R ​L

T
⎝

⎛P ​1

P ​2

0
P ​3

S

0

⋱
P ​L

Q⎠

⎞
(3.1)

P ​l R ​l Q S = 0

P n

P =n
​ ​ ​ ​ ​ ​ ​ ​

R ​1

R ​2

R ​3

⋮
R ​L

T
⎝

⎛P ​1
n

P ​2
n

0
P ​3
n

S ​n

0

⋱
P ​L
n

Qn⎠

⎞

S ​n
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Example: Consider the random walk with absorbing boundary conditions (see ). There are three classes, 2
closed ones

,  and 1 transient  for example with  we have

To get a feel of what’s going on we find (rounded to 4 digit precision)

As expected starting in transient class the Markoveventually exit it to reach here of one the two closed class. From 

one can read that starting in, say state  with probability  the Markov chain will end up at  and with probability  the

Markov chain will end up in . We will learn how to compute these probability later on but we study first how long it takes

to exit the closed class.

Example 1.5

{0} {N} {1, ⋯ ,N − 1} N = 5

P = ​ ​ ​ ​ ​ ​ ​ ​ ​

0
5
1
2
3
4⎝

⎛ 1
0

1/2
0
0
0

0
1
0
0
0

1/2

0
0
0

1/2
0
0

0
0

1/2
0

1/2
0

0
0
0

1/2
0

1/2

0
0
0
0

1/2
0 ⎠

⎞

P =20
​ ​ ​ ​ ​ ​ ​ , P =

⎝

⎛ 1
0

0.7942
0.5924
0.3907
0.1953

0
1

0.1953
0.3907
0.5924
0.7942

0
0

0.004
0

0.0065
0

0
0
0

0.0104
0

0.0065

0
0

0.0065
0

0.0104
0

0
0
0

0.0065
0

0.004⎠

⎞
50

​ ​ ​ ​ ​ ​ ​

⎝

⎛ 1
0

0.8
0.6
0.4
0.2

0
1

0.2
0.4
0.6
0.8

0
0
0
0
0
0

0
0
0
0
0
0

0
0
0
0
0
0

0
0
0
0
0
0⎠

⎞

P 50

2 .6 0 .4
5
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3.4 Absorption time
Starting in a closed class  the Markov chain stays in  forever and its behavior is dictated entirely by the

irreducible matrix  with state space .

Starting from a transient class the Markov chain will eventually exit the class  and is absorbed into some closed class.

One basic question is: What is the expected time until absorption?

We define the absorption time

Theorem 3.1 (Expected time until absorption) Let  be a transient state and let  to be the time until the Markov

chain reaches some closed class. Then we have

where

and  is from the decomposition .

R ​l R ​l

P ​l R ​l

T

τ ​ =abs min{n ≥ 0 ; X ​ ∈n / T}

j τ ​abs

E[τ ​∣X ​ =abs 0 j] = ​M(j, i) .
i∈T

∑

M = (I − Q) =−1 1 + Q + Q +2 ⋯

Q Equation 3.1
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Proof. From  we know that  and so all eigenvalues of  have absolute values strictly less than .

Therefore  is an invertible matrix and we can define

The second equality is the geometric series for matrices which follows from the identity

To give a probabilistic interpretation to the matrix  we introduce the random variable

If  is transient by   with probability . If  is another transient state we have

That is  is simply the expected number of visits to  if  and thus, summing over all the transient states we

obtain

Lemma 3.1 Q (i, j) →n 0 Q 1
I − Q

M = (I − Q) =−1 I + Q + Q +2 Q +3 ⋯

(I + Q + ⋯Q )(1 −n Q) = I − Q .n+1

M

Y (i) = ​ 1 ​ =
n=0

∑
∞

{X ​=i}n
 total number of visits to state i

i Lemma 3.1Y (i) < ∞ 1 j

E[Y (i) ∣X ​ =0 j] = E ​1 ​ ∣X ​ = j =[
n=0

∑
∞

{X ​=i}n 0 ] ​P X ​ = i ∣X ​ = j =
n=0

∑
∞

{ n 0 } ​Q (i, j) =
n=0

∑
∞

n M(i, j)

M(j, i) i X ​ =0 j

E[τ ​∣X ​ =abs 0 j] = ​M(j, i) . ■
i∈T

∑
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3.5 Hitting time in irreducible Markov chain
Suppose  is irreducible and we are interested in computing the expected time to reach one state from another

state that is .

If  then from  that  where  is the stationary distribution.

If  we use the following idea. Relabel the states so that the first state is  and turn  into an absorbing state

The fact that  is irreducible implies that  is a transient class for the modified transition matrix . The return

time  starting from  for the Markov chain with transition  is exactly the same as the absorption time for

the Markov chain with transtion . Indeed the hitting time does not depend on the submatrix . Therefore from

 we obtain immediately

Theorem 3.2 (Expected hitting time in irreducible Markov chain) Let  be an irreducible Markov chain. For 

we

where  and  is given in  and is obtained by deleting the  row and  column from .

X ​n

E[τ(i)∣X ​ =0 j] for j = i

i = j Theorem 2.6 E[τ(i)∣X ​ =0 i] = π(i)−1 π

i = j i i

P = ​ ​ ⟶(P (i, i)
S

R

Q
) =P ​ ​(1

S

0
Q

) (3.2)

P S ∖ {i} P

τ(i) i = j P

P R

Theorem 3.1

X ​n i = j

E[τ(i)∣X ​ =0 j] = ​M(j, l) .
l∈T

∑

M = (I − Q)−1 Q Equation 3.2 ith ith P
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3.6 Examples
Example(continued): Random walk with absorbing boundary conditions on . We get

and thus the expected times until absorption are  for states  and  and  for states  and .

Example: Random walk with reflecting boundary conditions (see ) with  and we compute

. The stationary distribution is  so . For  we

delete the first row and column from  and have

and so the expected return times to  are  respectively.

{0, 1, ⋯ , 5}

Q = ​ ​ ​ ​ ⟹

⎝
⎛ 0

1/2
0
0

1/2
0

1/2
0

0
1/2
0

1/2

0
0

1/2
0 ⎠
⎞

M = (I − Q) =−1
​ ​ ​ ​ ​ ​

⎝
⎛1.6

1.2
0.8
0.4

1.2
2.4
1.6
.8

0.8
1.6
2.4
1.2

0.4
0.8
1.2
1.6⎠
⎞

4 1 4 6 2 3

Example 1.5 N = 5
E[τ(0)∣X ​ =0 i] π = ​ , ​ , ​ , ​ , ​ , ​( 10

1
10
2

10
2

10
2

10
2

10
1 ) E[τ(0)∣X ​ =0 0] = 10 i = 0

P

Q = ​ ​ ​ ​ ​ ​ ​ , M =

⎝

⎛ 0
1/2
0
0
0

1/2
0

1/2
0
0

0
1/2
0

1/2
0

0
0

1/2
0
1

0
0
0

1/2
0 ⎠

⎞
(I − Q) =−1

​ ​ ​ ​ ​ ​ ​

⎝

⎛ 2
2
2
2
2

2
4
4
4
4

2
4
6
6
6

2
4
6
8
8

1
2
3
4
5 ⎠

⎞

1 10, 9, 16, 21, 24, 25

63



3.7 Absorption probabilities
If  belongs to some transient class and if there are more than one closed classes, say 

then the Markov may be absorbed in distinct closed class and so we wisht to compute the probabilities

Without loss of generality we can assume that each closed class is an absorbing state  (we can always

collapse a closed class into a absorbing state since it does not matter which state in the closed class we first visit). We
denote the transient states by  and upon reordering the state the transition matrix has the form

We wish to compute

and it will be convenient to set  and  if .

X ​ =0 i ∈ T R ​,R ​, ⋯ ,R ​1 2 L

P{X ​  reaches class R ​ ∣X ​ =n l 0 i}

r ​, ⋯ r ​1 L

t ​, ⋯ , t ​1 M

P = ​ ​​ ​ ​ ​ ​ ​ ​

r ​1

⋮
r ​L

t ​1

⋮
t ​M

⎝

⎛
I

S

0

Q ⎠

⎞
(3.3)

A(t ​, r ​) =i j P{X ​  eventually reaches r ​ ∣X ​ =n j 0 t ​} .i

A(r ​, r ​) =l l 1 A(r ​, r ​) =k l 0 k = l
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Theorem 3.3 (Absorption probabilities in closed classes) For a Markov chain with transition matrix 
where the states  are transient we have

Proof. We condition on the first step of the Markov chain to obtain

If  be the  matrix with entries , then this can be written in matrix form as

or

Equation 3.3
t ​, ⋯ t ​1 M

P{X ​  reaches r ​ ∣X ​ =n j 0 t ​} =i A(t ​, r ​)  with  A =i j (I − Q) S−1

​ ​

A(t ​, r ​)i j = P X ​ = r ​ eventually ∣X ​ = t ​{ n j 0 i}

=
​P X ​ = r ​ eventually,X ​ = k∣X ​ = t ​

k∈S

∑ { n j 1 0 i}

= ​P X ​ = k∣X ​ = t ​ P X ​ = r ​ eventually ∣X ​ = k

k∈S

∑ { 1 0 i} { n j 1 }

= ​P (t ​, k)A(k, r ​) = P (t ​, r ​) + ​P (t ​, t ​)A(t ​, r ​) .
k∈S

∑ i j i l

t ​k

∑ i k k j

A L × M A(t ​, r ​)i l

A = S + QA

A = (I − Q) S =−1 MS .
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Continuing with the random walk example with absorbing boundary conditions, we get

For example from state  the probability to be absorbed in  is , and so on….

Remark You can apply similar ideas to irreducible Markov chain to compute probabilities like

that is the probability to return to  before returning to  by transforming  and  into absorbing states. See some

examples in that spirit in the homework.

A = MS = ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ =

⎝
⎛ 1.6

1.2
0.8
0.4

1.2
2.4
1.6
.8

0.8
1.6
2.4
1.2

0.4
0.8
1.2
1.6 ⎠

⎞
⎝
⎛ 1/2

0
0
0

0
0
0

1/2 ⎠
⎞

​ ​ ​ ​

⎝
⎛ .8

.6

.4

.2

.2

.4

.6

.8 ⎠
⎞

2 0 .6

P (τ(i) ≤ τ(j)∣X ​ =0 k).

i j i j
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3.8 Tennis game
We model tennis as a Markov chain: For each point player  will win with probability  and player  will be win with

probability  and we assume all points are independent. Winning a game leads to the Markov chain with

following communication diagram. This problem illustrates the power of compunding. For example my fellow countryman
Roger Federer won 54% of all points played during his career. But he won 80% all of his game.

The Markov chain “moves up” until it reaches one of the 5 states on
the top (which we relabel ) and the chains stays on those

5 states forever and performs a random walks with absorbing
boundary conditions.

Want the probability that  wins, of course starting from the initial

conditions . Compute this probability by successive

conditioning.

Consider the events

We compute  simply by enumerating all the paths leading up

to state  starting form the initial state.

A p B

q = 1 − p

Tennis communication diagram

0, 1, 2, 3, 4

A

0 − 0

D ​ =i {X ​ reaches the top row in state i}n

P (D ​)i
i
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We find then

Conditioning on the ’s: 

Obviously we have  and . By conditioning on the first step we find the system of

equations

Putting everyting together

P (D ​) =0 p +4 4qp , P (D ​) =4
1 4p q , P (D ​) =3 2

2 6p q , P (D ​) =2 2
3 4p q , P (D ​) =2 3

4 q +4 4pq4

B ​i P (A) = ​P (A∣D ​)P (D ​)
i=0

∑
4

i i

P (A∣D ​) =0 1 P (A∣D ​) =4 0

​ ​ ​ ​

P (A∣D ​)1

P (A∣D ​)2

P (A∣D ​)3

= p + qP (A∣B ​)2

= pP (A∣D ​) + qP (A∣D )1 3

= pP (A∣D ​)2

⟹

P (A∣D ​) = ​1 1 − 2pq
p(1 − pq)

P (A∣D ​) = ​2 1 − 2pq
p2

P (A∣D ​) = ​3 1 − 2pq
p3



p (1 + 2q)(1 + 4q )4 2

3.9 Gambler’s ruin
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Solving gives the Gambler’s ruin probabilities

If  the quadratic equation  has a double root  but we note that  is a second linearly

independent solution of . Solving the equation  with the boundary

conditions gives

How bad does it get?:For example if  and you start with a fortune a 50 and want to double it, the probability

to succeed is , not so great. You could also be more risky and bet an amount of 10 in which case

you probability to succeed i a much better . Even better bet everything and your probability to win

is . (In casino boldness pays, or loses less).

α ​ =j ​  Gambler’s ruin for q
1 − ​(

p
1−p)N

1 − ​(
p

1−p)j
= p

p = ​2
1 Equation 3.4 1 α ​ =j j

​α ​ −2
1

j+1 α ​ +j ​α ​ =2
1

j−1 0 α ​ =j C ​ +1 C ​j2

α(j) = ​  Gambler’s ruin for p =
N

j
​

2
1

p = ​495
244

​ =
1− ​( 244

251 )100

1− ​( 244
251 )50

.1955

​ =
1−( 244

251 )10

1− ​( 244
251 )5

.4647

p = .4929
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Limiting cases To get a better handle on the gambler’s ruin formula we slightly rephrase the problem:

We start at .

We stop whenever we reach  (  is the desired gain) 0r when we reach  (  is the acceptable losss).

The state are now 

We get

The limit  describes a player with infinite wealth:

Even with infinite wealth it is exponentially hard to win !

The limit  describes a player with fortune  who does not stops unless they lose.

The probability to play forever is, unsurprisingly, .

0

W W −L L

j ∈ −L, −L + 1, ⋯ , ⋯ ,W − 1,W{ }

P (−L,W ) ≡ P ReachW  before reaching  − L  starting from 0 =( ) ​ .
1 − ​(

p
1−p)L+W

1 − ​(
p

1−p)L

L → ∞

P (−∞,L) = ​ ​{ 1

​( 1−p
p )W

 if p > ​2
1

 if p < ​2
1

W

W → ∞ L

P (−L, ∞) = ​ ​{ 1 − ​(
p

1−p)L
0

 if p > ​2
1

 if p < ​2
1

0



3.10 Exercises
Exercise 3.1 Consider a Markov chain with state space  and transition matrix

1. What are the communication classes. Which ones are closed and which ones are transient?

2. Suppose . What is the probability that  visits the state  before the state ?

3. Suppose . Compute  for all j?

Solution

{0, ⋯ , 5}

P = ​ ​ ​ ​ ​ ​ ​ ​ .

