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A. Exit problem: one population models

Proof of Lemma 4.1. (i) Since c(n)(x, xi,k) = π(m̄, x)− π(k, x), we obtain

I(n)(γ2)− I(n)(γ1) = [π(m̄, x)− π(k, x) + π(m̄, xi,k)− π(l, xi,k)]

− [π(m̄, x)− π(k, x) + π(m̄, xm̄,k)− π(l, xm̄,k)]

=
1

n
([−Am̄i +Am̄k +Ali −Alk]− [−Am̄m̄ +Am̄k +Alm̄ −Alk])

=
1

n
(Am̄m̄ −Alm̄ −Am̄i +Ali) > 0

from the MBP.

(ii) We find that

[I(n)(ζ2)− I(n)(ζ1)] + [I(n)(ζ2)− I(n)(ζ3)]

=[π(m̄, x)− π(i, x) + π(m̄, xm̄,i)− π(j, xm̄,i) + π(m̄, x(m̄,i)(m̄,j))− π(i, x(m̄,i)(m̄,j))]

−[π(m̄, x)− π(j, x) + π(m̄, xm̄,j)− π(i, xm̄,j) + π(m̄, x(m̄,j)(m̄,i))− π(i, x(m̄,j)(m̄,i)))]

+[π(m̄, x)− π(i, x) + π(m̄, xm̄,i)− π(j, xm̄,i) + π(m̄, x(m̄,i)(m̄,j))− π(i, x(m̄,i)(m̄,j))]

−[π(m̄, x)− π(i, x) + π(m̄, xm̄,i)− π(i, xm̄,i) + π(m̄, x(m̄,i)(m̄,i))− π(j, x(m̄,i)(m̄,i))]

=[Am̄i −Am̄j +Ajm̄ −Aji −Aim̄ +Aij ] + [Aim̄ −Aij +Am̄j −Am̄i −Ajm̄ +Aji]

=0

From this we obtain the desired results.

Proof of Proposition 4.1. Part (i). In the proof, we suppress the superscript (n). Let γ = (x1, x2, · · · , xT )

be a path in Gm̄ \ Jm̄. We recursively construct a new path γ̃ ∈ Jm̄ with a cost lower than or equal to the

cost of γ.

For this, let t be the greatest number such that xt+1 = (xt)
i,l with i 6= m̄, l. We distinguish several

cases. If t = T − 1, we consider a new path γ̃ obtained by modifying the last transition as follows:

γ̃ := (x1, x2, · · · , xT−1, (xT−1)m̄,l).

Then, we have I(γ̃) = I(γ), and show that the path still exits D(em̄). To prove this, we only need to show that

if z /∈ D(em̄) then zm̄,i /∈ D(em̄), because this implies that if (xT−1)i,l /∈ D(em̄), then (xT−1)m̄,l /∈ D(em̄).

Now, suppose that z /∈ D(em̄) and that there exists k such that π(m̄, z) < π(k, z). Then, we have

[π(k, zm̄,i)− π(m̄, zm̄,i)]− [π(k, z)− π(m̄, z)] =
1

n
(Aki −Akm̄ −Am̄,i +Am̄,m̄) ≥ 0

by Condition A. Thus, we have [π(k, zm̄,i)− π(m̄, zm̄,i)] ≥ [π(k, z)− π(m̄, z)] > 0 and so zm̄,i /∈ D(em̄).

Now, suppose that t < T − 1. Then we have xt+1 = (xt)
i,l and xt+2 = (xt)

(i,l)(m̄,k) for k 6= m̄. Note

that k 6= m̄ and l 6= i. Now we need to distinguish four cases.

Case 1: If k = i, l = m̄, then xt+1 = (xt)
i,m̄, xt+2 = xt. Thus, we consider γ̃ = (x1, · · · , xt, xt+2, · · · , xT );

clearly, I(γ̃) ≤ I(γ), since c(xt, xt+1) = 0, c(xt+1, xt+2) ≥ 0, and c(xt, xt+2) = 0.
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Case 2: If k = i, l 6= m̄ then xt+2 = (xt)
(i,l)(m̄,k) = (xt)

m̄,l. Again, we consider the path γ̃ = (x1, · · · , xt, xt+2, · · · , xT )

and find that I(γ̃) ≤ I(γ) because we have c(xt, xt+1) = c(xt, xt+2) = π(m,xt)−π(l, xt) and c(xt+1, xt+2) ≥
0.

Case 3: If k 6= i, l = m̄, then xt+2 = x
(i,m̄)(m̄,k)
t = (xt)

i,k. Again, let γ̃ = (x1, · · · , xt, xt+2, · · · , xT ). Then

we have c(xt, xt+1) = 0 and

c(xt+1, xt+2)− c(xt, xt+2) = c(xi,lt , x
(i,l)(m̄,k)
t )− c(xt, x(i,k)

t )

= π(m̄, xi,m̄t )− π(k, xi,m̄t )− [π(m̄, xt)− π(k, xt)]

=
1

n
(Am̄m̄ −Akm̄ − [Am̄i −Aki]) ≥ 0

from the MBP, implying that I(γ̃) ≤ I(γ).

Case 4: If k 6= i, m̄ and l 6= i, m̄, then we can apply Lemma 4.1. We modify the path by considering the

alternative transitions, x̃t+1 = (xt)
m̄,l and x̃t+2 = (xt)

(m̄,l)(i,k). If (xt)
m̄,l /∈ D(em̄), then we define

γ̃ := (x1, x2, · · · , xt, (xt)m̄,l)

and because c(xt, (xt)
m̄,l) = c(xt, (xt)

i,l) and c(xt+1, xt+2) ≥ 0, we obtain I(γ̃) ≤ I(γ). If (xt)
m̄,l ∈ D(em̄),

then we define

γ̃ := (x1, x2, · · · , xt, (xt)m̄,l, (xt)(m̄,l)(i,k), · · · , xT ).

to find that I(γ̃) ≤ I(γ) from Lemma 4.1. Proceeding inductively we construct a path γ̃ ∈ Jm̄ with a cost

lower than or equal to the cost of γ.

Part (ii). We denote by c(a, ai,j,ρ) be the cost of a path from a to ai,j,ρ in which agents switch from i to j,

ρ-times consecutively and let π(k, x− y) := π(k, x)− π(k, y) and γa→b be a path from a to b. We first show

the following lemma.

Lemma A.1. We have the following results.

(i) c(a, am̄,k,ρ)− c(b, bm̄,k,ρ) = ρ[(π(m̄, a)− π(k, a))− (π(m̄, b)− π(k, b))]

(ii) η[c(a, am̄,k,ρ)− c(b, bm̄,k,ρ)] + ρ[c(bk,m̄,η, b)− c(ak,m̄,η, a)] = 0

(iii) η[I(γam̄,k,ρ→bm̄,k,ρ)− I(γa→b)] + ρ[I(γak,m̄,η→bk,m̄,η )− I(γa→b)] = 0

where γak,m̄,η→bk,m̄,η , γak,m̄,η→bk,m̄,η , and γa→b consist of the same transitions.

Proof. For (i), we have

c(a, am̄,k,ρ) = π(m̄, x)− π(k, x) + π(m̄, xm̄,k)− π(k, xm̄,k) + · · ·+ π(m̄, xm̄,k,ρ−1)− π(k, xm̄,k,ρ−1)

= ρ(π(m̄, x)− π(k, x)) +
ρ(ρ− 1)

2

1

n
(−Am̄m̄ +Am̄k +Akm̄ −Akk).

For (ii), first using (i) (by setting bk,m̄,η = a), we first find that

c(bk,m̄,η, b)− c(ak,m̄,η, a) = η[(π(m̄, bk,m̄,η)− π(k, bk,m̄,η)− (π(m̄, ak,m̄,η)− π(k, ak,m̄,η))].
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Then we have

η[c(a, am̄,k,ρ)− c(b, bm̄,k,ρ)] + ρ[c(bk,m̄,η, b)− c(ak,m̄,η, a)]

=ηρ[(π(m̄, a)− π(k, a))− (π(m̄, b)− π(k, b))] + ηρ[(π(m̄, bk,m̄,η)− π(k, bk,m̄,η)− (π(m̄, ak,m̄,η)− π(k, ak,m̄,η))] = 0

For (iii), suppose that (a, b) = (a1, a2, · · · , aT ) where aT = b. Then at+1 = (at)
it,lt for some it, lt. First we

find

η[c(at
m̄,k,ρ, (at

m̄,k,ρ)it,lt)− c(at, atit,lt)] + ρ[c(at
k,m̄,η, (at

k,m̄,η)it,lt)− c(at, atit,lt)]
=η[π(m̄, at

m̄,k,ρ − at)− π(lt, at
m̄,k,ρ − at)] + ρ[π(m̄, at

k,m̄,η − at)− π(lt, at
k,m̄,η − at)]

=
1

n
η[ρ(−Am̄m̄ +Am̄k)− ρ(−Altm̄ +Altk)] + ρ[η(−Am̄k +Am̄m̄)− η(−Altk +Altm̄)] = 0

We thus find that

η[c(am̄,k,ρ, bm̄,k,ρ)− c(a, b)] + ρ[c(ak,m̄,η, bk,m̄,η)− c(a, b)]

=
T−1∑
t=1

η[c(at
m̄,k,ρ, (at

m̄,k,ρ)m̄,lt)− c(at, atm̄,lt)] + ρ[c(at
k,m̄,η, (at

k,m̄,η)m̄,lt)− c(at, atm̄,lt)] = 0

Next, we show the following extended version of comparison principle 2, where we e denote by (m̄, k; η)

η-times consecutive transitions from m̄ to k. Also, let xm̄,k,η be a new state induced by the agents’ η-times

consecutive switches from m̄ to k from an old state, x.

Lemma A.2. Consider the following paths (see Panel C, Figure 3):

γ : x −−−−−→
(m̄,k;η)

xm̄,k,η −−−−→ y · · · z −−−−−→
(m̄,k;ρ)

zm̄,k,ρ

γ′ : x −−−−−→
(m̄,k;η)

xm̄,k,η −−−−−→
(m̄,k;ρ)

x(m̄,k,η)(m̄,k,ρ) −−−−→ ym̄,k,ρ · · · zm̄,k,ρ

γ′′ : x −−−−−→ yk,m̄,η · · · zk,m̄,η −−−−−→
(m̄,k;η)

z −−−−−→
(m̄,k;ρ)

zm̄,k,ρ

where · · · denotes the same transitions. Then the following holds:

η[I(n)(γ)− I(n)(γ′)] + ρ[I(n)(γ)− I(n)(γ′′)] = 0.

Thus, either

I(n)(γ) ≥ I(n)(γ′) or I(n)(γ) ≥ I(n)(γ′′)

holds.
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Proof. We find that

η[I(γ′)− I(γ)] + ρ[I(γ′′)− I(γ)]

= η[c(xm̄,k,η, x(m̄,k,η)(m̄,k,ρ))− c(z, zm̄,k,ρ)] + ρ[c(zk,m̄,η, z)− c(x, xm̄,k,η)]︸ ︷︷ ︸
(i)

+ η[c(x(m̄,k,η)(m̄,k,ρ), ym̄,k,ρ)− c(xm̄,k,η, y)] + ρ[c(x, yk,m̄,η)− c(xm̄,k,η, y)]︸ ︷︷ ︸
(ii)

+ η[I(γym̄k,ρ→zm̄,k,ρ)− I(γy→z)] + ρ[I(γyk,m̄,η→zk,m̄,η )− I(γy→z)]︸ ︷︷ ︸
(iii)

Then for (i), if we let a = xm̄,k,η and b = z in Lemma A.1 (ii), we have (i)= 0. For (ii), if we let a = x(m̄,k,η)

and b = y in Lemma A.1 (ii), we have (ii)= 0. For (iii), if we let a = y and b = z in Lemma A.1 (iii), we

have (iii)= 0.

Then, Part (ii) follows from Lemma A.2. Suppose that γ ∈ Km̄. Then, by applying Lemma A.2 repeatedly,

we collect the same transitions and find γ̃ ∈ Km̄ such that I(γ̃) ≤ I(γ). Thus we obtain the desired result.

Proof of Proposition 4.2. Recall that

D(n)(em̄) : = {x ∈ ∆(n) : π(m̄, x) ≥ π(l, x) for all l}

and let

D̄(em̄) := {p ∈ ∆ : π(m̄, p) ≥ π(l, p) for all l} (A.1)

and ∂D̄(em̄) be the boundary of D̄(em̄). The following lemma serves to find the continuous version of the

cost function, c(x, xi,j). Suppose that p, q ∈ ∆ with q = p+ α(ei − ej) for some α > 0. If p, q ∈ D̄(em̄), we

define

c̄(p, q) :=
1

2
(pj − qj)(π(m̄, p+ q)− π(i, p+ q)). (A.2)

Lemma A.3. Let γ = γx→y be a straight-line path between x(n) and y(n) in D(em̄) ⊂ ∆(n) with y(n) =

x(n) + M(n)

n (ei − ej). Suppose that x(n) → p and y(n) → q for p, q ∈ ∆ as n→∞. Then,

lim
n→∞

1

n
I(n)(γx→y) =

1

2
(pj − qj)(π (m̄, p+ q)− π (i, p+ q))

Proof. Since the path lies in D(em̄) we have

I(n)(γx→y) =
M(n)−1∑
ι=0

[
π
(
m̄, x(n) +

ι

n
(ei − ej)

)
− π

(
i, x(n) +

ι

n
(ei − ej)

)]
. (A.3)

Now using that 1 + 2 + · · ·+K − 1 = (K − 1)K/2, we obtain

M(n)−1∑
t=0

(x(n) +
ι

n
(ei− ej)) = M (n)x(n) +

M (n)(M (n) − 1)

2

1

n
(ei− ej) = M (n)x

(n) + y(n)

2
− M (n)

2

1

n
(ei− ej) .

(A.4)
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By combining equations (A.3) and (A.4) and noting that M(n)

n → pj − qj as n→∞, we obtain the desired

result.

The expression of costs for continuous paths in Lemma 2 in Sandholm and Staudigl (2016) is the same as the

cost expression in Lemma A.3, since continuous paths in Lemma 2 in Sandholm and Staudigl (2016) belong

to the special class of paths obtained by comparison principles. Next, we prove the following lemma.

Lemma A.4. Suppose that X(n) ⊂ X and f : X → R is a continuous function that admits a minimum and

f (n) : X → R. Suppose also that for all x ∈ X, there exists {x(n)} such that x(n) ∈ X(n), x(n) → x, and

f (n)(x(n))→ f(x). Then, we have

min
x∈X(n)

f (n)(x)→ min
x∈X

f(x)

Proof. Let {x(n)}n be the sequence of minimizers of minx∈X(n) f (n)(x) and x∗ be the minimizer of minx∈X f(x).

Suppose that f (n)(x(n)) does not converge to f(x∗). Then there exist ε0 > 0 and {nk} such that

f (nk)(x(nk)) ≥ f(x∗) + ε0. (A.5)

Further, from the hypothesis, we choose y(n) such y(n) → x∗. Since {x(n)} is the sequence of minimizers, we

have

f (nk)(y(nk)) ≥ f (nk)(x(nk)) (A.6)

Now, by taking k →∞ in equations (A.5) and (A.6), we find that f(x∗) ≥ f(x∗)+ε0, which is a contradiction.

Now we let X(n) := K(n)
m̄ and X = Km̄ and f (n) = 1

nI
(n) and f = Ī. Then Lemmas A.3 and A.4 show

that

lim
n→∞

1

n
min{I(n)(γ) : γ ∈ K(n)

m̄ } = min{Ī(ζ) : ζ ∈ Km̄} = min{ω(t) : ζ(t) ∈ Km̄}

Proof of Proposition 4.3. The proof of Proposition 4.3 follows from Lemmas A.5 and A.6.

Lemma A.5. Let r ∈ D̄(em̄). Suppose that

w = r + α(ek − em̄), π(m̄, w) = π(k,w), and w 6∈ D̄(em̄).

Then there exists j 6= k, m̄ and β < α such that

z := r + β(ej − em̄), π(m̄, z) = π(j, z), and π(j, r) > π(k, r)

Proof. Since w 6∈ D̄(em̄), there exists j 6= k, m̄ such that π(j, w) > π(m̄, w). Since π(m̄, r) ≥ π(j, r), there

exists 0 < α′ < α such that ν = r + α′(ek − em̄) and

π(m̄, ν) = π(j, ν).

39



Let o′ = r + α(ej − em̄). Note that o′ = ν − α′(ek − em̄) + α(ej − em̄). Then

π(j − m̄, o′) = π(j − m̄,−α′(ek − em̄) + α(ej − em̄))

= −α′π(m̄− j, em̄ − ek) + απ(m̄− j, em̄ − ej)
> α(π(j − m̄, ej − em̄)− π(m̄− j, em̄ − ek))

> 0

Thus since π(m̄, r) ≥ π(j, r), there exists z = r + β(ej − em̄) such that π(m̄, z) = π(j, z) and β < α. Next,

we show that π(j, r) > π(k, r). Suppose that π(k, r) ≥ π(j, r). Then we find

π(m̄− j, w) = π(m̄− j, w)− π(m̄− k,w) = π(k,w)− π(j, w) = π(k − j, r) + απ(k − j, ek − em̄) > 0

which is a contradiction to the fact that π(m̄− j, ν) = π(m̄− j, r + α′(ek − em̄)) = 0 for α′ < α. Thus, we

have π(j, r) > π(k, r).

Lemma A.6. Let r ∈ D̄(em̄) and q ∈ ∂D̄(em̄) and q = r + tL(el − em̄). Suppose that

π(m̄, q) = π(k1, q) and π(m̄, q) = π(k2, q). (A.7)

where k1 6= k2. Then there exists p ∈ ∂D(em̄) such that j 6= l, m̄ and p = r + β(ej − em̄), where 0 < β < tL,

π(m̄, p) = π(j, p) and c(r, p) < c(r, q).