⎝

⎛ .5
.3
0

.25
0
0

.5

.7
0

.25
0
.2

0
0
.1
0
.7
0

0
0
0
0
0
.2

0
0
.9
.25
.3
.2

0
0
0

.25
0
.4 ⎠

⎞

X ​ =0 5 X ​n 1 4

X ​ =0 5 lim ​ P (5, j)n→∞
n
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Exercise 3.2 Suppose we flip a fair coin repeatedly until we have flipped four consecutive heads. What is the expected
number of flips that are needed?
Hint: Build up a suitable Markov chain with state space 

Solution

{0, 1, 2, 3, 4}
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Exercise 3.3 Consider the Markov chain with state space  and transition matrix

1. Is this chain irreducible? Aperiodic?

2. Suppose the chain starts in state 1. What is the probability it reaches state 6 before reaching state ?

3. Suppose the chain starts in state 3. What is the expected number of steps until it reaches  again?

4. Suppose the chain starts in state 0. What is the expected number of steps until it reaches state ?

{0, ⋯ , 6}

P = ​ ​ ​ ​ ​ ​ ​ ​ ​ .

⎝

⎛ ​4
3

​2
1

​4
1

​4
1

​4
1

​4
1

​4
1

​4
1

​4
1

​4
1

0
0
0
0

0
​4

1

​4
1

​4
1

0
0
0

0
0

​4
1

​4
1

​4
1

0
0

0
0
0

​4
1

​4
1

​4
1

0

0
0
0
0

​4
1

​4
1

​4
1

0
0
0
0
0

​4
1

​2
1 ⎠

⎞

0

3

6
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Exercise 3.4 (Random walk on the complete graph) The complete graph with vertex sets  is the graph

such that any two vertex are joined by an edge. Let  be the simple random walk on this graph.

1. Let  be the first time the chain returns to state . Compute the p.d.f of  conditioned on . Use this

to compute .

2. Compute 

3. Find the expected number of steps  until every one of the  state has been visited at least once.

Hint: Let  be the time until  distinct states have been visited at least once. Compute first .

Solution

{1, ⋯ ,N}
X ​n

τ(1) 1 τ(1) X ​ =0 1
E[τ(1)∣X ​ =0 1]

E[τ(1)∣X ​ =0 2]

T ​N N

Tk k E[T ​ −k T ​]k−1
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Exercise 3.5 Every night Bob and Catherine go out to one of three bar , , or . For each of Bob and Catherine their

visits to bars are independent of each other and are governed by Markov chains with the same transition probabilities.

Let us denote  and  the bar visited by Bob and Catherine respectively on day  and let us suppose that 

and  and let  denote the first day when Bob and Catherine are in the same bar:

1. Find .

2. What is the probability they first meet in bar , i.e. compute .

3. In the long run what is the proportion of time they spend in the same bar.

Hint: You should consider the  state Markov chain .

Solution

A B C

P = ​ ​ ​ ​ ​ ​

A

B

C⎝
⎛1/2

1/4
0

1/4
1/4
1/2

1/4
1/2
1/2⎠
⎞

X ​n Y ​n n X ​ =0 A

Y ​ =0 C T

T = min{n ; X ​ =n Y ​}n

E[T ]

C P (X ​ =T C)

9 Z ​ =n (X ​,Y ​)n n
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Exercise 3.6 You can use absorbing state to compute tabu probabilities, i.e. probabilities of reaching some given state
while avoiding some other states. For example the weather in the island of H is either 1=sunny, 2=cloudy, or 3=rainy
and evolve according to a Markov chain with transition probabilties

1. Compute the probability that there is no rain in the next five days given that it is sunny today.
Hint Consider the transition matrix  where  is transformed into an absorbing state.

2. Compute the probability that there is no rain in the next five days given that it is rainy today.
Hint: Condition first on tomorrow’s weather and use 

Exercise 3.7 (Free casino money) You highschool friend W. B. now owns a casino in Macao. He is so happy to see you
again that he gives you infinite credit at a table of craps to play the “pass line bet” which is an even money bet with
probability of winning equal to 244/495. The maximal allowed bet is $ 1,000. What is the expected size of the present
your friend is giving you?

P = ​ ​ ​ ​ ​ ​

1
2
3⎝
⎛0.70

0.50
0.40

0.10
0.25
0.30

0.20
0.25
0.30⎠

⎞

P
~

3

P
~

77



Exercise 3.8 (Roger Federer) In his commencement speech in Dartmouth college the swiss tennisman Roger Federer
stated “I won almost 80% of singles matches… But I only won 54% of points. Even top ranked tennis players win barely
more than half the points they play.” (see the speech at ). Continue the analysis of tennis we started in 
where we computed the probability to win a “game”. A tennis match is played in five sets (best of five, the player who
first wins three sets wins the match). A set is won when a player wins 6 games and two games ahead. If the scores
reaches 6-5 then there are 2 possibilites. In the tie-break method when a score of 6-5 occurs then a plyer can win 7-5
or of if it reaches 6-6 a tie-break ensue. In the advantage set method games are played until until one player is to games
ahead (Famously in in 2010 a set see  ended with the score 70–68 and lasted more than 6 hours. Details for the
scoring rules are in .

Hint: Using the negative binomial distribution will be helpful.

Is the statement of Roger Federer consistent with our model?

Solution

here Section 3.8

here
https://en.wikipedia.org/wiki/Tennis_scoring_system
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Exercise 3.9 (Computer exercise)  

Write a code which take a Markov chain and returns in canonical form.

Add to the previous code the computation of the time until absorption and the absorption probabilities.

Solution
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4 Markov chains with
countable state space
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4.1 Examples
We introduce some basic examples of Markov chains on a countable state space

Example 4.1 (Random walk on the non-negative integers) Let us consider a random walk on the set of nonnegative
integers with partially reflecting boundary conditions at . The transition probabilities are given by

Example 4.2 (Discrete-time queueing model) At a service station (think of a cash register), during each time period
there is a probability  that an additional customer comes in the queue. The first person in the queue is being served

and during each time period there is a probability  that this person exits the queue.

We denote by  the number of people in the queue (either in being served or waiting in line). The state space is 

 and the transition probabilities are given by

0

​ ​ ​ ​ ​ ​ ​ ​ ​  with q =

0
1
2

⋮ ⎝
⎛q
q

0

⋮

p

0
q

⋮

0
p

0

⋱

0
0
p

⋱

0
0
0

⋱

…
…
…

⎠
⎞

1 − p

p

q

X ​n S =
{0, 1, 2, 3, ⋯ }

P = ​ ​ ​ ​ ​ ​ ​ ​

0
1
2

⋮ ⎝
⎛ 1 − p

q(1 − p)
0

⋮

p

qp + (1 − p)(1 − q)
q(1 − p)

⋮

0
p(1 − q)

qp + (1 − p)(1 − q)

⋱

0
0

p(1 − q)

⋱

…
…

⋱ ⎠
⎞
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Example 4.3 (Repair shop) A repair shop is able to repair one item on any single day. On day   items break down

and are brought for repair to the repair shop and we assume that  are IID random variables with pdf 

 for . If  denotes the number of item in the shop waiting to be repaired we have

The state space is  and the transition probabilities are

Example 4.4 (Success run chain) Imagine a player taking a series of bets labelled . The probability to win bet

 is . If the player wins bet  they move up to bet  but if they lose they move back to bet . If  denotes the

number of successive winning bets then  has state space  and transition probabilities

nZ ​n

Z ​n P{Z ​ =n

k} = a ​k k = 0, 1, 2, ⋯ X ​n

X ​ =n+1 max{(X ​ −n 1), 0} + Z ​n

S = {0, 1, 2, 3, ⋯ }

P = ​ ​ ​ ​ ​ ​ ​ ​  with  ​a ​ =

0
1
2

⋮ ⎝
⎛a ​0

a ​0

0

⋮

a ​1

a ​1

a ​0

⋮

a ​2

a ​2

a ​1

⋮

a ​3

a ​3

a ​2

⋮

⋯
⋯
⋯

⎠
⎞

k=0

∑
∞

k 1

0, 1, 2, ⋯
j p ​j j j + 1 0 X ​n

X ​n S = {0, 1, 2, 3, ⋯ }
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Example 4.5 (Simple d-dimensional random walk) The state space  of the Markov chain is the d-dimensional lattice

. We denote by ,  the standard orthonormal basis in . We view  as the vertex set of a graph and

any point  is connected by edges to  neighbors . For the simple random walk we have

and all the others .

Example 4.6 (Branching process) The branching process, also known as the Galton-Watson process model the evolution
over time of populations.
In a unit of time every individual in a population dies and leave behind a random number of descendents.

To describe the Markov chain we will use IID random variables  indexed by  and .

The branching process is given by

which simply says that the each of  individuals in the population at time  has a random number  of

descendents. It is not convenient to write down the transition probabilities but we will study this process later using its
moment generating function.

S

Zd e ​i i = 1, ⋯ , d Rd Zd
x = (x ​, ⋯ ,x ​)1 d 2d x ± e ​i

p(x,x ± e ​) =i ​

2d
1

p(x,y) = 0

Z ​n
(k)

n = 0, 1, 2 ⋯ k = 0, 1, 2, ⋯

X ​ =n+1 ​Z ​

k=1

∑
X ​n

n
(k)

X ​n n Z ​n
(k)
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4.2 Transience/recurrence dichotomy
In Markov chains on a countable state space a new phenomenon occurs compared to finite state space. Suppose the the
Markov chain is irreducible (or starts in a closed class), from a state  the Markov chain will return to  with positive

probaility but it is also possible that the Markov chain does not return to  and “wander away to infinity”.

We introduce the corresponding definitions of transience and recurrence of a state. Recall that the return time to state 

is given by

Definition 4.1 (recurrent and transient state)  

A state  is recurrent if if the Markov chain starting in  will eventually return to  with probability , i.e. if

A state  is transient if it is not recurrent, that is starting in  the Markov chain return to  with probability ,

i.e., if

i i

i

i

τ(i) = min{n ≥ 1 ; X ​ =n i} . (return time)

i i i 1

P τ(i) < ∞∣X ​ = i ={ 0 } 1.

i i i q < 1

P τ(i) < ∞∣X ​ = i ={ 0 } q < 1.
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Recall also the random variable  which counts the number of visits to state :

Theorem 4.1 (Transience/recurrence dichotomy)  

1. A state  is recurrent .

Moreover if  is recurrent and  then  is recurrent and we have

2. The state  is transient .

Moreover if  is transient and  then  is transient and we have

Y (i) j

Y (i) = ​I ​  with expectation  E[Y (i)∣X ​ =
k=0

∑
∞

{X ​=i}k 0 j] = ​P (j, i)
n=0

∑
∞

n

i ⟺ P{Y (i) = ∞∣X ​ =0 i} = 1 ⟺ ​P (i, i) =
n=0

∑
∞

n ∞

i i↭ j j

​P (i, j) =
n=0

∑
∞

n ∞  and  P τ(j) < ∞∣X ​ = i ={ 0 } 1

i ⟺ P{Y (i) < ∞∣X ​ =0 i} = 1 ⟺ ​P (i, i) <
n=0

∑
∞

n ∞

i i↭ j j

​P (i, j) <
n=0

∑
∞

n ∞  and  P τ(j) < ∞∣X ​ = i <{ 0 } 1 .
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Proof. If  is recurrent the Markov chain starting from  will return to  with probability , and then, by the (strong) Markov

property, it will return a second time with probability  and therefore infinitely many time with probability . This means

that  almost surely and so .

If  then then we can find time  and  such that  and  and so

and  is recurrent. A similar argument shows that .

It is a consequence of irreducibility that . (Argue by contraduction, if this probability

were  by the Markov property, the chain would never visits  starting from ). As a consequence

and therefore .

On the other hand, if  is transient, by the Markov property again, the random variable  is a geometric random

variable with success probability  which implies that . This implies all the

other equivalence stated. 

i i i 1
1 1

Y (i) = ∞ ​ P (i, i) =∑k
k +∞

i↭ j l m P (i, j) >l 0 P (j, i) >m 0

​P (j, j) ≥
n=0

∑
∞

n
​P (j, j) ≥

n=0

∑
∞

n+l+m P (j, i) ​P (i, i)P (i, j) =m

n=0

∑
∞

n l ∞ ,

j ​ P (i, j) =∑n=0
∞ n ∞

P τ(i) < τ(j)∣X ​ = j >{ 0 } 0
0 i j

0 = P τ(j) = ∞∣X ​ = j ≥{ 0 } P τ(i) < τ(j)∣X ​ = j P τ(j) = ∞∣X ​ = i{ 0 } { 0 }

P τ(j) < ∞∣X ​ = i ={ 0 } 1

i Y (i)
q < 1 E[Y (i)] = ​ P (i, i) =∑k

k
​ <
q
1 ∞

■
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4.3 Transience/recurrence for the simple random walk.
We analyze the recurence and transience propeties for the simple random walk on  (see ).

As we will see this depends on the dimension. To prove recurrence transience here we compute/estimate directly

since  is periodic with period .

: To return to  in  steps the Markov chain must take exactly  steps to the left and  steps to the right and thus

we have

By Stirling’s formula we have  where  means that . Thus we have

Recalling that if  then  converges if and only if  converges we see that the random walk in  is

recurrent.

Zd Example 4.5

​P (0, 0) =
n=0

∑
∞

n
​P (0, 0)

n=0

∑
∞

2n

X ​n 2

d = 1 0 2n n n

P (0, 0) =2n
​ ​(

n

2n)
22n

1

n! ∼ ​e n2πn −n n a ​ ∼n b ​n lim a ​/b ​ =n n 1

​ ​ ∼(
n

2n)
22n

1
​ ​ =

22n

1
2πne n−2n 2n

​e (2n)2π2n −2n 2n

​ .
​πn

1

a ​ ∼n b ​n a ​∑ n b ​∑ n d = 1
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: In dimension  to return to  in  steps the Markov chain must take exactly  steps to the left and  steps to

the right and  steps up and  steps down. Therefore

Now we claim that  as can be seen by the counting the number of ways that a team of  can

be formed out of  boys and  girls. Therefore

and thus the simple random walk is recurrent for  since  diverges.

: Similarly as in 2 dimension 2 we find

To analyze this quantity we note that, by the multinomial theorem,

d = 2 2 0 2n k k

n − k n − k

P (0, 0) =2n
​ ​ ​ =

k=0

∑
n

k!k!(n − k)!(n − k)!
2n!

42n

1
​ ​ ​ ​ ​

42n

1 (
n

2n)
k=0

∑
n

(
k

n)(
n − k

n )

​ ​ ​ =∑k=0
n (

k
n)(

n−k
n ) ​(

n
2n) n

n n

P (0, 0) =2n
​ ​ ∼(

n

2n)
2

42n

1
​

πn

1

d = 2 ​∑
n
1

d = 3

P (0, 0) =2n
​ ​ ​ =

​

k+j≤n
k,j

∑
j!j!k!k!(n − k − j)!(n − k − j)!

2n!
62n

1
​ ​ ​ ​ ​

22n

1 (
n

2n)
​

k+j≤n
k,j

∑ (
3n
1
j!k!(n − j − k)!

n! )2

​ ​ ​ =
k,j:k+j≤n

∑
3n
1
j!k!(n − j − k)!

n!
1
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Moreover we have

and thus we only need to the maximum of . If  is the maximum then we must have for example

Repeating the same computation with , ,  gives the set of inequalities

which implies that

i.e.   and  are of order . Using Stirling’s formula

which shows that the random walk is transient in dimension .

​q ​ =
i

∑ i 1 ⟹ ​q ​ ≤
i

∑ i
2 max ​q ​i i

​

j!k!(n − j − k)!
n!

k ​, j ​0 0

​ ≤
(j ​ − 1)!k ​!(n − j ​ − k ​ + 1)!0 0 0 0

n!
​ ⟹

(j ​)!k ​!(n − j ​ − k ​)!0 0 0 0

n!
2j ​ ≤0 n − k ​ +0 1 .

j ​ →0 j ​ +0 1 k ​ →0 k ​ −0 1 k ​ →0 k ​ +0 1

n − j ​ −0 1 ≤ 2k ​ ≤0 n − j ​ +0 1  and  n − k ​ −0 1 ≤ 2j ​ ≤0 n − k ​ +0 1

​ −
3
n

1 ≤ j ​, k ​ ≤0 0 ​ +
3
n

1

j ​0 k ​0 n/3

P (0, 0) ≤2n
​ ​ ​ ​ ∼

22n

1 (
n

2n)
3n
1

(n/3)!(n/3)!(n/3)!
n!

​ ​

2
3 ​3

(πn)3/2

1

3
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4.4 Transience/recurrence for the succcess run chain
Continuing with  we consider the return time to state ,  whose pdf we can compute explicitly since to

return to  the only possible paths are , , , and so on. We set 

and find

Therefore

and

and we obtain that

To have a better handle on this criterion we need a little result from analysis about infinite products.

Example 4.4 0 τ(0)
0 0 → 0 0 → 1 → 0 0 → 1 → 2 → 0 u ​ ≡n p ​p ​ ⋯ p ​0 1 n−1

P (τ(0) = k∣X ​ =0 0) = p ​p ​p ​q ​ =0 1 k−2 k−1 p ​p ​p ​(1 −0 1 k−2 p ​) =k−1 u ​ −k−1 u ​ .k

P (τ(0) ≤ n∣X ​ =0 0) = ​P (τ(0) =
k=1

∑
n

k∣X ​ =0 0) = (1 − u ​) +0 (u ​ −0 u ​) +1 ⋯ + (u ​ −n−1 u ​) =n 1 − u ​n

P (τ(0) < ∞∣X ​ =0 0) = 1 − ​u ​

n→∞
lim n

The success run chain is recurrent if and only if  ​u ​ =
n→∞
lim n ​p ​ ⋯ p ​ =

n→∞
lim 0 n−1 0
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Lemma 4.1 With  and 

Proof. We have

 Taking  shows that

For this to happen we must have . But since  by L’Hospital rule, we have that

 converges if and only if  converges. 

For the chain to be transient  must go to  fast enough. If say  then the chain is recurrent while if  then it

is transient.

q ​ =k 1 − p ​k u ​ =n ​ u ​∏k=0
n−1

k

​u ​ =
n→∞
lim n ​ ​p ​ =

n→∞
lim

k=0

∏
n−1

k 0 ⟺ ​q ​ =
k=0

∑
∞

k ∞

​u ​ =
n→∞
lim n ​ ​p ​ >

n→∞
lim

k=0

∏
n−1

k 0 ⟺ ​q ​ <
k=0

∑
∞

k ∞

​p ​ >
k=0

∏
n−1

k 0 ⟺ ∞ > − log( ​p ) =
k=0

∏
n−1

k − ​ log p ​ =
k=1

∑
n

k − ​ log(1 −
k=1

∑
n

q ​)k n → ∞

​ ​p ​ >
n→∞
lim

k=0

∏
n−1

k 0 ⟺ ​ log(1 −
k=1

∑
∞

q ​) converges.k

lim ​ q ​ =k→∞ k 0 lim ​ log(1 −x→0 x)/x = 1
​ log(1 −∑k=1

n
q ​)k ​ q ​∑k=1

n
k ■

q ​k 0 q ​ =i ​

i
1 q ​ =i ​

i2
1
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4.5 Another criterion for transience
We add one more method to establish transience. For this pick reference state  and consider the hitting time to state ,

 (not the return time but we will play with both.)

By definition we have  since  if . If the chain is transient we must have

since by  for  we have .

Let us derive an equation for  by conditioning of the first step. For 

and thus  satisfies the equation

j j

σ(j)

α(i) = P σ(j) < ∞∣X ​ = i{ 0 }

α(j) = 1 σ(j) = 0 X ​ =0 j

α(i) < 1  for i = j .

Theorem 4.1 i = j α(i) = P τ(j) < ∞∣X ​ = i <{ 0 } 1

α(i) i = j

​ ​

α(i) = P σ(j) < ∞∣X ​ = i = P τ(j) < ∞∣X ​ = i( 0 ) ( 0 )

= ​P τ(j) < ∞∣X ​ = k P (i, k) = ​P σ(j) < ∞∣X ​ = k P (i, k)
k∈S

∑ ( 1 )
k∈S

∑ ( 0 )

=
​P (i, k)α(k)

k∈S

∑

α(i)

Pα(i) = α(i) , i = j .
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Theorem 4.2 (A criterion for transience) An irreducible Markov chain  is transient if and only if for some state 

there exists a solution for the equation

such that

Proof. We have already established the necessity. In order to show the sufficiency assume that we have found a solution
for  and . Then for  we have, using repeatedly the equation 

which establishes transience. 

X ​n j ​0

Pα(i) = α(i) for i = j ​0 (4.1)

α(j ​) =0 1  and  0 < α(i) < 1  for i = j ​0 (4.2)

Equation 4.1 Equation 4.2 i = j ​0 Pα(i) = α(i)

​ ​

1 > α(i) = Pα(i) = P (i, j ​)α(j ​) + ​P (i, j)α(j) = P (i, j ​) + ​P (i, j)Pα(j)0 0

j=j ​ 0

∑ 0

j=j ​ 0

∑

= P (i, j ​) + ​P (i, j)P (j, j ​) + ​P (i, j)P (j, k)α(k)0

j=j ​ 0

∑ 0

j=j ​,k=j ​ 0  0

∑

= P (i, j ​) + ​P (i, j)P (j, j ​) + ​P (i, j)P (j, k)P (k, j ​) + ⋯0

j=j ​ 0

∑ 0

j,k=j ​ 0

∑ 0

= P (τ(j ​) = 1∣X ​ = i) + P (τ(j ​) = 2∣X ​ = i) + P (τ(j ​) = 3∣X ​ = i) + ⋯0 0 0 0 0 0

= P (τ(j ​) < ∞∣X ​ = i) .0 0

■
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4.6 Transience/recurrence for the RW on 
Continuing with  we use . We pick  as the reference state and for  solve the equation

whose solution is (like for the Gambler’s ruin problem)

Using that  we find

and we see the condition  is possible only if  (that is ) and by choosing .

Thus we conclude

{0, 1, 2, ⋯ }
Example 4.1 Theorem 4.2 0 j = 0

Pα(j) = P (j, j − 1)α(j − 1) + P (j, j + 1)α(j + 1) = (1 − p)α(j − 1) + pα(j + 1) = α(j)

α(j) = ​ ​ .{ C ​ + C ​ ​1 2 (
p

1−p)j
C ​ + C ​j1 2

 if p = ​ 2
1

 if p = ​2
1

α(0) = 0

α(j) = ​ ​ .{ (1 − C ​) + C ​ ​2 2 (
p

1−p)j
(1 − C ​) + C ​j2 2

 if p = ​ 2
1

 if p = ​2
1

0 < α(i) < 1 (1 − p)/p < 1 p > 1/2 C ​ =2 1

 The random walk on {0, 1, 2, ⋯ } is  ​ .{ transient for p > ​2
1

recurrent for p ≤ ​2
1
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5 Positive recurrent
Markov chains
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5.1 Positive recurrence versus null recurrence
A finite state irreducible Markov chain is always recurrent,  and we have proved Kac’s

formula for the invariant measure , that is the random variable  has finite expectation.

For a countable state space it is possible for a Markov chain to be recurrent but also that  does not have finite

expectation. This motivates the following definitions.

Definition 5.1 (Postive and Null recurrence)  

A state  is positive recurrent if 

A state  is null recurrent if it is recurrent but not positive recurrent

We first investigate the relation between recurrence and existence of invariant measures. We first show that if one state

 is positive recurrent then there exists a stationary distribution. The basic idea is to decompose any path of the Markov

chain into successive visits to the state . To build up our intuition if a stationary distribution were to exists it should

measure the amount of time spent in state  and to measure this we introduce

P (τ(i) < ∞∣X ​ =0 j) = 1
π(i) = E[τ(i)∣X ​ =0 i]−1 τ(i)

τ(i)

i E[τ(i)∣X ​ =0 i] < ∞

i

j

j

i

μ(i) = E ​ ​1 ​∣X ​ = j ​ =⎣
⎡

n=0

∑
τ(j)−1

{X ​=i}n 0 ⎦
⎤

number of visits to i between two successive visits to j.
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Note that  since , and if  is positive recurrentμ(j) = 1 X ​ =0 j j

​μ(i) =
i

∑ ​E ​ ​1 ​∣X ​ = j ​ =
i∈S

∑ ⎣
⎡

n=0

∑
τ(j)−1

{X ​=i}n 0 ⎦
⎤

E τ(j) ∣X ​ = j <[ 0 ] ∞



and thus

is a probability distribution.

Theorem 5.1 For a recurrent irreducible Markov chain  and a fixed state , 

is stationary in the sense that

If the state  is positive recurrent then  can be normalized to a stationary distribution .

Proof. The chain visits  at time  and then only again at time  and thus we have the two formulas

π(i) = ​

E[τ(i)∣X ​ = i]0

μ(i)

X ​n j μ(i) = E[ ​ 1 ​∣X ​ =∑n=0
τ(j)−1

{X ​=i}n 0 j]

μP = μ

j μ π

j 0 τ(j)

​ ​

μ(i) = E ​ ​1 ​∣X ​ = j ​ = ​P (X ​ = i, τ(j) > n∣X ​ = j)⎣
⎡

n=0

∑
τ(j)−1

{X ​=i}n 0 ⎦
⎤

n=0

∑
∞

n 0

= E ​ ​1 ​∣X ​ = j = ​P (X = i, τ(j) ≥ n∣X ​ = j)⎣
⎡
n=1

∑
τ(j)

{X ​=i}n 0 ⎦
⎤

n=1

∑
∞

n 0
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We have then, by conditioning on the last step, and using 

which proves the invariance of . If the chain is positive recurrent we have already seen that  is normalizable. .

μ(j) = 1

​ ​

μ(i) = ​P (X ​ = i, τ(j) ≥ n∣X ​ = j) = P (j, i) + ​P (X ​ = i, τ(j) ≥ n∣X ​ = j)
n=1

∑
∞

n 0
n=2

∑
∞

n 0

= P (j, i) + ​ ​P (X ​ = i,X ​ = k, τ(j) ≥ n∣X ​ = j)
k∈S,k=j

∑
n=2

∑
∞

n n−1 0

= P (j, i) + ​ ​P (k, i)P (X ​ = k, τ(j) ≥ n∣X ​ = j)
k∈S,k=j

∑
n=2

∑
∞

n−1 0

= P (j, i) + ​ ​P (k, i)P (X ​ = k, τ(j) > n − 1∣X ​ = j)
k∈S,k=j

∑
n=2

∑
∞

n−1 0

= P (j, i) + ​ ​P (k, i)P (X ​ = k, τ(j) > m∣X ​ = j)
k∈S,k=j

∑
m=1

∑
∞

m 0

= μ(j)P (j, i) + ​E ​ ​1 ​∣X ​ = j ​ P (k, j)
k=j

∑ ⎣
⎡

m=1

∑
τ(j)−1

{X =k}m 0 ⎦
⎤

= μ(j)P (j, i) +
​
μ(k)P (k, i) =

​
μ(k)P (k, i)

k=j

∑
k

∑

μ μ ■
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5.2 Stationarity and irreducibility implies positive recurrence
Theorem 5.2 Assume the irreducible Markov chain has a stationary distribution  then  for any  and we

we have Kac’s formula . In particular all states are positive recurrent and the stationary

distribution is unique.

Proof. Let us assume that  is invariant. We first show that the chain must be recurrent. If the chain were transient then

we would have  as  and so by dominated convergence

which is impossible.

The fact that  for all  is proved as for finite state space see the argument in .

To prove positive recurrence we use a clever argument involving the time reversed chain (more on time reversal in

 and in the exercises). Consider the Markov chain with transition matrix . It is easy to verify

that  is a transition matrix and that  is stationary for , . We denote by  the Markov chain with

transition matrix , since  this Markov chain has the same communication structure as  and is irreducible

since  is. By the previous argument  must be recurrent.

π(i) π(i) > 0 i

π(i) = E τ(i)∣X ​ = i[ 0 ]−1

π

P (i, j) →n 0 n → ∞

π(i) = ​π(j)P (j, i) →
j

∑ n 0 as n → ∞ .

π(i) > 0 i ∈ S Theorem 2.2

Chapter 8 Q(i, j) = ​

π(i)
π(j)P (j,i)

Q(i, j) π Q πQ = π Y ​n

Q π(i) > 0 X ​n

X ​n Y ​n
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Next we write

The event  conditioned on  correspond to a sequence of states

where  cannot be equal to  and  can be any state. Using repeatedly the relation 

 the probability of such event can be written as

For the Markov chain  this correspond to a path starting in  and returning to  after exactly  steps. Therefore we find

where for the last equality we have used the recurrence of the time reversed chain. This shows Kac’s formula which
implies the uniqueness of the stationary distribution and that all states are positive recurrent. 