Proof. From the condition, tL is the length of transition from m̄ to l, leading to q. Because of (A.7), we can

choose k 6= l such that

π(m̄, q) = π(k, q).

Let o := r + tL(ek − em̄). That is, o is the point obtained from r by tL transitions from m̄ to k). Since

π(k − m̄, r + tL(ek − em̄)) = π(k − m̄, q + tL(em̄ − el) + tL(ek − em̄))

=tLπ(k − m̄, ek − el) > 0

hold from the MBP, we have

π(m̄, r) ≥ π(k, r) and π(m̄, o) < π(k, o)

and since the payoff function is linear and the game is a coordination game, there exists p such that p =

r + α(ek − em̄), where α > 0 and π(m̄, p) = π(k, p). Then o = p+ (tL − α)(ek − em̄). Thus

0 < π(k, o)− π(m̄, o) = π(k − m̄, p+ (tL − α)(ek − em̄))

≤ (tL − α)π(k − m̄, ek − em̄)

Thus from the MBP, we find tL > α which implies that pk − rk < ql − rl. We divide cases.
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Step 1. Suppose that p ∈ D̄(em̄). We also find

c(r, q)− c(r, p) =
1

2
tLπ(m̄− l, r + q)− 1

2
(pk − rk)π(m̄− k, r + p)

≥1

2
tL(π(m̄− l, r + q)− π(m̄− k, r + p)) =

1

2
tL(π(k, r)− π(l, r))

=
1

2
tLπ(k − l, q + tL(em̄ − el)) =

1

2
tLπ(m̄− l, q) +

1

2
t2Lπ(k − l, em̄ − el) > 0

where we used π(m̄− l, q) ≥ 0, π(k, q) = π(m̄, q), and the MBP. Thus we take β := α and j := k and obtain

the desired result.

Step 2. Suppose that p 6∈ D̄(em̄). We use Lemma A.5. By taking w = p and using Lemma A.5, we find z. If

z ∈ D̄(em̄), then we set p′ = z. Otherwise, we apply the same argument using Lemma A.5 and to find z closer

to r. In this way, we can find j1, j2, · · · . Note that no two indices, j1, j2, are the same since if j = j1 = j2 then

π(m̄−j, r+β1(ej−em̄)) = π(m̄−j1, r+β1(ej1−em̄)) = π(m̄−j2, r+β2(ej2−em̄) = π(m̄−j, r+β2(ej−em̄).

Thus we find β1 = β2 which is a contradiction. Since the number of strategies is finite, we can find z ∈ D̄(em̄).

Next, we show that j 6= l. If j = l, π(m̄, z) = π(l, z). Thus, we find that

0 ≤π(m̄− l, r + tL(el − em̄))− π(m̄− l, r + β(el − em̄))

=π(m̄− l, (tL − β)(el − em̄)) = (tL − β)(−Am̄m̄ +Am̄l +Alm̄ −All)

and thus we find tL ≤ β which is a contradiction. So we have j 6= l. Then observe that p′j − rj < β < tL.

Then, we compute as follows:

c(r, q)− c(r, p′) =
1

2
tLπ(m̄− l, r + q)− 1

2
(p′j − rj)π(m̄− j, r + p′)

≥ 1

2
tL(π(m̄− l, r + q)− π(m̄− j, r + p′)) =

1

2
tL(π(j, r)− π(l, r))

>
1

2
tL(π(k, r)− π(l, r)) > 0

Thus, we can take p = p′.

Now, let t∗ = ((t1, t2, · · · , tL); (i1, i2, · · · , iL)) be the solution to the minimization problem and (m̄→ i1, m̄→
i2, · · · , m̄ → iL) be the corresponding transitions. Suppose that (40) does not hold. Then there exists k1

and k2, k1 6= k2, such that

π(m̄, q(t∗)) = π(k1, q(t
∗)) and π(m̄, q(t∗)) = π(k2, q(t

∗))

We apply Lemma A.6 and can obtain a lower cost exit path, s∗ such that ω(s∗) < ω(t∗), which is a

contradiction to optimality of t∗.

Proof of Proposition 4.4. Suppose that t∗l > 0 for some l 6= k. To simplify notation, let q = q(t∗) and
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t∗ = (t∗1, · · · , t∗K) and define

t+ε = t∗ + εk(ek − em̄)− εl(el − em̄), t−ε = t∗ − εk(ek − em̄) + εl(el − em̄)

Then, we have

π(m̄, q(t+ε ))− π(k, q(t+ε )) =εkπ(m̄, k − m̄)− εlπ(m̄, l − m̄)− εkπ(k, k − m̄) + εlπ(k, l − m̄)

=− εk(Am̄m̄ −Am̄k +Akk −Akm̄) + εl(Am̄m̄ −Akm̄ +Am̄l −Akl)
π(m̄, q(t−ε ))− π(k, q(t−ε )) =εk(Am̄m̄ −Am̄k +Akk −Akm̄)− εl(Am̄m̄ −Akm̄ +Am̄l −Akl)

and similarly, for j 6= k, we find that

π(m̄, q(t+ε ))− π(j, q(t+ε )) =π(m̄, q)− π(j, q)

+ εkπ(m̄, k − m̄)− εlπ(m̄, l − m̄)− εkπ(j, k − m̄) + εlπ(j, l − m̄)

=π(m̄, q)− π(j, q)

− εk(Am̄m̄ −Am̄k +Ajk −Ajm̄) + εl(Am̄m̄ −Ajm̄ +Am̄l −Ajl)
π(m̄, q(t−ε ))− π(j, q(t−ε )) =π(m̄, q)− π(j, q)

εk(Am̄m̄ −Am̄k +Ajk −Ajm̄)− εl(Am̄m̄ −Ajm̄ +Am̄l −Ajl)

Thus, we can choose small εk, εl > 0 such that

π(m̄, q(t+ε )) = π(k, q(t+ε )), and π(m̄, q(t+ε )) > π(j, q(t+ε )) for all l 6= k

π(m̄, q(t−ε )) = π(k, q(t−ε )), and π(m̄, q(t−ε )) > π(j, q(t−ε )) for all l 6= k,

which show that t+ε and t−ε both satisfy the constraints. Recall

Hi,j:k := (Aii −Aji)− (Aik −Ajk).

Then we find that

If tl is ahead of tk, (ω(t+ε )− ω(t))− (ω(t)− ω(t−ε )) = −ε2l π(m̄− l, m̄− l) + 2εlεkπ(m̄− k, m̄− l)− ε2kπ(m̄− k, m̄− k)

If tk is ahead of tl, (ω(t+ε )− ω(t))− (ω(t)− ω(t−ε )) = −ε2l π(m̄− l, m̄− l) + 2εlεkπ(m̄− l, m̄− k)− ε2kπ(m̄− k, m̄− k)

Thus, we find that

(ω(t+ε )− ω(t))− (ω(t)− ω(t−ε )) = −Hm̄k:kε
2
k + 2 max{Hm̄k:l, Hm̄l:k}εkεl −Hm̄l:lε

2
l

≤ −Hm̄k:kε
2
k + 2

√
Hm̄k:k

√
Hm̄l:lεkεl −Hm̄l:lε

2
l ≤ −(

√
Hm̄k:kεk −

√
Hm̄l:lεl)

2 < 0

where we use

max{Hm̄k:l, Hm̄l:k} < Hm̄k:k, max{Hm̄k:l, Hm̄l:k} < Hm̄l:l.

from MBP. This shows that either ω(t+ε ) < ω(t) or ω(t) > ω(t−ε ) holds, a contradiction to the optimality of

t.
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Proof of Theorem 4.1. Let t∗ be the solution to the minimization problem:

min{ω(t) : ζ(t) ∈ K̄m̄}.

Propositions 4.4 and 4.3 show that there exists k such that t∗k > 0 and t∗l = 0 for all l 6= k and Theorem 4.1

follows immediately from this and Proposition 4.2.

B. Exit problem: two-population models

The following lemma is analogous to Lemma 4.1, which shows that it always costs less (or the same) to

first switch from strategy m̄, than from other strategies.

Lemma B.1. Suppose that the WBP holds.

c(n)(xβ,m̄,k, x(β,m̄,k)(α,j,h))− c(n)(xβ,i,k, x(β,i,k)(α,j,h)) = −Aαm̄m̄ +Aαhm̄ +Aαm̄i −Aαhi ≤ 0

c(n)(xα,m̄,k, x(α,m̄,k)(β,j,h))− c(n)(xα,i,k, x(α,i,k)(β,j,h)) = −Aβm̄m̄ +Aβm̄h +Aβim̄ −A
β
ih ≤ 0.

Proof. These are immediate from the definition.

Proposition B.1 shows that Lemma B.1 can be extended to arbitrary paths. We use Proposition B.1 to

show how to remove the transitions from i 6= m̄ in a given path to achieve a lower cost. In Proposition B.1,

(β, i, k), for example, refers to a transition by a β-agent from strategy i to k.

Proposition B.1. Suppose that the WBP holds. We consider two paths:

γ1 :x −−−−→
(β,i,k)

x(1) −−−−−−→
(α,j1,k1)

x(2) −−−−−−→
(α,j2,k2)

x(3) · · ·x(L−1) −−−−−−→
(α,jL,kL)

x(L) −−−−→
(β,m̄,l)

y

γ2 :x −−−−−→
(β,m̄,k)

y(1) −−−−−−→
(α,j1,k1)

y(2) −−−−−−→
(α,j2,k2)

y(3) · · · y(L−1) −−−−−−→
(α,jL,kL)

y(L) −−−−→
(β,i,l)

y

Then, we have I(n)(γ1) ≥ I(n)(γ2) and a similar statement holds for a path with transitions of α agents from

i to k and m̄ to l and transitions of α agents from m̄ to k and from i to l.

Proof. We find that

I(n)(γ1) = c(n)(x, xβ,i,k) + c(n)(xβ,i,k, x(β,i,k)(α,j1,k1)) + c(n)(xβ,i,k, x(β,i,k)(α,j2,k2))

+ · · · c(n)(xβ,i,k, x(β,i,k)(α,jL,kL)) + c(n)(x(L), (x(L))(β,m̄,l)).

I(n)(γ2) = c(n)(x, xβ,m̄,k) + c(n)(xβ,m̄,k, x(β,m̄,k)(α,j1,k1)) + c(n)(xβ,m̄,k, x(β,m̄,k)(α,j2,k2))

+ · · · c(n)(xβ,m̄,k, x(β,m̄,k)(α,jL,kL)) + c(n)(x(L), (x(L))(β,i,l))

from the fact that c(n)(x(l), (x(l))α,jl,kl) = c(n)(xβ,i,k, x(β,i,k)(α,jl,kl)) for l = 2, · · · , L−1 and c(y(l), (y(l))α,jl,kl) =

c(n)(yβ,m̄,k, x(β,m̄,k)(α,jl,kl)) for l = 2, · · · , L−1 (see Lemma B.2). Observe that c(n)(x, xβ,m̄,k) = c(n)(x, xβ,i,k)

and c(n)(x(L), (x(L))(β,i,l)) = c(n)(x(L), (x(L))(β,m̄,l)). Then by applying Lemma 2 successively, we obtain the

desired result.
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We can also collect the same transitions as follows, analogously to Proposition A.2. We also denote by

(β, m̄, k; η) the consecutive transitions of β-agent from m̄ to k η-times.

Proposition B.2. Consider the following paths:

γ : x −−−−−−→
(β,m̄,k;η)

xβ,m̄,k;η −−−−→ y · · · z −−−−−−→
(β,m̄,k;ρ)

zβ,m̄,k;ρ

γ′ : x −−−−−−→
(β,m̄,k;η)

xβ,m̄,k;η −−−−−−→
(β,m̄,k;ρ)

x(β,m̄,k;η)(β,m̄,k;ρ) −−−−→ yβ,m̄,k;ρ · · · zβ,m̄,k;ρ

γ′′ : x −−−−−→ yβ,k ¯,m;η · · · zβ,k,m̄;η −−−−−−→
(β,m̄,k;η)

z −−−−−−→
(β,m̄,k;ρ)

zβ,m̄,k;ρ

where · · · denotes the same transitions. Then either

I(n)(γ) ≥ I(n)(γ′), or I(n)(γ) ≥ I(n)(γ′′)

holds. A similar statement holds for a path involving transitions of α agents’ transitions.

Proof. We start with the following lemma.

Lemma B.2. We have the following results:

c(n)(x, xα,i,j) = c(n)(z, zα,i,j) for all xβ = zβ

c(n)(x, xβ,i,j) = c(n)(z, zβ,i,j) for all xα = zα

Proof. This is immediate from the definition.

Next we show the following lemma.

Lemma B.3. We have the following results:

η[c(n)(aβ,m̄,k,ρ, bβ,m̄,k,ρ)− c(n)(a, b)] + ρ[c(n)(aβ,k,m̄,η, bβ,k,m̄,η)− c(n)(a, b)] = 0

Proof. Suppose that (a, b) = (a1, a2, · · · , aT ) where aT = b. Suppose that at+1 = (at)
β,it,lt . Then by

applying Lemma B.2, we obtain

η[c(n)(aβ,m̄,k,ρt , (aβ,m̄,k,ρt )β,it,lt)− c(n)(at, a
β,it,lt
t )] + ρ[c(n)(aβ,k,m̄,ηt , (aβ,k,m̄,ηt )β,it,lt)− c(n)(at, a

β,it,lt
t )] = 0

We next suppose that at+1 = (at)
α,it,lt .

η[c(n)(aβ,m̄,k,ρt , (aβ,m̄,k,ρt )α,it,lt)− c(n)(at, a
α,it,lt
t )] + ρ[c(n)(aβ,k,m̄,ηt , (aβ,k,m̄,ηt )α,it,lt)− c(n)(at, a

α,it,lt
t )

=η[πα(m̄, aβ,m̄,k,ρt )− πα(lt, a
β,m̄,k,ρ
t )− πα(m̄, at) + πα(lt, at)]

+ ρ[πα(m̄, aβ,k,m̄,ηt )− πα(lt, a
β,k,m̄,η
t )− πα(m̄, at) + πα(lt, at)]

=0
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Thus we find

η[I(n)(γaβ,m̄,k,ρ→bβ,m̄,k,ρ)− I(n)(γa→b)] + ρ[I(n)(γaβ,k,m̄,η→bβ,k,m̄,η )− I(γa→b)]

=
T−1∑
t=1

η[c(n)(at
β,m̄,k,ρ, (at

β,m̄,k,ρ)it,lt)− c(n)(at, at
β,it,lt)] + ρ[c(n)(at

β,k,m̄,η, (at
β,k,m̄,η)it,lt)− c(n)(at, at

it,lt)]

=0

Lemma B.4. We have the following results:

(i) η[c(n)(xβ,m̄,k;η, x(β,m̄,k;η),(β,m̄,k;ρ))− c(n)(z, z(β,m̄,k;ρ))] + ρ[c(n)(z(β,k,m̄;η), z)− c(n)(x, xβ,m̄,k;η)] = 0

(ii) η[c(n)(x(β,m̄,k;η),(β,m̄,k;ρ), yβ,m̄,k;ρ)− c(n)(xβ,m̄,k;η, y)] + ρ[c(n)(x, yβ,k,m̄;η)− c(n)(xβ,m̄,k,η, y)] = 0

(iii) η[I(n)(γyβ,m̄,k;ρ→zβ,m̄,kρ)− I(n)(γy→z)] + ρ[I(n)(γyβ,k,m̄,η→zβ,k,m̄,η )− I(n)(γy→z)] = 0

Proof. (i) By applying Lemma B.2, we find that

η[c(n)(xβ,m̄,k;η, x(β,m̄,k;η),(β,m̄,k;ρ))− c(n)(z, z(β,m̄,k;ρ))] + ρ[c(n)(z(β,k,m̄;η), z)− c(n)(x, xβm̄,k;η)]

=η[c(n)(x, x(β,m̄,k;ρ) − c(n)(z, z(β,m̄,k;ρ))] + ρ[c(n)(z, z(β,m̄,k;η))− c(n)(x, xβ,m̄,k;η)]

=ηρ[πβ(m̄, x)− πβ(k, x)− πβ(m̄, z) + πβ(k, z)] + ρη[πβ(m̄, z)− πβ(k, z)− πβ(m̄, x) + πβ(k, x)]

=0

(ii) follows from by letting a := xβ,m̄,k;η and b := y in Lemma B.4 and (iii) follows from by letting a := y

and b := z in Lemma B.4.

Proof of Proposition B.2. We find that

η[I(n)(γ′)− I(n)(γ)] + ρ[I(n)(γ′′)− I(n)(γ)]

= η[c(n)(xβ,m̄,k;η, x(β,m̄,k;η),(β,m̄,k;ρ))− c(n)(z, z(β,m̄,k;ρ))] + ρ[c(n)(z(β,k,m̄;η), z)− c(n)(x, xβ,m̄,k;η)]︸ ︷︷ ︸
(i)

+ η[c(n)(x(β,m̄,k;η),(β,m̄,k;ρ), yβ,m̄,k;ρ)− c(n)(xβ,m̄,k;η, y)] + ρ[c(n)(x, yβ,k,m̄;η)− c(n)(xβ,m̄,k,η, y)]︸ ︷︷ ︸
(ii)

+ η[I(n)(γyβ,m̄,k;ρ→zβ,m̄,kρ)− I(n)(γy→z)] + ρ[I(n)(γyβ,k,m̄,η→zβ,k,m̄,η )− I(n)(γy→z)]︸ ︷︷ ︸
(iii)

and Lemma B.4 (i), (ii), and (iii) show the desired result.

We also define J (n)
m̄ and K(n)

m̄ analogously to equations (32) and (34). That is, J (n)
m̄ is the set of all paths

in which all the transitions are from strategy m̄ and K(n)
m̄ is the set of all paths consisting of consecutive

transitions from m̄ to some other strategy. From Propositions B.1 and B.2, we next show that the minimum

transition cost path γ involves only transitions from m̄.