π(i)E[τ(i)∣X ​ =0 i] = π(i) ​P (τ(i) ≥
n=1

∑
∞

n∣X ​ =0 i)

{τ(i) ≥ n} {X ​ =0 i}

i ​ =0 i, i ​, ⋯⋯ , i ​, i ​ =1 n−1 n j

i ​, ⋯ , i ​1 n−1 i i ​ =n j π(i)P (i, j) =
π(j)Q(j, i)

​ ​

π(i)P (i, i ​) ⋯P (i ​, i ​)1 n−1 n = π(j)Q(j, i ​) ⋯Q(i ​, i)n−1 1

Y ​n j i n

​ ​

π(i)E[τ(i)∣X ​ = i] = π(i) ​P (τ(i) ≥ n∣X ​ = i)0
n=1

∑
∞

0 = ​π(j) ​P (τ(i) = n∣Y ​ = j)
j∈S

∑
n=1

∑
∞

0

= ​π(j)P (τ(i) < ∞∣Y ​ = j) = 1 .
j∈S

∑ 0

■
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5.3 Ergodic theorem for countable Markov chains
Theorem 5.3 (Ergodic theorem for countable state space Markov chains) If  is irreducible and positive recurrent

then there exists a unique stationary distribution  and for any initial distribution  we have

with probability . In particular ,. Moreover  we have the Kac’s formula

. Conversely if an irreducible Markov has a stationary distribution then it is positive recurrent.

Proof. We have actually already proved all of it. Positive recurrence implies the existence of the stationary distribution
( ) and Kac’s formula is from  which implies uniqueness of the stationary distribution. We can
now repeat the proof of  to show that if  with  arbitrary we have

The reader should verify that the proof of  only use positive recurrence and not the finiteness of the state
space. Taking now expectation of  and summing over initial condition we have

. 

X ​n

π μ

​ ​ ​1 ​ =
n→∞
lim

n

1

k=0

∑
n−1

{X ​=j}k
π(j) ,

1 lim ​ ​ ​ μP (j) =n→∞ n
1 ∑k=0

n−1 k π(j) π

π(j) = ​

E[τ(j)∣X ​=j]0

1

Theorem 5.1 Theorem 5.2
Theorem 2.6 X ​ =0 i i

​ ​ ​1 ​ =
n→∞
lim

n

1

k=0

∑
n−1

{X ​=j}k
π(j) . (5.1)

Theorem 2.6
Equation 5.1

lim ​ ​ ​ μP (j) =n→∞ n
1 ∑k=1

n k π(j) ■
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5.4 Convergence to equilibrium via coupling
We continue our theoretical consideration by proving that if the chain is aperiodic then the distribution of  converges

to .

Theorem 5.4 Suppose  is an irreducible positive recurrent aperiodic Markov chain. Then for any initial distribution

 we have

Proof. We will use a coupling argument: we take two independent copies  and  of the Markov chain where  is

starting in the initial distribution  while  is starting in the stationary distribution .

The idea is to consider the coupling time

At the (random) time ,  and  are in the same state and after that time  and  must have the same distribution

by the (strong) Markov property. But since  is distributed according to  so must  be as well and thus, at the

coupling time ,  has reached stationarity.

X ​n

π(j)

X ​n

μ

μP (j) =
n→∞
lim n π(j) .

X ​n Y ​n X ​n

μ Y ​n π

σ = inf{n ≥ 1;X ​ =n Y ​} .n

σ X ​n Y ​n X ​n Y ​n

Y ​n π X ​n

σ X ​n

104



Let us now consider the chain  with transition probabilities

and stationary distribution . Since  and  are aperiodic, given states  we can find 

such that for every  we have  and . This implies that  is irreducible and thus, since

a stationary measure exists, by  the chain  is positive recurrent. Since the coupling time is the first time the

Markov chain  hits a state of the form , recurrence of  implies that  and thus 

.

To conclude

and this prove the convergence. .

Remark The idea of coupling used in  is an instance of powerful idea. First we can use other coupling that
the one used here and if we can bound the tail behavior of the coupling time then we can control the speed of
convergence to the stationary distribution! We will exploit this idea later on.

Z ​ =n (X ​,Y ​)n n

P (Z ​ =n+1 (k, l) ∣Z ​ =n (i, j)) = P (i, k)P (j, l)

π(i, j) = π(i)π(j) X ​n Y ​n i, j, k, l n ​0

n ≥ n ​0 P (i, k) >n 0 P (j, l) >n 0 Z ​n

Theorem 5.3 Z ​n

Z ​n (j, j) Z ​n P (σ < ∞) = 1 P (σ > n) →
0

​ ​

μP (j) − π(j)∣ n ∣ = P (X ​ = j) − P (Y ​ = j)∣ n n ∣

≤ P (X ​ = j,σ ≤ n) − P (Y ​ = j,σ ≤ n) + P (X ​ = j,σ > n) − P (Y ​ = j,σ > n)∣ n n ∣ ∣ n n ∣

= P (X ​ = j,σ > n) − P (Y ​ = j,σ > n)∣ n n ∣

= ​E[(1 ​ − 1 ​})1 ​] ​∣∣ {X ​=j}n {Y ​=jn {σ>n} ∣∣

≤ E[1 ​] = P (σ > n) → 0 as n → ∞{σ>n}

■

Theorem 5.4
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5.5 Examples
Positive recurrence for the random walk on . Continuing with , we use  to establish

positive recurrence by computing the stationary distribution. We find the equations

The second equation has the general solution

and the first equation gives . For  we cannot find a normalized solution. For  we can

choose  and  can be normalized toi find . If  we already

know the Markov chain is transient and thus

{0, 1, 2, ⋯ } Example 4.1 Theorem 5.3

π(0)(1 − p) + π(1)(1 − p) = π(0)  and  π(j + 1)(1 − p) + π(j − 1)p = π(j)  for j ≥ 1

π(n) = C ​ +1 C ​ ​ (if p2 (
1 − p

p )n

= ​ )  and  π(n) =
2
1

C ​ +1 C ​n ( if p =2 ​ )
2
1

π(1) = ​π(0)1−p
p p = ​2

1 p < ​2
1

C ​ =1 0 π(n) = ​ π(0)( 1−p
p )n π(n) = ​ ​1−p

1−2p ( 1−p
p )n p > ​2

1

 The random walk on {0, 1, 2, ⋯ } is  ​ ​ .⎩⎨
⎧ transient for p > ​2

1

null recurrent for p = ​2
1

positive recurrent for p < ​2
1
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Positive recurrence for the success run chain. Continuing with Examples  we determine recurrence by solving
. This gives the equations

From the second line we find  and inserting into the first equation

Recall that recurrence occurs provided  and so if  is recurrent there exists a solution of

 and we can normalize  provided

Therefore we obtain

Example 4.4
πP = π

​ ​

π(0)

π(1)

= π(0)q ​ + π(1)q ​ + ⋯ = ​π(n)q ​0 1
n=0

∑
∞

n

= π(0)p ​ , π(2) = π(1)p ​, ⋯0 1

π(n) = π(0)p ​p ​ ⋯ p ​0 1 n−1

π(0) = π(0) (1 − p ​) + p ​(1 − p ​) + p ​p ​(1 − p ​) + ⋯ =[ 0 0 1 0 1 2 ] π(0) 1 − ​p p ​ ⋯ p ​[
n→∞
lim 0 1 n−1]

lim ​ ​ p ​ =n→∞ ∏j=0
n−1

j 0 Xn

πP = π π

​ ​p ​ <
n=1

∑
∞

j=0

∏
n−1

j ∞

 The success run chain is  ​ ​ .⎩⎨
⎧ transient if  lim ​ ​ p ​ > 0n ∏j=0

n−1
j

recurrent if  lim ​ ​ p ​ = 0n ∏j=0
n−1

j

positive recurrent if  ​ ​ p ​ < ∞∑n ∏j=0
n−1

j
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5.6 Exercises
These exercises will use the material of both Section 4 and Section 5

Exercise 5.1 Consider the following queueing model. In any given time unit, there is probability  that an item being

serviced is repaired and there is a probability  that new item is added to the queue. Denote  to be the numbers of

items in the queue (being repaired or waiting to be repaired). The transition probabilities are given by

a. Determine when the Markov chain is transient, recurrent, or positive recurrent.

b. In the positive recurrent case compute the stationary distribution and the length of the queue in equilibrium.

c. In the transient case compute the probability  of ever reaching  starting from .

Solution

q

p X ​n

P = ​ ​ ​ ​ ​ ​ ​ ​

0
1
2

⋮ ⎝
⎛ 1 − p

q(1 − p)
0

⋮

p

qp + (1 − p)(1 − q)
q(1 − p)

0
p(1 − q)

qp + (1 − p)(1 − q)

⋱

0
0

p(1 − q)

⋱

…
…

⋱⎠
⎞

α(j) 0 j
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Exercise 5.2 Let ,  be such that . Consider the Markov chain on the state

space  with transition probabilities

Starting from zero the Markov chain  visits state  with probability  and then falls back to  one step at a time.

Determine under which conditions on  is the Markov chain positive recurrent, null recurrent, transient? Compute

the stationary distribution  in the positive recurrent case.

Hint: Study the distribution of the return time .

Solution

p(k) k = 0, 1, 2, 3, ⋯ ​ p(k) =∑k=0
∞ 1

S = {0, 1, 2, 3, ⋯ }

P = ​ ​ ​ ​ ​ ​ ​ ​ ​

0
1
2

⋮ ⎝
⎛p(0)

1
0

⋮

p(1)
0
1

⋮

p(2)
0
0

⋱

p(3)
0
0

⋱

…
…

⋱ ⋱⎠
⎞

X ​n k p(k) 0

p ​k

π

τ(0)
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Exercise 5.3 Consider the Markov chain with state space  with transition probabilities

For which values of  is the chain transient, recurrent, positive recurrent?

Exercise 5.4 For each of the following success run Markov chain with state space  determine if the chain

is transient, recurrent, positive recurrent. (If it is positive recurrent compute the stationary distribution ).

a. 

b. 

c. 

{0, 1, 2, ⋯ }

P = ​ ​ ​ ​ ​ ​ ​ ​ ​ ​

0
1
2

⋮ ⎝
⎛1 − p

1 − p

0

⋮

0
0

(1 − p)

p

0
0

⋱

0
p

0

⋱

0
0
p

⋱

…
…
…

⋱ ⎠
⎞

p

{0, 1, 2, ⋯ }
π

p(j, 0) = ​ , p(j, j +
j + 2

1
1) = ​

j + 2
j + 1

p(j, 0) = ​ , p(j, j +
j + 2
j + 1

1) = ​

j + 2
1

p(j, 0) = ​ , p(j, j +
j + 22

1
1) = ​

j + 22

j + 12
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Exercise 5.5 (Hitting times)  

1. Consider the gambler’s ruin problem again. The goal is to compute the duration of play, that is let  be the stopping

time given by

Compute .

To do this condition on the frist step to find a system of (inhomogeneous) linear equations for  and solve them

(you will need some help from linear ODEs)

2. Consider a positive recurrent random walk on . Using the same ideas as in 1. compute the expected

hitting time to , .

Solution

τ

τ = inf{n ≥ 0,X ​ ∈n {0,N}}

α(j) = E[τ ∣X ​ =0 j]
α(j)

{0, 1, 2, ⋯ }
0 E[τ(0)∣X ​ =0 j]
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Exercise 5.6 In this problem we are interested in how long should we wait until we a series of  consecutive

occurences in a sequence of independent trials. Suppose  are independent Bernoulli random variables

random variables with . Let  be a positive integer and let  be the first time

that  consecutive  have appeared.

Consider the Markov chain with  and  to be the number of consecutive  in the last run.

1. Explain why  is a Markov chain with state space  and give the transition probabilities.

2. Show that the chain is irreducible and positive recurrent and give the invariant probability.

3. Find  by writing an equation for  in terms of  and then solving the recursive equation.

4. Find  is a different way. Suppose the chain starts in state , and let  be the the time until returning to

state N and  the time until the chain reaches state 0. Explain why

Find , and use part (b) to determine .

Solution

n

B ​,B ​, ⋯1 2

P (B ​ =j 1) = 1 − P (B ​ =j 0) = p N T ​N

N 1

X ​ =0 0 X ​n 1

X ​n {0, 1, 2, ⋯ }

E(T ​)N E(T ​)N E[T ​]N−1

E(T ​)N N S ​N

S ​0

E[S ​] =N E[S ​] +0 E[T ​]N

E[S ​]0 E[T ​]N
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6 Branching processes
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6.1 Moment generating function
For a random variable  taking values in  the generating function of  is the function 

, defined for . We have

It is closely related to the moment generating function  but the parametrization  is more useful her.

X {0, 1, 2, 3, ⋯ } X ϕ ​(s) =X

E[s ]X s ≥ 0

ϕ ​(s) =X E[s ] =X
​s P{X =

k=0

∑
∞

k k}

E[e ]tX s = et

Elementary properties of :ϕ ​(s)X

 is an increasing function of  with  and .ϕ ​(s)X s ϕ ​(0) =X P{X = 0} ϕ ​(1) =X 1

Differentiating gives

and thus .

If  then  and  is strictly convex.

ϕ ​(s) =X
′

​ks P{X =
k=1

∑
∞

k−1 k} , ϕ ​(s) =X
′′

​k(k −
k=2

∑
∞

1)s P{X =k−2 k}

ϕ ​(1) =X
′ E[X]

P{X ≥ 2} ϕ ​(s) >X
′′ 0 ϕ ​X

If  are independent random variables thenX ​,X ​, ⋯X ​1 2 m

ϕ ​(s) =X ​+⋯+X ​1 m
ϕ ​(s) ⋯ϕ ​(s)X ​1 X ​1
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6.2 Branching process
In a branching process individuals reproduce independently of each other.

During one time period each indvidual dies and leaves  offsprings with probability  for . We

denote by  the total population after  time period.

k p(k) k = 0, 1, 2, ⋯
X ​n n

 is an absorbing state and correspond to the extinction of the population. We assume  so the absorbing

state can be reached from other states.

0 p(0) > 0

The transition probabilities are not easy to write down explicitly. If  then  will be the sum of the

offsprings of the  indviduals. That is

where  are IID random variables with pdf .

X ​ =n k X ​n+1

k

P{X ​ =n+1 j∣X ​ =n k} = P{Y ​ +1 ⋯ + Y ​ =k j}

Y ​, ⋯ ,Y ​1 k p(k)

Mean population  is easy to compute by conditioning. Denoting by  the mean

number of offsprings of the individuals we have

and thus

E[X ​]n μ = E[Y ​] =1 ​np(n)
n=0

∑
∞

E[X ​∣X ​ =n n−1 k] = E[Y ​ +1 ⋯ + Y ​] =k kμ

E[X ​] =n E[E[X ​∣X ​]] =n n−1 μE[X ] =n−1 ⋯ = μ E[X ​]n
0
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If  then  and so the population goes extinct since

and so 

μ < 1 E[X ​] →n 0

P{X ​ ≥n 1} = ​P{X ​ =
k=1

∑
∞

n k} ≤ ​kP{X ​ =
k=0

∑
∞

n k} = E[X ​] →n 0

​P{X ​ =
n→∞
lim n 0} = 1.

If  then the population stays constant but it could go extinct with probability  nonetheless (that is 

goes to  but  is not small). If  then the population grows on average but it still could go extinct with

some non-zero probability.