Proposition B.3. Suppose that the WBP holds.
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(i) We have

min{I(n)(γ) : γ ∈ G(n)
m̄ } = min{I(n)(γ) : γ ∈ J (n)

m̄ }.

(ii) We have

min{I(n)(γ) : γ ∈ G(n)
m̄ } = min{I(n)(γ) : γ ∈ K(n)

m̄ }.

Proof. For the proof, we suppress the superscript (n). Part (i). Let γ ∈ Gm̄\Jm̄. Let the last transition of γ

be from z to zβ,i,l for some i 6= m̄. Since c(n)(z, zβ,i,l) = c(n)(z, zβ,m̄,l), by modifying the last transition from

zβ,i,l to zβ,m̄,l the cost will not be changed. Now, suppose that x is the last state from which a transition

occurs from i 6= m̄ in the modified path (see γ1 in Proposition B.1). Then, by applying Proposition B.1, we

obtain the new path whose last transition is from i 6= m̄ (see γ2 in Proposition B.1). By changing this last

transition again, we can obtain a new modified path. In this way, we can remove all β-agents’ transitions

from i 6= m̄. Similarly, we can also remove all α-agents’ transitions from i 6= m̄ using the corresponding part

for α agents in Proposition B.1. Thus, we can obtain the desired results. Part (ii) immediately follows from

Proposition B.2.

Next, we consider the continuous limit. For this, we define a cost function c̄(p,q), for p = (pα, pβ),q =

(qα, qβ) ∈ ∆α ×∆β . Let q = p + (ρ(eαi − eαj ), 0) or q = p + (0, ρ(eβi − e
β
j )) for some ρ > 0. If p,q ∈ D̄(em̄),

c̄(p,q) = (pα,j − qα,j)(πα(m̄, p)− πα(j, p)) or c̄(p,q) = (pβ,j − qβ,j)(πβ(m̄, p)− πβ(j, p)).

We similarly define K̄m̄ as in the one population model and from ζ = ζ(t) ∈ Km̄, where t = ((tα, tβ); (iα, jβ)) =

(((tα1 , · · · , tαK), (tβ1 , · · · , t
β
K)); (iα1 , · · · , iαK); (jβ1 , · · · , j

β
K)) and define ω(t) =

∑K−1
s=0 c̄(p(s),p(s+1)). Then, we

have the following lemma.

Lemma B.5. Let t̄β, iα, jα be fixed. Then ω(·, t̄β) is affine. A similar statement holds for the case where

t̄α is fixed.

Proof. Suppose that tαi is associated with α agents’ transitions from m̄ to i. Similarly, tβj is associated with

β agents’ transitions from m̄ to j. Let p be the state from which the transitions represented by tαi start.

Then we find that

∂ω

∂tαi
= (πα(m̄, pβ)− πα(i, pβ)) + t̄βi (−Aβii +Aβim̄ −A

β
m̄m̄ +Aβm̄i)

+
∑
j 6=i

t̄βj (−Aβij +Aβim̄ −A
β
m̄m̄ +Aβm̄j)

and observe that πα(m̄, pβ)− πα(i, pβ) depends only on t̄β ; this shows that ω(·, t̄β) is affine.

Thus, we similarly consider

min{ω(t) : ζ(t) ∈ Km̄}.

Using the characterization that ω is affine, we show that if tα
∗

i > 0 in an optimal path, then πβ(m̄,q∗(t∗)) =

πβ(i,q∗(t∗)) at the exit point q∗(t∗), where tα
∗

i denotes the transition by an α-agent from strategy m̄ to i.
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Proposition B.4. Suppose that Condition B holds. Then, there exists ζ(t∗) ∈ Km̄ such that ω(t∗) =

min{ω(t) : ζ(t) ∈ Km̄} and if tα
∗

i > 0, then πβ(m̄,q(t∗)) = πβ(i,q(t∗)) and if tβ
∗

j > 0, then πα(m̄,q(t∗)) =

πα(j,q(t∗)), where q(t∗) is the end state of ζ(t∗).

Proof. Let t∗ be given such that ω(t∗) = min{ω(t) : ζ(t) ∈ Km̄}. Suppose that tα
∗

i > 0. The other case

follows similarly. Let t̄αi such that

πβ(m̄, (1− t̄αi )eαm̄ + t̄αi e
α
i ) = πβ(i, (1− t̄αi )eαm̄ + t̄αi e

α
m̄)

Then, we have

πβ(i, qα(tα
∗
))− πβ(m̄, qα(tα

∗
))

=πβ(i− m̄, (1− tα
∗

i )eαm̄ + tα
∗

i eαi ) +
∑
l 6=i

tα
∗

l πβ(i− m̄, eαl − eαm̄)

=πβ(i− m̄, (1− tα
∗

i )eαm̄ + tα
∗

i eαi ) +
∑
l 6=i

tα
∗

l (Aβli −A
β
lm̄ −A

β
m̄i +Aβm̄m̄). (B.1)

Now, we have two cases:

Case 1: tα
∗

i = t̄αi .

Since t∗ ∈ Km̄, πβ(i, qα(tα
∗
)) − πβ(m̄, qα(tα

∗
)) ≤ 0, the second term in (B.1) (

∑
l 6=i t

α∗

l (Aβli − A
β
lm̄ − A

β
m̄i +

Aβm̄m̄)) is non-positive. Also, the WBP implies that the same term is non-negative, and hence zero. Thus,

we have πβ(i, qα(tα
∗
)) = πβ(m̄, qα(tα

∗
)), which is the desired result.

Case 2: 0 < tα
∗

i < t̄αi .

Suppose that

πβ(m̄, qα(tα
∗
)) > πβ(i, qα(tα

∗
)). (B.2)

and

πβ(m̄, qα(tα
∗
)) = πβ(j1, qα(tα

∗
)), πβ(m̄, qα(tα

∗
)) = πβ(j2, qα(tα

∗
)), · · · , πβ(m̄, qα(tα

∗
)) = πβ(jL, qα(tα

∗
)),

(B.3)

where the other constraints for πβ are non-binding. To reach qα(tα
∗
), there are transitions, m̄ → j1, m̄ →

j2, · · · , m̄→ jL and thus

qα(tα
∗
) = eαm̄ +

L∑
l=1

tjl(e
α
jl
− eαm̄) + tα

∗

i (eαi − eαm̄) +
∑
k

sk(eαk − em̄)
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And we find that

πβ(j1 − m̄, qα(tα
∗
) =

L∑
l=1

πβ(j1 − m̄, eαjl − e
α
m̄)tjl + π(j1 − m̄, eαi − eαm̄)tα

∗

i + π(j1 − m̄, eαm̄ +
∑
k

sk(eαk − em̄))

=
L∑
l=1

(Aβm̄m̄ −A
β
j1m̄

)− (Am̄jl −Aj1jl)tjl + π(j1 − m̄, eαi − eαm̄)tα
∗

i + π(j1 − m̄, eαm̄ +
∑
k

sk(eαk − em̄))

· · ·

πβ(jL − m̄, qα(tα
∗
) =

L∑
l=1

πβ(jL − m̄, eαjl − e
α
m̄)tjl + π(jL − m̄, eαi − eαm̄)tα

∗

i + π(jL − m̄, eαm̄ +
∑
k

sk(eαk − em̄))

=
L∑
l=1

(Aβm̄m̄ −A
β
jLm̄

)− (Am̄jl −AjLjl)tjl + π(jL − m̄, eαi − eαm̄)tα
∗

i + π(jL − m̄, eαm̄ +
∑
k

sk(eαk − em̄))

Thus we can regard equations in (B.3) as a set of linear equations in variables, tj1 , tj2 , · · · , tjL . Then, from

the implicit function theorem and Lemma B.6 (Condition B) we can find functions t∗j1(ti), t
∗
j2

(ti), · · · , t∗jL(ti)

satisfying (B.2) and (B.3) for all ti ∈ [tα
∗

i − ε, tα
∗

i + ε] for some ε > 0. Observe that t∗j1(ti), t
∗
j2

(ti), · · · , t∗jL(ti)

are affine in ti. Then, we define φ(ti) = ω((ti, t
∗
j1

(ti), t
∗
j2

(ti), · · · , t∗jL(ti), t̄i1 , t̄i2 , · · · , t̄iL′ ), t̄
β). From Lemma

B.5, we see that φ(ti) is affine with respect to ti. We then find φ′ and again have two cases.

Case 2-1. Suppose that φ′ = 0. Then, by increasing ti up to πβ(m̄,q(tα)) = πβ(i,q(tα)), we can find t∗∗

which satisfies ω(t∗∗) = ω(t∗) and obtain the desired properties in the proposition.

Case 2-2. Suppose that φ′ 6= 0. Then, we have either φ(tα
∗

i − ε) > φ(tα
∗

i ) > φ(tα
∗

i + ε) or φ(tα
∗

i − ε) <
φ(tα

∗

i ) < φ(tα
∗

i + ε), in contradiction to the optimality of t∗.

Lemma B.6. The following statement holds:

πκ(m̄, r) = πκ(i1, r), · · · , πκ(m̄, r) = πκ(iK , r), rm̄ +
K∑
i=1

ril = 1, Σr = {m̄, i1, · · · , iK}

have a unique solution.

⇐⇒ det(D) 6= 0 where

D =


Aκm̄m̄ −Aκi1m̄ − (Aκm̄i1 −A

κi1i1) · · · Aκm̄m̄ −Aκi1m̄ − (Aκm̄iK −A
κ
i1iK

)

Aκm̄m̄ −Aκi2m̄ − (Aκm̄i1 −A
κ
i2i1

) · · · Aκm̄m̄ −Aκi2m̄ − (Aκm̄iK −Ai2iK )
...

. . .
...

Aκm̄m̄ −AκiKm̄ − (Aκm̄i1 −A
κ
iKi1

) · · · Aκm̄m̄ −AκiKm̄ − (Aκm̄iK −A
κ
iKiK

)



Proof. We have the following equivalence:

πκ(m̄, r) = πκ(i1, r), · · · , πκ(m̄, r) = πκ(iK , r), rm̄ +
K∑
i=1

ril = 1, Σr = {m̄, i1, · · · , iK}
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have a unique solution if and only if

πκ(m̄, (1−
K∑
l=1

ril)em̄ +
K∑
l=1

rileil)− πκ(i1, (1−
K∑
l=1

ril)em̄ +
K∑
l=1

rileil) = 0, · · · ,

πκ(m̄, (1−
K∑
l=1

ril)em̄ +
K∑
l=1

rileil)− πκ(iK , (1−
K∑
l=1

ril)em̄ +
K∑
l=1

rileil) = 0

have a unique solution. Let fix k. Then we have

πκ(ik, (1−
K∑
l=1

ril)em̄ +
K∑
l=1

rileil)− πκ(m̄, (1−
K∑
l=1

ril)em̄ +
K∑
l=1

rileil)

=Aκikm̄ −A
κ
m̄m̄ +

K∑
l=1

((Aκm̄m̄ −Aκikm̄)− (Aκm̄il −A
κ
ikil

))ril

and from this, we obtain the desired result.

Let K∗m̄ be the set of all paths in Km̄ that satisfy the conditions in Proposition B.4. Then, we obviously

have

min{ω(t) : t ∈ K∗m̄} = min{ω(t) : t ∈ Km̄}

Next, suppose that q∗ is the exit point of the minimum escaping path. If πβ(m̄,q∗) = πβ(i,q∗) for some i,

then πα(m̄,q∗) > πα(l,q∗) for all l and vice versa. This is because if πβ(m̄,q∗) = πβ(i,q∗) and πα(m̄,q∗) =

πα(l,q∗), then we can always construct the escaping path with a smaller cost by removing α-agents’ (or

β-agents’) transitions. Thus, Proposition B.4 implies that if πβ(m̄,q∗) = πβ(i,q∗) for some i, tα
∗

j = 0 for all

j.

Proposition B.5 (One-population mistakes). Suppose that Condition B holds. Then there exists t∗ such

that ω(t∗) = min{ω(t) : t ∈ K∗m̄} and t∗ involves only mistakes of one population.

Proof. Let t∗ that satisfies Proposition B.4 be given. Suppose that tα
∗

i > 0. The other case follows similarly.

Then, by Proposition B.4, πβ(m̄,q∗) = πβ(i,q∗) for some i. From the remarks before the proposition, we

have πα(m̄,q∗) > πα(l,q∗) for all l. Again, Proposition B.4 implies that tβ
∗

l = 0 for all l.

Finally, we have the following result.

Proposition B.6. Suppose that Condition B holds. Then there exists t∗ such that min{ω(t) : ζ(t) ∈ K∗m̄}
and

tα
∗

k > 0 for some k and tα
∗

k = 0 for all k 6= l

or

tβ
∗

k > 0 for some k and tβ
∗

k = 0 for all k 6= l

Proof. Suppose that the minimum cost escaping path involves only one population, say α-population, by

Proposition B.5. Then, xβ = em̄β for all x in the minimum cost escaping path. Thus we have πα(i, x) =
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πα(j, x) for all i, j 6= m̄ and for all x in the minimum cost escaping path. The costs of intermediate states in

the minimum cost escaping path are the same; the WBP implies that the minimum cost escaping path lies

in at the boundary of the simplex, yielding the desired result.

Now the proof for Theorem 5.1 follows from Proposition B.6.

C. Stochastic stability: the maximin criterion

In this section, we examine the problem of finding a stochastically stable state (Foster and Young, 1990).

When β = ∞, the strategy updating dynamic is called an unperturbed process, where each convention

becomes an absorbing state for the dynamic. For all β <∞, since the dynamic is irreducible, there exists a

unique invariant measure. As the noise level becomes negligible (β → ∞), the invariant measure converges

to a point mass on one of the absorbing states, called a stochastically stable state. One popular way to

identify a stochastically stable state is the so-called “maxmin criterion”7; when some sufficient conditions

are satisfied, this method, along with our results on the exit problem (Theorems 4.1 and 5.1), provides the

characterization of stochastic stability.

To study stochastic stability, we have to find a minimum cost path from one convention to another. More

precisely, we fix conventions i and j. For one-population models, we let the set of all paths from convention

i to j be

L(n)
i,j : = {γ : γ = (x0, · · · , xT ) andx0 = ei, xt+1 = (xt)

k,l, for some k, l, for all t < T − 1,

xT ∈ D(ej) for some T > 0}.

We define a similar set for two-population models. We then consider the following problem:

C
(n)
ij := min{I(n)(γ) : γ ∈ L(n)

i,j }. (C.1)

Again, when n is finite, C
(n)
ij is complicated, involving many negligible terms; we thus study the stochastic

stability problem at n = ∞, which again provides the asymptotics of the invariant measure and stochastic

stability when n is large. We let

Cij = lim
n→∞

1

n
C

(n)
ij (C.2)

and C be a |S| × |S| matrix whose elements are given by Cij for i 6= j (we set an arbitrary number if i = j).

Having solved the problems in equation (C.1) (and (C.2)), the standard method to find a stochastically

stable state is to construct an i− rooted tree with vertices consisting of the absorbing states and whose cost

is defined as the sum of all costs between the absorbing states connected by edges. Then, the stochastic

stable state is precisely the root of the minimal cost tree from among all possible rooted trees (see Young

(1998b) for more details). In principle, to find a minimal cost tree (hence a stochastically stable state),

we need to explicitly solve the problem in equation (C.1). However, in many interesting applications such

as bargaining problems, the minimum cost estimates of the escaping path in Theorem 4.1 are sufficient to

determine stochastic stability without knowing the true costs of transition between conventions; this method

7See Young (1993b, 1998b); Kandori and Rob (1998); Binmore et al. (2003); Hwang et al. (2018)
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is called the “maxmin” criterion (see the papers cited in footnote 7; see also Proposition C.1 below). More

precisely, we define the incidence matrix of matrix C, Inc(C), as follows:

(Inc(C))ij :=

1 if j = arg minl 6=i Cil

0 otherwise

In words, the incidence matrix of C has 1 at the i-th and j-th position if the minimum of elements in the

ith row achieves at the i-th and j-th position, and 0 otherwise. We also say that the incidence matrix of C

contains a cycle, (i, i1, i2, · · · , it−1, i), if

Inc(C)ii1Inc(C)i1i2 · · · Inc(C)it−1i > 0

for t ≥ 2. Observe that we can obtain a graph by connecting the vertices of conventions i, j whose (Inc(C))ij

is 1. Also, Inc(C) always contains a cycle and hence the graph contains the corresponding cycle. If this

cycle is unique, by removing an edge from the cycle, we can obtain a tree; this is a candidate tree to the

problem of finding a minimal cost tree. Now, we are ready to state some known sufficient conditions to

identify stochastic stable states.

Proposition C.1 (Binmore et al. (2003)). Let i∗ ∈ arg maxi minj 6=i Cij. Suppose that either

(i) maxj 6=i Cji∗ < minj 6=i Ci∗j

or

(ii) Inc(C) has a unique cycle containing i∗.

Then i∗ is stochastically stable.

Proof. See Binmore et al. (2003)

The sufficient conditions (i) and (ii) for stochastic stability in Proposition C.1 are called the “local

resistance test” and “naive minimization test,” respectively (Binmore et al., 2003). If strategy i pairwisely

risk-dominates strategy j (i.e., Aii − Aji > Ajj − Aji), then under the uniform mistake model, Cij > 1/2

and Cji < 1/2 hold. Thus, if strategy i∗ pairwisely risk-dominates all strategies (called a globally pairwise

risk-dominant strategy), then Ci∗j > 1/2 for all j 6= i and Cji∗ < 1/2 for all j 6= i. Thus condition (i)

in Proposition C.1 holds and i∗ is stochastically stable (see Theorem 1 in Kandori and Rob (1998) and

Corollary 1 in Ellison (2000)).

The number minj 6=i Cij in Proposition C.1 is, as mentioned, often called the “radius” of convention i;

this measures how difficult it is to escape from convention i (Ellison, 2000). Proposition C.1 shows that if

either (i) or (ii) holds, the state with the greatest radius (and hence the state most difficult to escape) is

stochastically stable. To check whether either condition (i) or (ii) holds, clearly it is enough to know that

minj 6=i Cij ,maxj 6=i Cji etc.