μ = 1 1 P (X ​ =n 0
1 E[X ​]n μ > 1

To avoid trival cases we assume that  (the population can go extinct) and  (the population

can grow). We define the extinction probability

p(0) > 0 p(0) + p(1) < 1

​ ​

a ​(k)n

a(k)

= P{X ​ = 0∣X ​ = k} this is increasing in nn 0

= ​P{X ​ = 0∣X ​ = k} = P population goes extinct∣X ​ = k
n→∞
lim n 0 { 0 }

Since for the population to go extinct all branches must go extinct, by independence, we have

and we assume from now on that . Note this formula is also correct for  since .

a(k) = a(1)  so we set a ≡k a(1)

X ​ =0 1 k = 0 a(0) = 1
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Equation for the extinction probability . By conditioning on the first step

where  is the generating function for the offspring distribution . So we have

a

​ ​

a = P population goes extinct∣X ​ = 1{ 0 }

= ​P population goes extinct∣X ​ = k P{X ​ = k∣X ​ = 1}
k=0

∑
∞

{ 1 } 1 0

= ​a(k)p(k)
k=0

∑
∞

= ​a p(k) = ϕ ​(a)
k=0

∑
∞

k
Z

ϕ ​(s)Z Z

 The extinction probability solves the fixed point equation ϕ ​(a) =Z a .

this is a nice illustration of why moment generating functions are useful!
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Compute now the generating function for the population  after  generations.X ​n n

If ,  and  since  are the descendents of a single individiual. For 

Now note that  conditioned on  is the sum of  independent copies of  conditioned on .

Therefore the generating of function  conditioned on  is the generating function of  conditioned on

 to the  power. So we find

and thus we get

X ​ =0 1 ϕ ​(s) =X ​0 s ϕ ​(s) =X ​1 ϕ ​(s)Z X ​1 n ≥ 2

​ ​

ϕ ​(s)X ​n
= ​P X ​ = k s

k=0

∑
∞

{ n } k

= ​ ​P X ​ = k∣X ​ = j P X ​ = j s

k=0

∑
∞ [

j=0

∑
∞

{ n 1 } { 1 }] k

= ​p(j) ​P X ​ = k∣X ​ = j s
j=0

∑
∞

k=0

∑
∞

{ n 1 } k

X ​n X ​ =1 j j X ​n X ​ =1 1
X ​n X ​ =1 j X ​n

X ​ =1 1 jth

ϕ ​(s) =X ​n
​p(j)[ϕ ​(s)] =

j=0

∑
∞

X ​n−1
j ϕ ​(ϕ ​(s))Z X ​n−1

ϕ ​(s) =X ​n
ϕ ​(s) =Z
n ϕ ​(ϕ ​(⋯ (ϕ (s))))Z Z Z
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Using these computations we are ready to derive the main result

Theorem 6.1 Let  be random variable describing the distribution of descendants of a single individual in a branching

process and let us assume that  and . Then if  the extinction probability is the

smallest root of the equation .

If  then  and the population eventually dies out.

If  then the extinction probability  is the unique root of the equation  with .

Proof. We have aready established the extinction probability  is a root of . But we also know that  is a root

since  and the slope of  is equal to  at . Since  then  is strictly convex and

thus  has at most two roots. We have the following cases (illustrated in  on the next slide).

1. If  the equation  has two roots  and  and the extinction probability is .

2. If  the line  is a tangent to the curve  at  and so  has one roots  and the extinction

probability is .

3. Finally if  the equation  has two roots  and . Since  the second root

satisfies . To show that the smallest root is the extinction probability note that we have

Z

p(0) > 0 p(0) + p(1) < 1 X ​ =0 1
ϕ ​(a) =Z a

μ ≤ 1 a = 1

μ > 1 a < 1 ϕ ​(s) =Z s 0 < s < 1

a ϕ ​(s) =Z s 1
ϕ ​(1) =Z 1 ϕ ​Z μ s = 1 p(0) + p(1) < 1 ϕ ​(s)Z

ϕ ​(s)Z Figure 6.1

μ < 1 ϕ ​(s) =Z s 1 s > 1 1

μ = 1 s ϕ ​(s)Z s = 1 ϕ ​(s) =Z s 1
1

μ > 1 ϕ ​(s) =Z s 1 a < 1 ϕ ​(0) =Z p(0) > 0
a > 0

a ​(1) =n P X ​ = 0∣X ​ = 1 ={ n 0 } ϕ ​(0)Z
n
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By induction we show that . True for  since . Assuming that  we have

where we used that  is increasing.This shows that the smallest root is the extinction probability .

a ​(1) ≤n a n = 0 a ​(1) =0 0 a ​(1) ≤n−1 a

a ​(1) =n P X ​ = 0∣X ​ = 1 ={ n 0 } ϕ ​(0) =Z
n ϕ ​(ϕ ​(0)) =Z Z

n−1 ϕ ​(a ​(1)) ≤Z n−1 ϕ ​(a) =Z a

ϕ ​Z ■

Figure 6.1: Extinction probabilities for branching processes
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6.3 Examples
If

then  and solving  gives  so the extinction probability is .

If

then  and solving  gives  so the extinction probability is .

If

then  and solving  gives  so the extinction probability is .

p(0) = ​ , p(1) =
4
1

​ , p(2) =
4
1

​ ⟹
2
1

ϕ(s) = ​ +
4
1

​s +
4
1

​s
2
1 2

μ = ​ >4
5 1 ϕ(a) = a a = 1, ​2

1 1/2

p(0) = ​ , p(1) =
4
1

​ , p(2) =
2
1

​ ⟹
1
1

ϕ(s) = ​ +
4
1

​s +
2
1

​s
4
1 2

μ = 1 ϕ(a) = a a = 1 1

p(0) = ​ , p(1) =
2
1

​ , p(2) =
4
1

​ ⟹
4
1

ϕ(s) = ​ +
2
1

​s +
4
1

​s
4
1 2

μ = ​ <4
3 1 ϕ(a) = a a = 1, 2 1
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Remark: The theorem provides a numerical algorithm to find the extinction probability (if ). Indeed we have shown

that the sequence  converges to .

Code

μ < 1
0,ϕ ​(0),ϕ (0),ϕ (0), ⋯Z

2 3 a

0.125
0.17413330078125
0.19498016827133297
0.20415762609873456
0.20826713424631457
0.2101216307743601
0.21096146654108697
0.21134240863922932
0.21151532651001245
0.2115938436492296
0.21162950143053777
0.21164569616414142
0.2116530515720635
0.21165639233633957
0.21165790969301684
0.21165859887003846
0.21165891189175637
0.21165905406517702
0.2116591186398882
0.21165914796951835
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6.4 Repair shop example
Recall the Markov chain in . To establish if the system is postive recurrent we try to solve  and find

the system of equations

We solve this using the generating functions  and :

Example 4.3 πP = π

​ ​

π(0)

π(1)

π(2)

π(n)

= π(0)a ​ + π(1)a ​0 0

= π(0)a ​ + π(1)a ​ + π(2)a ​1 1 0

= π(0)a ​ + π(1)a ​ + π(2)a ​ + π(3)a ​2 2 1 0

⋮

= π(0)a ​ + ​π(j)a ​n

j=1

∑
n+1

n+1−j

ψ(s) = ​ s π(n)∑
n=0
∞ n ϕ(s) = ​ s a ​∑

k=0
k

k

​ ​

ψ(s) = ​s π(n)
n=0

∑
∞

n = π(0) ​s a ​ + ​s ​π(j)a ​

n=0

∑
∞

n
n

n=0

∑
∞

n

j=1

∑
n+1

n+1−j

= π(0) ​s a ​ + s ​π(j)s ​s a ​

n=0

∑
∞

n
n

−1

j=1

∑
∞

j

n=j−1

∑
∞

n+1−j
n+1−j

= π(0)ϕ(s) + s (ψ(s) − π(0))ϕ(s)−1
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Solving for  we find, after some algebra, the equation

To see if we can find  such that this equation canbe solved we take . We have  and we have

 which is the mean number of object arriving in the repair shop in a single day.

We find the equation

and so we can find a solution  if and only if  and so .

ψ(s)

ψ(s) = ​

1 − ​1−s
1−ϕ(s)

π(0)ϕ(s)

π(0) s → 1 ψ(1) = ϕ(1) = 1

​ ​ =
s→1
lim

1 − s

1 − ϕ(s)
ϕ (1) =′

​ka ​ =
k=0

∑
∞

k μ

1 = ​

1 − μ

π(0)

0 < π(0) ≤ 1 μ < 1 π(0) = 1 − μ

 The repair shop Markov chain is positive recurrent iff μ < 1
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To study transience we use  and try to find a solutinon  for  with  and 

 for . We find the system of equation

We try for a solution of the form  which gives

and from our analys of branching processes we know that a solution with  exists iff . So we get

and it is null-recurrent if .

Theorem 4.2 Pα(j) = α(j) j ≥ 1 α(0) = 1 0 <
α(j) < 1 j > 1

​ ​

α(1)

α(2)

α(3)

α(n)

= a ​α(0) + a ​α(1) + a ​α(2) + ⋯0 1 2

= a ​α(1) + a ​α(2) + a ​α(3) + ⋯0 1 2

= a ​α(2) + a ​α(3) + a ​α(4) + ⋯0 1 2

⋮

= ​a ​α(j + n − 1)
j=0

∑
∞

j

α(j) = sj

s =n
​a ​s =

k=0

∑
∞

j
j+n−1 s ϕ(s) ⟹n−1 ϕ(s) = s

s < 1 μ = ​ ka ​ >∑k=0
∞

k 1

 The repair shop Markov chain is transient iff μ > 1

μ = 1

126



6.5 Exercises
Exercise 6.1 Consider a branching process with offspring distribution given by . Make this process irreducible by

asserting that if the the population ever dies out, then in the next generation one new individual appears (i.e.  ).

Determine for which values of  the chain is positive recurrent and transient.

Exercise 6.2 Given a branching process with the following offspring distributions determine the extinction probability

.

a. 

b. 

c. 

d. 

e. 

f.  follows a Poisson distribution with parameter .

Hint: For the last two you need to do it numerically.

p ​n

P ​ =01 1
p ​n

a

p(0) = .25, p(1) = .4, p(2) = .35

p(0) = 5, p(1) = .1, p(3) = .4

p(0) = .62, p(1) = .30, p(2) = .02, p(6) = .02, p(13) = .04

p(i) = (1 − q)qi

p(0) = 1/10, p(1) = 3/10, p(2) = 2/10, p(4) = 1/20, p(5) = 1/20, p(8) = 1/10, p(12) = 2/10

p(k) λ = 3/2
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Exercise 6.3 Consider the following variant of the branching process. During each time period each individual
produces  offsprings with probability  and has probability  of dying. Hence an individual will

reproduce  times where  is the lifetime of the individual. For which choice of values of  and  do we have

eventual exctinction probability equal to .

Exercise 6.4 We consider the Moran strorage model. Imagine a reservoir of water capacity . The levels  of

the resevoir are observed at time . During each period an amount  units of water (if available, and, with

) are removed from the reservoir. In addition a random amount  is added to the reservoir. The  are

supposed to be independent IID random variables and are also independent of . The corresponding Markov chain is

given by

where  is the positive part of .

Consider the special case  and  (infinite reservoir). Using a moment generating function show that this

Markov chain is positive recurrent provided . Hint: If  is positive recurrent then  must converges to a

random variable  whose distribution is . Then  must satisfy the equation

k p(k) 0 < q < 1
j j q p(n)

1

c ≤ ∞ X ​n

n,n + 1, ⋯ m

m ≤ c A ​n A ​n

X ​0

X ​ =n+1 max{(X ​ +n A ​ −n+1 m) ​, c}+

Y ​+ Y

m = 1 c = ∞
E[A ​] <1 1 X ​n X ​n

X ​∞ π X ​∞

X ​ =∞ (X ​ +∞ A ​ −∞ m) ​+
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7 Reversible Markov
chains
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7.1 Balance equation
Consider a Markov chain with transition probabilities  and stationary distribution . We can rewrite the

equation for stationarity,

as

which we are going to interpret as a balance equation.

We introduce the (stationary) probability current from  to  as

and  can be rewritten as

i.e., to be stationary the total probability current out of  must be equal to the total probability current into .

P (i, j) π(i)

π(i) = ​π(j)P (j, i)
j

∑

​π(i)P (i, j) =
j

∑ ​π(j)P (j, i) .
j

∑ (7.1)

i j

J(i, j) ≡ π(i)P (i, j) (7.2)

Equation 7.1

​ =

total current out of state i

​​J(i, j)
j

∑ ​  balance equation 

total current into of state i

​​J(j, i)
j

∑ (7.3)

i i
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7.2 Detailed balance
A stronger condition for stationarity can be expressed in terms of the balance between the currents . A Markov

chain  satisfies detailed balance if there exists  with  such that for all  we have

This means that for every pair  the probability currents  and  balance each other.

Clearly  is a stronger condition than  and thus we have

Lemma 7.1 If the Markov chain satisfies detailed balance for a probability distribution  then  is a stationary

distribution.

But it is easy to see that detailed balance is a stronger condition than stationarity. The property of detailed balance is
often also called (time)-reversibility since we have the following results which states that the probability of any sequence
is the same as the probability of the time reversed sequence.

Theorem 7.1 (Time reversibility) Suppose the Markov chain  satisfies detailed balance and assume that the initial

distribution is the stationary distribution . Then for any sequnce of states  we have

J(i, j)
X ​n π(i) ≥ 0 ​ π(i) =∑i 1 i, j

π(i)P (i, j) = π(j)P (j, i)  or equivalently  J(i, j) = J(j, i) (7.4)

i, j J(i, j) J(j, i)
Equation 7.4 Equation 7.3

π π

X ​n

π i ​, ⋯ i ​0 n

P X ​ = i ​ ,X ​ = i ​ , ⋯ ,X ​ = i ​ ={ 0 0 1 1 n n} P X ​ = i ​ ,X ​ = i ​ , ⋯ ,X ​ = i ​{ 0 n 1 n−1 n 0}
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Proof. Using  repeatedly we find

The next result is very easy and very useful.

Theorem 7.2 Suppose  is a Markov chain with finite state space  and with a symmetric transition matrix, i.e,

. Then  satisfies detailed balance with , i.e., the stationary distribution is uniform

on .