An important consequence of our main theorem on the exit problem (Theorem 4.1) is that it provides

the lower and upper bounds of the radius of convention i, minj 6=i Cij , as follows. On the one hand, a path

escaping from convention i to j (in L(n)
i,j ) by definition exits the basin of attraction of convention i and thus

L(n)
i,j ⊂ G

(n)
i in equation (30). Thus,

C
(n)
ij = min{I(n)(γ) : γ ∈ L(n)

i,j } ≥ min{I(n)(γ) : γ ∈ G(n)
i }, (C.3)
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and Theorem 4.1 shows that

lim
n→∞

1

n
min{I(n)(γ) : γ ∈ G(n)

i } = min
j 6=i

Rij . (C.4)

Then equations (C.3) and (C.4) together give a lower bound for minj 6=i Cij . On the other hand, if γi→j is

the straight line path from convention i to j ending at the mixed strategy Nash equilibrium involving i and

j, we have

I(n)(γi→j) ≥ min{I(n)(γ) : γ ∈ L(n)
i,j } = C

(n)
ij (C.5)

and

lim
n→∞

1

n
I(n)(γi→j) = Rij . (C.6)

Thus, equations (C.5) and (C.6) give an upper bound for minj 6=i Cij . These are the main contents of the

following proposition.

Proposition C.2. Suppose Condition A or Condition B holds. Then

(i) Cij ≤ Rij for all i, j.

(ii) minj 6=i Cij = minj 6=iRij.

(iii) arg minj 6=iRij ⊂ arg minj 6=i Cij for all i.

Proof. We obtain (i) by dividing equation (C.5) by n , taking the limit, and using (C.6). For (ii), from

equations (C.3) and (C.4), limn→∞
1
nC

(n)
ij ≥ minj 6=iRij , implying that minj 6=i Cij ≥ minj 6=iRij . Also

from (i), we have minj 6=i Cij ≤ minj 6=iRij . Thus, (ii) follows. We next prove (iii). Suppose that j∗∗ ∈
arg minj 6=iRij and j∗ ∈ arg minj 6=i Cij . Then from (i) and (ii), Rij∗∗ = Cij∗ ≤ Cij∗∗ ≤ Rij∗∗ . Thus

j∗∗ ∈ arg minj 6=i Cij and we have arg minj 6=iRij ⊂ arg minj 6=i Cij .

The immediate consequence of Proposition C.2 is that arg maxi minj 6=i Cij = arg maxi minj 6=iRij and

maxj 6=i Cji ≤ maxj 6=iRji. Further, if arg minj 6=i Cij is unique for all i, from Proposition C.2, the incidence

matrices of C and R are the same. In general, arg minj 6=i Cij may not be unique for some i. In this case,

Proposition C.2 (iii) implies that if Rij = 1, then Cij = 1, which, in turn, implies that whenever R yields a

graph containing a unique cycle, C yields the same graph containing the unique cycle. These facts enable

us to replace C in Proposition C.1 by R—a |S| × |S| matrix consisting of Rijs (again, we assign arbitrary

numbers at the diagonal positions). This is our main result on stochastic stability.

Theorem C.1 (Stochastic Stability). Suppose that Condition A or Condition B holds. Let i∗ ∈
arg maxi minj 6=iRij. Suppose also that either

(i) maxj 6=iRji∗ < minj 6=iRi∗j

or

(ii) Inc(R) has a unique cycle containing i∗.

Then, i∗ is stochastically stable.

Proof. Let i∗ ∈ arg maxi minj 6=iRij . From Proposition C.2 (iii), i∗ ∈ arg maxi minj 6=i Cij . We first suppose

that (i) holds. Now, Propositions C.2 (i) and C.2 (ii) imply that

max
j 6=i∗

Cji∗ ≤ max
j 6=i∗

Rji∗ < min
j 6=i∗

Ri∗j = min
j 6=i∗

Ci∗j .
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Thus, Proposition C.1 implies that i∗ is stochastically stable. Now, suppose that (ii) holds. From Proposition

C.2 (iii) and the remarks before Theorem C.1, Inc(C) contains a unique cycle containing i∗, too. Thus,

Proposition C.1 again implies that i∗ is stochastically stable.

Note that two-strategy games trivially satisfy both conditions (i) and (ii) in Theorem C.1. Here, we

can easily check that the stochastic stable state is the risk-dominant equilibrium. In particular, Kandori

and Rob (1998) show that when a coordination game exhibits positive feedback (the marginal bandwagon

property), a “globally pairwise risk-dominant equilibrium” is stochastically stable under the uniform mistake

model (see also Binmore et al. (2003)). However, when the number of strategies exceeds two, Theorem C.1

shows that stochastically stable states under the logit choice rule do not necessary satisfy the criterion of

pairwise risk dominance. To summarize, Theorem C.1 asserts that when either condition (i) or condition (ii)

is satisfied, the state with the largest radius (and hence the most difficult state to escape) is stochastically

stable, in line with the existing results for uniform interaction models. However, the radius now depends on

the opportunity cost of individuals’ mistakes as well as the threshold number of agents inducing others to

play a new best-response.

D. Stochastic stable states for Nash demand games

We first show that Nash demand game,

(Aαij , A
β
ij) :=

(δi, f(δj)), if i ≤ j
(0, 0), if i > j,

(D.1)

satisfies Condition B.

Condition B (i).

We divide cases as follows:

(1) m̄ > i > j.

Aαm̄m̄ −Aαim̄ − (Aαm̄j −Aαij) = δm− δi > 0, Aβm̄m̄ −A
β
m̄i − (Aβjm̄ −A

β
ij) = f(δm̄)− (f(δm̄)− f(δi)) > 0

(2) m̄ > j > i.

Aαm̄m̄ −Aαim̄ − (Aαm̄j −Aαij) = δm− δi+ δj > 0, Aβm̄m̄ −A
β
m̄i − (Aβjm̄ −A

β
ij) = f(δm̄)− f(δm̄) > 0

(3) i > m̄ > j.

Aαm̄m̄ −Aαim̄ − (Aαm̄j −Aαij) = δm > 0, Aβm̄m̄ −A
β
m̄i − (Aβjm̄ −A

β
ij) = f(δm̄)− f(δi)− (f(δm̄)− f(δi)) = 0

(4) j > m̄ > i.

Aαm̄m̄ −Aαim̄ − (Aαm̄j −Aαij) = δm̄− δi− (δm̄− δi) = 0, Aβm̄m̄ −A
β
m̄i − (Aβjm̄ −A

β
ij) = f(δm̄) > 0
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(5) i > j > m̄.

Aαm̄m̄ −Aαim̄ − (Aαm̄j −Aαij) = δm̄− δm̄ = 0, Aβm̄m̄ −A
β
m̄i − (Aβjm̄ −A

β
ij) = f(δm̄)− f(δi)− (−f(δi)) > 0

(6) j > i > m̄.

Aαm̄m̄ −Aαim̄ − (Aαm̄j −Aαij) = δm̄− (δm̄− δi) > 0, Aβm̄m̄ −A
β
m̄i − (Aβjm̄ −A

β
ij) = f(δm̄)− f(δi) > 0

Condition B (ii).

We first show the following lemma.

Lemma D.1. Suppose that A is a n× n matrix such that

Aij = ai if i ≤ j, = 0 if i > j, ai < ai+1 for all i = 1, · · · , n− 1

Then there exists a unique x� 0 such that Ax = 1 where 1 is the column vector consisting all 1’s.

Proof. Let x be

xT =

(
1

a1
− 1

a2
, · · · , 1

an−1
− 1

an
,

1

an

)
Note that by the assumption, we have x� 0. Then we have

(Ax)k =
n∑
i=1

Akixi =
k∑
i=1

akxi = ak

n∑
i=k

xi = ak
1

ak
= 1

Suppose that there exists y such that Ay = 1. Then, since det(A) 6= 0, y = A−11 = x. Thus x � 0 is

unique.

Now let i1, · · · , iK . We rearrange ik’s such that i1 < · · · < iK . Let A be a matrix whose rows and columns

consist of i1, · · · , iK . Then from (D.1), the hypothesis of Lemma D.1 is satisfied. Thus, by normalizing x,

we can find a unique q ∈ ∆β which satisfies the desired property.

Recall that

RUmj := min{(Aβmm −A
β
mj)

(Aαmm −Aαjm)

(Aαmm −Aαjm) + (Aαjj −Aαmj)
, (Aαmm −Aαj̄m)

(Aβmm −A
β
mj)

(Aβmm −Aβmj) + (Aβjj −A
β
jm)
}

and

(Aαij , A
β
ij) :=

(δi, f(δj)), if i ≤ j
(0, 0), if i > j

Then we divide cases:

(i) m < j. We find that

Aβmm = f(δm), Aβmj = f(δj), Aαmm = δm,Aαjm = 0, Aαjj = δj, Aαmj = δm
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and

Aαmm = δm,Aαjm = 0, Aβmm = f(δm), Aβmj = f(δj), Aβjm = 0, Aβjj = f(δj)

Using these, we find that

(Aβmm −A
β
mj)

Aαmm −Aαjm
Aαmm −Aαjm + (Aαjj −Aαmj)

= (f(δm)− f(δj))
δm

δj

and

(Aαmm −Aαjm)
Aβmm −A

β
mj

Aβmm −Aβmj + (Aβjj −A
β
jm)

= δm
f(δm)− f(δj)

f(δm)
.