Equation 7.4

​ ​

P X ​ = i ​ ,X ​ = i ​ , ⋯ ,X ​ = i ​{ 0 0 1 1 n n} = π(i ​)P (i ​, i ​)P (i ​, i ​) ⋯P (i ​, i ​)0 0 1 1 2 n−1 n

= P (i ​, i ​)π(i ​)P (i ​, i ​) ⋯P (i ​, i ​)1 0 1 1 2 n−1 n

= P (i ​, i ​)P (i ​, i ​)π(i ​) ⋯P (i ​, i ​)1 0 2 1 2 n−1 n

= ⋯

= P (i ​, i ​)P (i ​, i ​) ⋯π(i ​)P (i ​, i ​)1 0 2 1 n−1 n−1 n

  = P (i ​, i ​)P (i ​, i ​) ⋯P (i ​, i ​)π(i ​)1 0 2 1 n n−1 n

= P X ​ = i ​ ,X ​ = i ​ , ⋯ ,X ​ = i ​{ 0 n 1 n−1 n 0}

■

X ​n S

P (i, j) = P (j, i) X ​n π(j) = 1/∣S∣
S
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7.3 Examples
Random walk on the hypercube . The state space  is

To define the move of the random walk, just pick one coordinate  and flip the  coordinate, i.e.,

. We have thus

Clearly  is symmetric and thus .

{0, 1}m S

S = {0, 1} =m σ = (σ ​, ⋯ ,σ ​) ; σ ​ ∈ {0, 1}{ 1 m i }

j ∈ {1, ⋯ ,m} jth

σ ​ →j 1 − σ ​j

P (σ,σ ) =′
​ ​{ ​

m
1

0
 if σ and σ  differ by one coordinate ′

 otherwise

P π(σ) = 1/2m

Random walk on the graph  has transition probabilities . This Markov chain satifies

detailed balance with the (unnormalized) . Indeed we have  and

thus if  we have

This is slightly easier to verify that the stationary equation . After normalization we find 

.

For example for the simple random walk on  with reflecting boundary conditions we find 

.

G = (E,V ) p(v,w) = ​ deg (v)
1

μ(v) = deg(v) P (v,w) > 0 ⟺ P (w, v) > 0
P (v,w) > 0

μ(v)P (v,w) =  deg(v) ​ =
deg(v)

1
1 = deg(w) ​ =

deg(w)
1

μ(w)P (w, v) .

πP = π π(v) =
deg(v)/2∣E∣

{0, 1, ⋯ ,N} π =
​ , ​ , ⋯ , ​( 2N

1
2N
2

2N
1 )
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Network Markov chain: The previous example can be generalized as follows. For a given graph  let us

assign a positive weight  to each (undirected) edge , that is we choose numbers 

 with  iff  and  are not connected by an edge. If the transition probabilities are given by

then it is easy to verify that the Markov chain satisfies detailed balance with

G = (E,V )
c(e) > 0 e = {v,w} c(v,w) =

c(w, v) c(v,w) = 0 v w

P (v,w) = ​  with c(v) =
c(v)
c(v,w)

​
c(v,w) ,

w

∑

π(v) = ​  with c ​ =
c ​G

c(v)
G ​c(v) .

v

∑

Birth-Death Processes Markov chain: Let us consider a Markov chain on the state space  (  could be

infinite) with transition probabilities have the following tridiagonal structure

This is called a birth and death process since the only possible transition are to move up or down by unit or stay
unchanged. Random walks (see  and ), discrete queueing models (  ), the Ehrenfest
urn model  are special case of birth and death processes.

S = {0, ⋯ ,N} N

​ ​ ​ ​ ​ ​ ​ ​

0
1
2
3

⋯⎝
⎛r ​0

q ​1

0

⋮

p ​0

r ​1

q ​2

0
p ​1

r ​2

⋱

0
0
p ​2

⋱

⋯
⋯
⋯

⋱⎠
⎞

Example 1.5 Example 4.1 Example 4.2
Example 1.6
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Birth and death Markov chain always satisfy detailed balance. Indeed the only non trivial detailed balance conditions are

and this can be solved recursively. We obtain

and with normalization . If  is infinite we need the sum in the deominator to be finite.

For example the Ehrenfest urn in Example model has

and thus we obtain

π(j)P (j, j + 1) = π(j + 1)P (j + 1, j) ⟹ π(j)p ​ =j π(j + 1)q ​ ,  for j =j+1 0, ⋯ ,N − 1 .

​ ​

π(1)

π(2)

π(N)

= π(0) ​

q ​1

p ​0

= π(1) ​ = π(0) ​

q ​2

p ​1

q ​q ​1 2

p ​p ​0 1

⋮

= π(0) ​

q ​q ​ ⋯ q ​1 2 N−1

p ​p ​ ⋯ p ​0 1 N−1

π(j) = ​

​ ​ ​∑
l=0
N ∏

k=1
l

q ​k

p ​k ​1

​ ​∏
k=1
j

q ​k

p ​k−1

N

p ​ =j ​ , q ​ =
N

N − j
j ​

N

j

π(j) = π(0) ​ =
​ ​ ⋯ ​

N
1
N
2

N
j

​ ​ ⋯
N
N

N
N−1

N

N−(j−1)

π(0) ​  and also π(0) =(
j

N) ​ ​ =
j=0

∑
N

(
j

N) 2 .N
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7.4 Exercises
Exercise 7.1 A total of  white balls and  black balls are distributed among two urns, each of which contains  balls.

At each stage a ball is randomly selected from each urn and the two selected balls are interchanged. Let  be the

number of black balls in urn 1 after  stages.

1. Give the transition probabilities of the Markov chain .

2. Can you guess without any computation guess what the stationary distribution is?

3. Find the stationary distribution using the detailed balance condition.

Solution

Exercise 7.2 (Cycle condition for detailed balance) Suppose  an irreducible Markov chain with stationary

distribution . Assume that for all pairs  we have . Show that  satisfies

detailed balance if and only if for any  and any sequence of state 

Hint: For the “if” part use the convergence to stationary distribution.

Solution

m m m

X ​n

n

X ​n

X ​n

π i, j P (i, j) > 0 ⟺ P (j, i) > 0 X ​n

n i ​, i ​, i ​, ⋯ i ​0 1 2 n

P (i ​, i ​)P (i ​, i ​) ⋯P (i ​, i ​)P (i ​, i ​) =0 1 1 2 n−1 n n 0 P (i ​, i ​)P (i ​, i ​) ⋯P (i ​, i ​)P (i ​, i ​)0 n n n−1 2 1 1 0
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Exercise 7.3 (The time reversed chain) Let  be an irreducible Markov chain with transition probabilities 

and stationary distribution . Define .

1. Show that  is a stochastic matrix and that the corresponding Markov chain  is irreducible with stationary

distribution .

2. Show that if the initial distribution is  then we have

which justifies calling the Markov chain  to be the time reversed chain.

3. What is the time reversed chain for the Markov chain with transition matrix

4. Show that the Markov chains with transition matrices  and  satisfy detailed balance with stationary

distribution .

Solution

X ​n P (i, j)
π(i) (i, j) =P ​P (j, i)

π(i)
π(j)

(i, j)P ​Xn

π

π

P ​ = i ​, ​ = i ​, ⋯ , ​ = i ​ ={X0 0 X1 1 Xn n} P X ​ = i ​,X ​ = i ​, ⋯X ​ = i ​ .{ 0 n 1 n−1 n O}

​Xn

P = ​ ​ ​ ​ ​ ​ ​ ​ ​

0
1
2

⋮ ⎝
⎛1 − p

1 − p

1 − p

⋮

p

0
0

0
p

0

0
0
p

⋱

⋯
⋯
⋯

⋱ ⎠
⎞

​2
P+P PP

π
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Exercise 7.4 (Eigenvalues of ) Let  be the transition matrix of an irreducible Markov chain with finite state space 

and stationary distribution .

1. Show that if  is aperiodic then  has an eigenvalue  which is simple (i.e.   is a simple root of ) and

that all other eigenvalues have absolute value strictly less than . Hint: Use the convergence theorem

2. Prove that if  is periodic with period  then  has eigenvalues  and  each of which is simple.

Hint: WLOG you can write  is the block form . Show that  is an eigenvalue of  with

multiplcity . If  is an eigenvector for , then consider .

3. For column vectors  and  define a scalar product on  by . Let  to be the

adjoint of  with respect to the scalar product , i.e.,  for all , .

Show that  are the transition probabilities of the reversed Markov chain from  and that the Markov

chain is reversible if and only .

4. Show that if the Markov chain is reversible, the eigenvalues of  are real with 

 and that if the chain is aperiodic then .

Solution

P P S

π

P P 1 0  det(I − P )
1

P 2 P 1 −1

P P = ​ ​( 0
P ​10

P ​01

0 ) 1 P 2

2 f = ​(f ​0

f ​1
) P g = ​( f ​0

−f ​1
)

f g R∣S∣ ⟨f , g⟩ ​ =π ​ π(i)f(i)g(i)∑i∈S P †

P ⟨f , g⟩ ​π ⟨f ,Pg⟩ ​ =π ⟨P f , g⟩ ​

†
π f g

P † Exercise 7.3

P = P †

P λ ​ =0 1 > λ ​ ≥2 λ ​ ⋯ ≥3 λ ​ ≥N

−1 λ ​ >N −1
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Exercise 7.5 A Markov chain (on a finite state space) is a called a tree process if

For any pair  there is a unique path  such that  for 

.

Show that a irreducible tree process satisfies detailed balance.

Solution

P (i, j) > 0 ⟺ P (j, i) > 0

(i, j) i ​ =0 i, i ​, i ​, ⋯ , i ​ =1 2 N j P (i ​, i ​ +k k 1) > 0 k =
0, ⋯ ,N − 1
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8 Markov chain Monte-
Carlo
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8.1 MCMC
Suppose you are given a certain probability distribution  on a set  and you goal is to generate a sample from this

distribution. The Monte-Carlo Markov chain (MCMC) method consists in constructing an irreducible Markov chain 

whose stationary distribution is . Then to generate  one simply runs the Markov chains  long enough such that it is

close to its equilibrium distribution. It turns out that using the detailed balance condition is a very useful tool to construct
the Markov chain in this manner.

A-priori this method might seems an unduly complicated way to sample from . Indeed why not simply simulate from 

directly?

To dispel this impression we will consider some concrete examples but for example we will see that often one want to
generate a uniform distribution on a set  whose cardinality  might be very difficult.

A large class of model are so-called “energy models” which are described by an explicit function  interpreted

as the energy (or weight) of the state. Then one is interested in the stationary distribution

As we will see computing the normalization constant  can be very difficult and so one cannot directly simulate from !

The measure  assign biggest probability to the states  where  is the smallest, that is they have the smallest energy.

Often (e.g. in economics) the measure is written with a different sign convention  which now favor the

states with the highest values of .

π S

X ​n

π π X ​n

π π

S ∣S∣

f : S → R

π(i) = Z e  where Z =−1 −f(i)
​e  is a normalization constant

i

∑ −f(i)

Z π

π i f(i)
π(i) = Z e−1 f(i)

f
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8.2 Proper q-coloring of a graph
For a graph  a proper -coloring consists of assigning to each vertex  of the graph one of  colors subject to

the constraint that if  vertices are linked by an edge they should have different colors. The set  of all proper -coloring

which is a subset of . We denote the elements of  by  with .

The uniform distribution on all such proper coloring is  for all . Even for moderately complicated

graph it can be very difficult to compute to .

Consider the following transition rules:
1. Choose a vertex  of at random and choose a color  at random. 2. Set  and  for . 3. If

 is a proper -coloring then set . Otherwise set .

The transition probabilities are then given by

Note that  is not known explicitly either but is also not used to run the algorithm. The cardinality  is also not

needed.

In order to check that the uniform distribution is stationary for this Markov chain it note that  is symmetric

matrix. If one can change  into  by changing one color then one can do the reverse transformation too.

G = (E,V ) q v q

2 S ′ q

S = 1, ⋯ , q{ }V S σ = {σ(v)} ​v∈V σ(v) ∈ {1, ⋯ , q}
π(σ) = 1/∣S ∣′ σ ∈ S ′

∣S ∣′

v a σ (v) =′ a σ (w) =′ σ(w) w = v

σ′ q X ​ =n+1 σ′ X ​ =n σ

​

P (σ,σ ) = ​ ​ ​

′ ⎩⎨
⎧ ​

q∣V ∣
1

0
1 − ​ P (σ,σ )∑

σ =σ′
′

 if σ and σ  differ at exactly one vertex′

 if σ and σ  differ at more than one vertex′

 if σ = σ′

P (σ,σ) ∣S ∣′

P (σ,σ )′

σ σ′
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8.3 Knapsack problem
This is a classical optimization problem. You own  books and the  book has weight  lb and is worth $ . In your

knapsack you can put at most a total of  pounds and you are looking to pack the most valuable knapsack possible.

To formulate the problem mathematically we introduce

where we think that  if the  book is in the knapsack. The state space is

and the optimization problem is

As a first step we generate a random element of  using the simple algorithm. If  then

1. Choose  at random.

2. Set .

3. If , i.e., if  then let . Otherwise .

m ith w ​i v ​i

b

​ ​ ​

w

v

σ

= (w ​, ⋯w ​) ∈ R1 m
m

= (v ​, ⋯ v ​) ∈ R1 m
m

= (σ ​, ⋯σ ​) ∈ {0, 1}1 m
m

 weight vector

 value vector

 decision vector

σ ​ =i 1 ith

S =′ σ ∈ {0, 1} ; σ ⋅ w ≤ b{ m }

Maximize v ⋅ σ subject to the constraint σ ∈ S ′

S ′ X ​ =n σ

j ∈ {1, ⋯m}

σ =′ (σ ​, ⋯ , 1 −1 σ ​, ⋯ ,σ ​)j m

σ ∈′ S ′ σ ⋅′ w ≤ b X ​ =n+1 σ′ X ​ =n+1 σ
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In other words, choose a random book. If it is in the sack already remove it. If it is not in the sack add it provided you do
not exceed the the maximum weight. Note that the Markov chain  is irreducible, since each state communicates with

the state . It is aperiodic except in the uninteresting case where . Finally the transition

probabilities are symmetric and thus the uniform distribution the unique stationary distribution.

In the knapsack problem we want to maximize the function  on the state space. One possible algorithm

would be to generate an uniform distribution on the state space and then to look for the maximum value of the function.
But it would be a better idea to sample from a distribution which assign higher probabilities to the states which we are
interested in, the ones with a high value of .

Let  be the state space and let  be a function. It is convenient to introduce the probability distributions

define for  by

Clearly  assign higher weights to the states  with bigger values of . Let us define

If  then  is simply the uniform distribution on . For  we have

X ​n

σ = (0, ⋯ , 0) ​ w ​ ≤∑i i b

f(σ) = σ ⋅ v

f

S f : S → R
β > 0

π ​(i) =β ​  with  Z ​ =
Z ​β

eβf(i)

β ​e .
j∈S

∑ βf(j)

π ​β i f(i)

S =∗ i ∈ S ; f(i) = f ≡ ​f(j) .{ ∗

j∈S
max }

β = 0 π ​0 S β → ∞

146



8.4 Metropolis algorithm
A fairly general method to generate a distribution  on the state space  is given the Metropolis algorithm. This

algorithm assumes that you already know how to generate the uniform distribution on  by using a symmetric transition

matrix .

Theorem 8.1 (Metropolis algorithm) Let  be a probability distribution on  with  for all  and let  be a

symmetric transition matrix. Consider the Markov chain with the following transition matrix (the Metropolis
algorithm). If 

1. Choose  according to , i.e., 

2. Define the acceptance probability 

3. Accept  with probability  by generating random number . If  then set  (i.e.,

accept the move) and if  then  (i.e., reject the move).

If  is an irreducible transition probability matrix on  then the Metropolis algorithm defines an irreducible Markov

chain on  which satisfies detailed balance with stationary distribution .

Proof. Let  be the transition probabilities for the Metropolis Markov chain. Then we have

π S

S

Q

π S π(i) > 0 i Q

X ​ =n i

Y ∈ S Q P{Y = j ∣X ​ =n i} = Q(i, j)

α(i, j) = min 1 , ​{
π(i)
π(j) }

Y α = α(i, j) U U ≤ α X ​ =n+1 Y

U > α X ​ =n+1 X ​n

Q S

S π

P (i, j)

P (i, j) = Q(i, j)α(i, j) = Q(i, j) min 1 , ​ .{
π(i)
π(j)}
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Since we assume  for all states , the acceptance probability  never vanishes. Thus if  whenever

 and thus  is irreducible if  is itself irreducible.

In order to check the reversibility we note that

and the r.h.s is symmetric in  and thus . 

Note that only the ratios  are needed to run the algorithm, in particular we do not need the normalization

constant. This is a very important feature of the Metropolis algorithm.

We could have chosen another acceptance probability . By inspection of the proof it is enough to pick 

such that  and  is symmetric. Some such examples will be considered in the

homework and the choice given in  is actually optimal in the sense it gives the highest acceptance
probability.

The general case with a non-symmetric proposal matrix  is called the Metropolis-Hastings algorithm. In this case we

use the acceptance probability is chosen to be

and it is not difficult to check (see Homework) that the Metropolis-Hasting algorithm yields a reversible Markov chain
with stationary distribution .

π(i) > 0 i α P (i, j) > 0
Q(i, j) > 0 P Q

π(i)P (i, j) = Q(i, j)π(i) min 1, ​ ={
π(i)
π(j)} Q(i, j) min π(i) , π(j){ }

i, j π(i)P (i, j) = π(j)P (j, i) ■

​

π(i)
π(j)

α(i, j) α(i, j)
α(i, j) ≤ 1 π(i)α(i, j) = π(j)α(j, i)

Theorem 8.1

Q

α(i, j) = min 1, ​{
π(i)Q(i, j)
π(j)Q(j, i)}

π
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8.5 Uniform distribution on a graph
Suppose we are given a graph . Often in application to computer networks or social networks the graph is

not fully known. Only local information is available: given a vertex one knows the vertices one is connected to.
Nonetheless you can run a random walk on the graph by choosing a edge at random and moving to the corresponding
vertex, i.e. 

and the stationary distribution is .

Suppose you wish to generate a uniform distribution on the graph. Then we can use the Metropolis-Hasting to generate a
Markov chain with a uniform stationary distribution. We have

and thus the transition matrix

generates a uniform distribution on a graph.

G = (E,V )

Q(v,w) = ​  if v ∼
 deg(v)

1
w

π(v) ∝ deg(v)

α(v,w) = min 1, ​ ={
Q(v,w)
Q(w, v)} min 1, ​  if v ∼{

 deg(w)
 deg(v) } w

P (v,w) = Q(v,w)α(v,w) = ​ min 1, ​ =
 deg(v)

1 {
 deg(w)
 deg(v) } min ​ , ​{

 deg(v)
1

 deg(w)
1 }
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8.6 Metropolis algorithm for the knapsack problem
Consider the distribution  where the normalization constant  is almost always

impossible to compute in practice. However the ration

does not involve  and is easy to compute.

For this distribution we take as the proposal  matrix used to generate a uniform distribution on the allowed states of

the knapsack (see ) and the Metropolis algorithm now reads as follows. If  then

1. Choose  at random.

2. Set .

3. If  (i.e. if ) then . (i.e. reject)

4. If  then let 

5. Generate a random number , If  then . Otherwise .

In short, if you can add a book to your knapsack you always do so, while you remove a book with a probability which is
exponentially small in the weight.

π ​(σ) =β ​

Z ​β

e
βv⋅σ

Z ​ =β ​ e∑
σ∈S′

βv⋅σ

​ =
π(σ)
π(σ )′

eβv⋅(σ −σ)′

Z ​β

Q

Knapsack problem X ​ =n σ

j ∈ {1, ⋯m}

σ =′ (σ ​, ⋯ , 1 −1 σ ​, ⋯ ,σ ​)j m

σ ⋅′ w > b σ ∈/ S ′ X ​ =n+1 σ

σ ⋅′ w ≤ b α = min 1, ​ ={
π(σ)
π(σ )′ } min 1, e ={ βv⋅(σ −σ)′ } ​ ​{ e−βv ​j

1
 if σ ​ = 1j

 if σ ​ = 0j

U U ≤ α X ​ =n+1 σ′ X ​ =n+1 σ
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8.7 Glauber algorithm
Another algorithm which is widely used for Monte-Carlo Markov chain is the Glauber algorithm which appear in the
literature under a variety of other names such as Gibbs sampler in statistical applications, logit rule in economics and
social sciences, heat bath in physics, and undoubtedly under various other names.

The Glauber algorithm is not quite as general as the Metropolis algorithm. Indeed we assume that the state space  has

the following structure

where both  and  are finite sets. For example  in the case of the knapsack problem or 

 for the case of the proper -coloring of a graph. We denote by

the elements of .

It is useful to introduce the notation

and we write

to single out the  entry of the vector .

S

S ⊂ ΩV

Ω V S ⊂ {0, 1}m S ⊂
{1, ⋯ , q}V q

σ = {σ(v)} ​ , σ(v) ∈v∈V Ω .

S

σ ​ =−v {σ(w)} ​w∈V ,w=v

σ = (σ ​,σ(v)) .−v

v σ
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Theorem 8.2 (Glauber algorithm) Let  be a probability distribution on  and extend  to  by setting

 if . If  then

1. Choose  at random.

2. Replace  by a new value  (provided ) with probability

The Glauber algorithm defines a Markov chain on  which satisfies detailed balance with stationary distribution .

The irreducibility of the algorithm is not guaranteed a-priori and needs to be checked on a case-by-case basis.

Proof. The transition probabilities are given by

To check detailed balance we note that if 

π S ⊂ ΩV π ΩV

π(σ) = 0 σ ∈ Ω ∖V S X ​ =n σ

v ∈ V

σ(v) a ∈ Ω (σ ​, a) ∈−v S

​ .
​ π(σ ​, b)∑b∈Ω −v

π(σ ​, a)−v

S π

P (σ,σ ) =′
​ ​ ​⎩⎨

⎧
​ ​∣V ∣

1
​ π(σ ​,b)∑

b∈Ω −v

π(σ ​,σ (v))−v
′

0
1 − ​ P (σ,σ )∑σ′

′

 if σ ​ = σ ​ for some v−v −v
′

 if σ ​ = σ ​ for all v−v  −v
′

 if σ = σ′

P (σ,σ )′ = 0

π(σ)P (σ,σ ) =′
​ ,

​ π(σ ​, b)∑
b∈Ω −v

π(σ)π(σ )′
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and this is symmetric in  and . .σ σ′ ■



8.8 Ising model on a graph
Let  be a graph and let . That is to each vertex assign the value , you can think of a

magnet at each vertex pointing either upward ( ) or downward ( ). To each  we assign an “energy”  given

by

The energy  is minimal if  i.e., if the magnets at  and  are aligned. Let us consider the probability

distribution

The distribution  is concentrated around the minima of . To describe the Glauber dynamics note that

and this can be computed simply by looking at the vertices connected to  and not at all the graph. So the transition

probabilities for the Glauber algorithm are given by picking a vertex at random and then updating with probabilities

G = (E,V ) S = {−1, 1}V ±1
+1 −1 σ ∈ S H(σ)

H(σ) = − ​σ(v)σ(w) .
e=(v,w)∈E

∑

σ σ(v)σ(w) = 1 v w

π ​(σ) =β ​ , Z ​ =
Z ​β

e−βH(σ)

β ​e .
σ

∑ −βH(σ)

π ​β H(σ)

H(σ ​, 1) −−v H(σ ​, −1) =−v −2 ​σ(w)
w ;w∼v

∑

v

​ =
π(σ ​, 1) + π(σ ​, −1)−v −v

π(σ ​, ±1)−v
​ =

1 + e±β H(σ ​,1)−H(σ ​,−1)[ −v −v ]

1
​ .

1 + e∓2β ​ σ(w)∑w ; w∼v

1
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By comparison for the Metropolis algorithm we pick a vertex at random and switch  to  and accept the move

with probability

σ(v) −σ(v)

min 1, ​ ={
π(σ ​,σ(v))−v

π(σ ​, −σ(v))−v } min 1, ​ ={
π(σ ​,σ(v))−v

π(σ ​, −σ(v))−v } min 1, e .{ 2β ​ σ(w)σ(v)∑w ; w∼v }
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8.9 Simulated annealing
Consider again the problem of finding the minimum of a function , that is

and we denote by  the location of the global minima. You should think of  as a complicated (and non-convex)

function with complicated level sets and various “local” minima.

f(j)

f =∗ min{f(j), j ∈ S}

S ⊂∗ S f

To perform this task we sampling a distribution of the form

which concentrates on the minima of , and the more so as .

π ​(j) =T e− ​

T
f(j)

f(j) T → 0

The idea of simulated annealing comes from physics. The concept of annealing in physics is to obtain a low energy
state of a solid (typically a crystal) you first heat it up to reach a liquid state and then, slowly, decrease the temperature
to let the particles arrange themselves.

For a Markov chain the idea is to pick a temperature schedule

with  sufficiently large.

T ​ >1 T ​ >2 T ​ >3 ⋯  with  ​T ​ =
k→∞
lim k 0

T ​1
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The following algorithm is a Markov chain with nonstationary transition probabilities.

Simulated annealing algorithm:
+ Initialise the Markov chain  and the temperature .

+ For each  run  steps of the Metropolis or Gibbs sampler with invariant distribution .

+ Update the temperature to  starting with the final configuration.

A nice result about Metropolis sampler can be found for example in Hajek ( ) (a more precsie version is given there)

Theorem 8.3 (Convergence of simulated annealing) For the simulated annealing of the Metropolis algorithm (

) there exists a constant  such that we have

if and only if

The constant  measure the depths of the local minima of  where locality is measure in terms of the proposal matrix

.

X ​0 T ​1

k N ​k πT ​k

T ​k+1

1988

N ​ =k 1
d∗

​P{X ​ ∈
n→∞
lim n S } =∗ 1

​e =
k=1

∑
∞

− ​

T ​k

d∗

∞

d∗ f

Q
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The theorem tells us that if decrease the temperature very very slowly, e.g. like

with  then the Markov chain will converge, with probabilty 1, to a minima.

This an extremely slow cooling schedule which makes it not very practical and other schedules are used like 

.

T ​ =k ​

log(k)
c

c > d∗

T ​ =k+1

0.99T ​k
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8.10 Parallel tempering
The idea of parallel tempering is not use a temperature schedule but rather to use several copies of the system running
at different temperatures. The copies at high temperature will explore the state space more efficiently and there is a
switching mechanism which exchange the different copies so that the lower temperature copies can take advantage of
the exploration done at high temperature.

The state space is the product of  copies of 

and we denote a state by the vector .

k S

S =(K)
​

k times

​S × ⋯ × S

i = (i ​, ⋯ , i ​)1 K

One picks a set of temperatures  and a probability distribution

which is the product of the distribution at different temperatures.

T ​ <1 T ​ <2 ⋯ < T ​k

π (i) =(k)
​π ​(i ​) =

l=1

∏
K

T ​l l ​Z ​e

l=1

∏
K

l
− ​

T ​l

f(i ​)l

The parallel tempering consists if two kinds of moves. The parallel move update each component of  independently

with the Metropolis algorithms at different temperature and there is a swapping move which exchanges a pair of

components of the state vector  in such a way as not to disturb the invariant measure. The component at the

lowest temperature can be used to find the desired minimum.

X ​n

X ​n
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Parallel tempering algorithm:

Suppose the state , pick a random number .

If  then we do the parallel step and update each compoent of  according to a Metropolis move at the

corresponding temperatures .

If  we do the swapping step. We randomly chose a neighboring pair  and propose to swap the

components  and . We accept the swap with probability

The parallel moves clearly satisfy satisfy the detailed balance since each component does. As for a swap move which
swaps the component  and  in the state vector, we also have detailed balance since

which is symmetric in .

X = i U

U < α X
T ​l

U ≥ α l, l + 1
X ​n,l X ​n,l+1

min 1, ​{
π ​(i ​)π (i ​)T ​l l T ​l+1 l+1

π ​(i ​)π ​(i ​)T ​l l+1 T ​l+1 l }

i ​l i ​l+1

​ ​

π ​(i ​)π ​(i ​)(1 − α) ​ min 1, ​T ​l l T ​l+1 l+1
K − 1

1 {
π ​(i ​)π ​(i ​)T ​l l T ​l+1 l+1

π ​(i ​)π ​(i ​)T ​l l+1 T ​l+1 l }
= (1 − α) ​ min π ​(i ​)π ​(i ​),π ​(i ​)π ​(i ​)

K − 1
1

{ T ​l l T ​l+1 l+1 T ​l l+1 T ​l+1 l }

i ​, i ​l l+1
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8.11 Exercises
Exercise 8.1 Consider a symmetric random walk  on  as a proposal matrix. What is the

Metropolis-Hasting algorithm to generate a Poisson distribution with parameter .

p = ​2
1 {0, 1, 2, ⋯ }

λ
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Exercise 8.2 (General Metropolis-Hastings algorithm) Let  be a probability distribution on the state space .

Let  be a transition probability matrix (not necessarily symmetric). Set

and suppose  be any function such that

for all . Set

and . Think of  has the acceptance probability for the proposed transition

from  to .

π(i) > 0 S

Q(i, j)

T (i, j) = ​

π(i)Q(i, j)
π(j)Q(j, i)

A : [0, ∞] → [0, 1]

A(z) = zA(1/z)

z ∈ [0, ∞]

P (i, j) = Q(i, j)A(T (i, j)) for i = j

P (i, i) = 1 − ​ P (i, j)∑
j=i A(T (i, j))

i j
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Exercise 8.3 (N-queens problem) The -queens problems consist at arranging  queens on a  checkerboord

so that no two queens can attack each other. You should formulate this problem as a MCMC method as follows.

Clearly no 2 queens can be on the same row and so, without loss of generality, we can represent a state of the
system by a vector  where . Here  if the row on row  is on the

 position on that row.

Define a function which  which counts the number of attacking pair of queens. Solving the -queens problem

consists in finding solutions such that .

1. Write down the Metropolis and Glauber algorithms for the distribution .

2. Code it, e.g. the Metropolis and try to find all the solutions for the -queens problems. For  there are 92

solutions.

N N N × N

σ = (σ ​, ⋯ ,σ ​)1 N σ ​ ∈j {1, 2, ⋯ ,N} σ ​ =j k j

kth

S(σ) N

S(σ) = 0

π(σ) ∝ e−S(σ)/T

N N = 8
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Exercise 8.4 (Gibbs sampler) The Gibbs sampler is a variation on Glauber sampler to sample distribution $() on vectors

.

It is atttributed to Geman and Geman (one of which used to work here at UMass Amherst)

The algorithm goes as follows: Suppose  is the target distribution.

Given  generate  as follows.

Generate  from the conditional distribution .

Generate  from the conidtional distribution .

Generate  from the conidtional distribution .

Set .

1. Write down the algorithm explicitly, say for the knapsack problem.

2. What is the connection between the Glauber and Gibbs samplers?

3. Prove that  is a stationary distribution for the resulting Markov chain. Is it reversible?

:::

σ = (σ ​, ⋯ ,σ ​) ∈1 d S = Ωm

π(σ)

X ​ =n (X ​, ⋯ ,X ​)n,1 n,d Y

Y ​1 π(σ ​∣X , ⋯ ,X ​)1 n,2 n,d

Y ​2 π(σ ​∣Y ​,X ​, ⋯ ,X ​)2 1 n,3 n,d

⋯

Y ​d π(σ ​∣Y ​,Y ​, ⋯ ,Y ​)2 1 2 n−1

X =n+1 Y

π
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9 Coupling methods
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9.1 Total variation norm
Given two probability measure  and  on  the total variation distance between  and  is given by

that is the largest distance between the measures of sets.

The supremum over all set is not convenient to compute but we have the formula

Theorem 9.1 We have the formula

Proof. First note that the second equality in  follows from the first. Indeed, if the first equality holds, then by
interchanging  and  we also have

which proves the second equality.

μ ν S μ ν

∥μ − ν∥ ​ =TV ​ ∣μ(A) −
A⊂Ω
sup ν(A)∣

​ ​

∥μ − ν∥ ​TV = ​(μ(i) − ν(i))(x) = ​ ​ ∣μ(i) − ν(i)∣
i:μ(i)≥ν(i)

∑
2
1

i

∑ (9.1)

Equation 9.1
μ ν

∥μ − ν∥ ​ =TV ​ ∣μ(i) −
i:μ(i)≥ν(i)

∑ ν(i)∣ = ​ ∣ν(i) −
i:ν(i)≥μ(i)

∑ μ(i)∣

166



To prove the first equality in  we consider the set . For any event  we have

By interchanging the role of  and  we find

and thus for any set  we have . 

The total variation is also intimately related to the notion of coupling between probability measures. A coupling
between the probability measure  and  is a probability measure  on the product space  such that

i.e. the marginals of  are  and .

Coupling are nicely expressed in terms of random variables. We can think of  has the (joint) pdf of the rv

 where  has pdf  and  has pdf .

There always exists a coupling since we can always hoose  and  independent, i.e.  .

On the oppposite extreme if  then we can pick  has a coupling i.e  and

 if .

Equation 9.1 B = {i : μ(i) ≥ ν(i)} A

​

μ(A) − ν(A) = ​μ(i) − ν(i) ≤ ​μ(i) − ν(i) ≤ ​μ(i) − ν(i) = μ(B) − ν(B)
i∈A

∑
i∈A∩B

∑
i∈B

∑

μ ν

​

ν(A) − μ(A) ≤ ν(B ) − μ(B ) = μ(B) − ν(B)c c

A ∣μ(A) − ν(A)∣ ≤ μ(B) − ν(B) ■

μ ν q(i, j) S × S

​q(i, j) =
j

∑ μ(i)  and  ​q(i, j) =
i

∑ ν(j)

q μ ν

q(i, j)
(X,Y ) X μ Y ν

X Y q(i, j) = μ(i)ν(j)

μ = ν X = Y q(i, i) = μ(i) = ν(i)
q(i, j) = 0 i = j
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9.2 Total variation and coupling
Theorem 9.2 (Coupling representation of total variation) We have

Proof. We first prove an inequality:

and thus .

To show the equality we construct an optimal coupling.

Recall from  that  (see regions A and B in

) and we set

(see region C in ).

∥μ − ν∥ ​ =TV inf P{X = Y } ; (X,Y ) coupling of μ and ν{  } (9.2)

​ ​

μ(A) − ν(A) = P{X ∈ A} − P{Y ∈ A} ≤ P{X ∈ A} − P{X ∈ A,Y ∈ A}

= P{X ∈ A,Y ∈ A} ≤ P{X = Y }/ 

∥μ − μ∥ ​ ≤TV inf P{X = Y }

Theorem 9.1 ∥μ − ν∥ ​ =TV ​μ(i) −
μ(i)≥ν(i)

∑ ν(i) = ​ν(i) −
ν(i)≥μ(i)

∑ μ(i)

Figure 9.1

p = ​μ(i) ∧
i

∑ ν(i) = 1 − ∥μ − ν∥ ​TV

Figure 9.1
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Consider now the coupling defined as follows. Pick a
random number 

If  then let  be the RV with pdf

and set .

If  then let  be the random variable with pdf  and  be the random variable with pdf  where

Since  and  this defines a coupling and we have 

. .

Figure 9.1: schematics of the optimal coupling

U

U ≤ p Z

γ ​(i) =C ​

p

μ(i) ∧ ν(i)

X = Y = Z

U > p X γ ​(i)A Y γ ​(i)B

​

γ ​(i) = ​ ​ γ ​(i) = ​ ​A { ​∥μ−ν∥TV

μ(i)−ν(i)

0
μ(i) ≥ ν(i)
otherwise

B { ​∥μ−ν∥ ​TV

ν(i)−μ(i)

0
ν(i) ≥ μ(i)
otherwise

pγ ​ +C (1 − p)γ ​ =A μ pγ ​ +C (1 − p)γ ​ =B ν P{X = Y } = 1 −
p = ∥μ − ν∥ ​TV ■
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9.3 Coupling of Markov chains
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A coupling of a Markov chain is a stochastic process  with state space  such that both  and  are

Markov chains with transition matrix  but with possibly different initial conditions.

A Markovian coupling is a coupling such that the joint  is itself a Markov chain with some transition matrix

 which must then satisfy

In  where we proved the convergence of aperiodic irreducible Markov chains to their stationary
distribution using an independent coupling. That is we pick .

Another useful coupling is the common noise coupling. To understand this recall that any Markov chain has the
representation  where the  are IID random variable. For the common noise coupling we use

where we use the same noise  to evolve both  and .

The coupling time is defined by

that is, it is the first time that the Markov chain visit the same state.

After the coupling time ,  and  have the same distribution (by the strong Markov property) so we can always

modified a coupling so that, after time ,  and  are moving together, i.e.   for all  (that is we use

the common noise coupling). We will always assume this to be true in what follows.

(X ​,Y ​)n n S × S X ​n Y ​n

P

(X ​,Y ​)n n

Q((i, j), (k, l))

​Q((i, j), (k, l)) =
k

∑ P (j, l)  and  ​Q((i, j), (k, l)) =
l

∑ P (i, k) .

Theorem 2.3
Q((i, j), (k, l)) = P (i, k)P (j, l)

X ​ =n f(X ​,Z ​)n−1 n Z ​n

X ​ =n f(X ​,Z ​) Y ​ =n−1 n n f(X ​,Z ​)n−1 n

Z ​n X ​n Y ​n

σ = inf{n ≥ 0 : X ​ =n Y ​}n

σ X ​n Y ​n

σ X ​n Y ​n X ​ =n Y ​n n ≥ σ



9.4 Speed of convergence via coupling
Theorem 9.3 Suppose  is a coupling of a Markov chain such that  and  and  is the coupling

time. Then we have

Proof. We have  and  and therefore  and  is a

coupling of the the probability distributions  and . So by  we have

We can use this result to bound the distance to the stationary measure

Theorem 9.4 We have

(X ​,Y ​)n n X ​ =0 i Y ​ =0 j σ

∥P (i, ⋅) −n P (j, ⋅)∥ ​ ≤n
TV P σ > n∣X ​ = i,Y ​ = j{ 0 0 }

P{X ​ =n l∣X ​ =0 i} = P (i, l)n P{Y ​ =n l∣Y ​ =0 j} = P (j, l)n X ​n Y ​n

P (i, ⋅)n P (j, ⋅)n Theorem 9.2

∥P (i, ⋅) −n P (j, ⋅)∥ ​ ≤n
TV P X ​ = Y ​∣X ​ = i,Y ​ = j ={ n  n 0 0 } P σ > n∣X ​ = i,Y ​ = j .{ 0 0 }

■

​ ∥P (i, ⋅) −
i∈S
sup n π∥ ​ ≤TV ​ ∥P (i, ⋅) −

i,j∈S
sup n P (j, ⋅)∥ ​

n
TV
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Proof. Using the stationarity and the triangle inequality we have

We set  which is the maximal distance to stationarity starting from an arbitrary initial

state. (It is not hard to see that  for abitrary initial distribution  as well).

We define then the mixing time  of a Markov chain to be

That is, if  then  is less than  close to the stationary distribution.

​ ​

∥P (i, ⋅) − π∥ ​

n
TV = ​ ∣P (i,A) − π(A)∣

A

sup n

=
​
∣

​π(j)(P (i,A) − P (j,A))∣
A

sup
j

∑ n n

≤ ​π(j) ​ ∣P (i,A) − P (j,A)∣
j

∑
A

sup n n

= ​π(j)∥P (i, ⋅) − P (j, ⋅)∥ ​

j

∑ n n
TV

≤ ​ ∥P (i, ⋅) − P (j, ⋅)∥ ​ ■
i,j∈S
sup n n

TV

d(n) = sup ​ ∥P (i, ⋅) −i
n π∥ ​TV

∥μP −n π∥ ​ ≤TV d(n) μ

t ​(ε)mix

t ​(ε) =mix min{n, d(n) ≤ ε} .

n > t ​(ε)mix μP n ε
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9.5 Mixing time for the sucess run chain
We start with a countable state space example, the success run chain which is very easy to analyze.

Parenthetically, it should be noted that the supremum over  in  is often not well suited for countable state space. It

may often happen that the number of steps it take to be close to the stationary distribution may depend on where you
start.

We consider a special case of  with constant succes probability.

Suppose  and  (with ) we couple the two chains by moving them together.

Pick a random number , if  then set  the coupling time .

If  then move , .

Clearly we have

and thus we find for the mixing time

i d(n)

Example 4.4

P (n, 0) = (1 − p) , P (n,n + 1) = p , n = 0, 1, 2, ⋯

X ​ =0 i Y ​ =0 j i = j

U U ≤ (1 − p) X ​ =1 Y ​ =1 0 σ = 1

U ≥ 1 − p X ​ =1 i + 1 Y ​ =1 j + 1

P (σ > n∣X ​ =0 i,Y ​ =0 j) = pn

d(n) = p <n ε ⟺ n ≥ ​

ln ε
ln(p)
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9.6 Mixing time for the random walk on the hypercube
Recall that for the random walk on the hypercube (see ) a state is a -bit  with 

.

The Markov chain is periodic with period  so to make it aperiodic we consider its “lazy” version in which we do not move

with probability , that is we consider instead the transition matrix  which makes it periodic. The Markov chain

moves then as follows, we pick a coordinate  at random and then replace by a random bit  or .

To couple the Markov chain we simply move move them together: If  and  we pick a coordinate 

 at random and then replace both  and  by the same random bit. This is a coupling and after a move the

chosen coordinates coincide.

Under this coupling  and  will get closer to each other if we select a  such that  and we will couple when all

the coordinates have been selected. The distribution of the coupling time is thus exactly the same as the time  need to

collect  toys in the coupon collector problem.

We now get a bound on the tail as follows. We denote by  the events that coordinate  has not been selected after 

steps. We have, using the inequality 

So if we pick  we find

Example 1.4 d σ = (σ ​, ⋯ ,σ ​)1 d σ ​ ∈j

{0, 1}

2
1/2 ​2

P+I

σ ​j 0 1

X ​ =n σ Y ​ =n σ′ j ∈
{1, ⋯ , d} σ ​j σ ​j

′

X ​n Y ​n j σ ​j = σ ​j
′

τ

d

A ​i i m

(1 − x) ≤ e−x

​

P{σ > n} = P ​A ​ ≤ ​P (A ​) = ​ 1 − ​ ≤ de(
i=1

⋃
d

i)
i=1

∑
d

i

i=1

∑
d

(
d

1 )n
− ​

d
n

n = d ln(d) + cd

P{σ > d ln(d) + cd} ≤ de =− ​

d

d ln(d)+cd

e ⟹−c t ​(ε) ≤mix d ln(d) + ln(ε )d .−1
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9.7 Exercise
Exercise 9.1 (Properties of the total variation norm)  

1. Prove the following formula for the total variation norm

2. Prove that the map  is a (jointly) convex in .

3. Prove that 

Exercise 9.2 (Examples of optimal coupling)  

1. Suppose  and  are two Bernoulii random variables with paramter  and . Using random number  we can

represent . Consider the coupling between  and  by using the same random variable  to generate

 and . Compute the joint distribution of .

2. What is the optimal coupling between  and  in the sense of 

∥μ − ν∥ ​ =TV ​ ∣μf −
f : ∥f∥ ​=sup ​ ∣f(i)∣≤1∞ i

sup νf ∣

(μ, ν) ↦ ∥μ − ν∥ ​TV (μ ν)

∥μP −n νP ∥ ​ ≤n
TV ​ μ(i)ν(j)∥P (i, ⋅) −∑i,j

n P (j, ⋅)∥ ​

n
TV

X Y p q U

X = 1 ​U<p X Y U

X Y (X,Y )

X Y Theorem 9.2
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Exercise 9.3 (Coupling for card shuffling) We consider the following shuffling procedure: given a deck of 52 cards pick
one number  at random between 1 and 52 and take the card in poistion  and move itto the top of the card (this is

called the random to top shuffling).

Now consider the following coupling: you have two decks of cards. Do a random to top shuffling for the first deck. Look
at which card you just put on top (say a seven of spades). Now in the second deck take the seven of spades and put it on
top.

Show that this is a coupling and use this to show that after  the random to top shuffling is at total variation

distance no more than  from the stationary distribution.

:::

:::

j j

n ln(n/ϵ)
ϵ
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