(ii) m > j. We find that

Aβmm = f(δm), Aβmj = 0, Aαmm = δm,Aαjm = δj, Aαjj = δj, Aαmj = 0

and

Aαmm = δm,Aαjm = δj, Aβmm = f(δm), Aβmj = 0, Aβjm = f(δm), Aβjj = f(δj)

Using these, we find that

(Aβmm −A
β
mj)

Aαmm −Aαjm
Aαmm −Aαjm + (Aαjj −Aαmj)

= f(δm)
δm− δj
δm

and

(Aαmm −Aαjm)
Aβmm −A

β
mj

Aβmm −Aβmj + (Aβjj −A
β
mj)

= (δm− δj)f(δm)

f(δj)
.

Thus we have

RUmj =

(f(δm)− f(δj)) δmδj ∧ δm
f(δm)−f(δj)

f(δm) if m < j

f(δm) δm−δjδm ∧ (δm− δj) f(δm)
f(δj) if m > j

Or

RUmj = min
m<j
{(f(δm)− f(δj))

δm

δj
∧ δmf(δm)− f(δj)

f(δm)
} ∧min

m>j
{f(δm)

δm− δj
δm

∧ (δm− δj)f(δm)

f(δj)
}.

Note that we have

RImj = min
m<j
{δmf(δm)− f(δj)

f(δm)
} ∧min

m>j
{f(δm)

δm− δj
δm

}.

Then we would like to find minj R
U
mj . To do this, we first have the following lemma.

Lemma D.2. Suppose that f(x) ≥ 0, f ′(x) < 0 and f ′′(x) < 0 for all x. Let y be given.

(i) f ′(x)
f(x) is decreasing in x.

(ii) xf ′(x)− f(x) is decreasing in x.

(iii) f ′(x) + f(x)
x is decreasing in x.

(iv) f ′(x) + ( f(x)
x )2 is decreasing in x.

(v) (f(y)− f(x)) yx is increasing in x

(vi) (y − x) f(y)
f(x) is decreasing in x.
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Proof. (i)-(iv) are easily verified by taking derivatives. We show (v). (vi) follows similarly. Let ϕ(x) :=

(f(y)− f(x)) yx . We find that

ϕ′(x) = y
−f ′(x)x+ f(x)− f(y)

x2

Then since −f ′(x)x+ f(x) is increasing in x, we have

−f ′(x)x+ f(x)− f(y) ≥ f(0)− f(y) ≥ 0

since f is decreasing. Thus ϕ′(x) > 0.

Thus using Lemma (D.2), we find that

min
j
RUmj = min{(f(δm)− f(δ(m+ 1)))

δm

δ(m+ 1)
, δm

f(δm)− f(δ(m+ 1))

f(δ(m))
, f(δm)

δ

δm
, δ

f(δm)

f(δ(m− 1))
}

We let

r1(m) := (f(δm)− f(δ(m+ 1)))
δm

δ(m+ 1)
, r2(m) := δm

f(δm)− f(δ(m+ 1))

f(δ(m))

and

l1(m) := f(δm)
δ

δm
, l2(m) := δ

f(δm)

f(δ(m− 1))
.

Lemma D.3. We have the following results:

(i) r1 and r2 are increasing in m.

(ii) l1 and l2 are decreasing in m.

Proof. (i). Since f ′′ < 0, f(δm)− f(δ(m+ 1)) is increasing. Since δm
δ(m+1) is increasing, two terms in r1 are

both positive and increasing, hence r1 is increasing. Also since f ′′ < 0, f(δ(m+1))
f(δm) is decreasing in m. Thus

r2 is increasing.

Then r1 and r2 are increasing in m and l1 and l2 are decreasing in m.

Lemma D.4. Suppose that

m∗ ∈ arg max
m

min
j
RUmj

Then for all m < m∗, minj R
U
mj = RUm,m+1 and for all m > m∗, minj R

U
mj = RUm,m−1

Proof. Let R̂(m) := minj R
U
mj . We show that

If m < m∗, then R̂(m) = r1(m) or r2(m)

If m > m∗, then R̂(m) = l1(m) or l2(m)

and then the desired results follow. We show the first claim. (the second claim follows similarly). Let

m < m∗ and R̂(m) = l1(m). Then since l1(m) is decreasing in m, l1(m) > l1(m∗) and by definition, we have

R̂(m∗) ≤ l1(m∗). Thus we have

min
j
RUmj = R̂(m) = l1(m) > l1(m∗) ≥ R̂(m∗)
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which is contradiction to m∗ ∈ arg maxm minj R
U
mj If R̂(m) = l2(m), the exactly same argument leads to a

contradiction. Thus if m < m∗, then R̂(m) = r1(m) or r2(m).

Let s∗ and sI such that

−f ′(s∗) =
f(s∗)

s∗
and − f ′(sI) = (

f(sI)

sI
)2

and for µ ∈ [0, s̄αδ ] ∩ R, let µI = µI(δ), µ∗ = µ∗(δ), and µ∗∗ = µ∗∗(δ) such that

r1(µ∗) = l1(µ∗), r2(µ∗∗) = l2(µ∗∗) and r2(µI) = l1(µI). (D.2)

Lemma D.5. We have the following results. As δ → 0,

δµ∗(δ)→ s∗, δµ∗∗(δ)→ s∗, δµI(δ)→ sI .

Proof. For δµ∗(δ)→ s∗, let

ϕδ(x) :=
(f(x)− f(x+ δ))

δ

x2

(x+ δ)f(x)
, ϕ(x) := −f ′(x)

x

f(x)
.

Then ϕδ converge uniformly to ϕ and ϕδ(δµ
∗(δ)) = r1(µ∗)

l1(µ∗) = 1 and ϕ(x∗) = 1. Then the uniform convergence

of ϕδ to ϕ implies that δµ∗(δ)→ s∗. The second and third parts follow similarly.

Next we show that

Lemma D.6. We have the following result.

(i) If s∗ > sE, then s∗ > sI > sE and −f ′(sI) sI

f(sI) < 1 and −f ′(s∗) < 1

(ii) If s∗ < sE, then s∗ < sI < sE and −f ′(sI) sI

f(sI) > 1 −f ′(s∗) > 1

Proof. We show (i) and (ii) follows similarly. Suppose that s∗ > sE . Let sI ≥ s∗. Since from Lemma D.2

−f ′(x)− f(x)
x is increasing, we have

−f ′(sI)− f(sI)

sI
≥ −f ′(s∗)− f(s∗)

s∗
= 0 = −f ′(sI)− (

f(sI)

sI
)2

which implies that
f(sI)

sI
≥ 1 =

f(sE)

sE

Since f(s)
s is decreasing in s, we have

sE ≥ sI ≥ s∗ > sE

which is a contradiction. Now suppose that sI ≤ sE . Then since sE < s∗,

−f ′(sI)− f(sI)

sI
< −f ′(s∗)− f(s∗)

s∗
= 0 = −f ′(sI)− (

f(sI)

sI
)2

which implies that
f(sI)

sI
< 1.
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which is a contradiction to f(sI)
sI ≥

f(sE)
sE = 1 from sI ≤ sE . Now from s∗ > sI and s∗ > sE , respectively we

have

−f ′(sI) sI

f(sI)
< 1 and − f ′(s∗) < 1.

Lemma D.7. We have the following results.

(i) If s∗ > sE, then there exists δ such that for all δ < δ, µ∗ > µI and

r1(µI) < r2(µI) = l1(µI) and r1(µ∗) < l2(µ∗)

where µI = µI(δ) and µ∗ = µ∗(δ) are defined in (D.2).

(ii) If s∗ < sE, then there exists δ such that for all δ < δ, µ∗∗ < µI and

l2(µI) < r2(µI) = l1(µI) and l2(µ∗∗) < r1(µ∗∗)

where µI = µI(δ) and µ∗ = µ∗(δ) are defined in (D.2).

Proof. We first prove (i). Suppose that s∗ > sE . From Lemma D.6, we have

− f ′(sI) sI

f(sI)
< 1 and − f ′(s∗) < 1 (D.3)

Since δµI → sI (Lemma D.5) and sI < s∗ and from (D.3)

r1(µI)

l1(µI)
→ −f ′(sI) sI

f(sI)
< 1,

there exists δ such that for all δ < δ, r1(µI) < l1(µI) and µI < µ∗. For the second inequality r1(µ∗) < l2(µ∗)

similarly follows from

r1(µ∗)

l2(µ∗)
< 1 ⇐⇒ f(δµ∗)− f(δ(µ∗ + 1))

δ

δµ∗

δ(µ∗ + 1)

f(δ(µ∗ − 1))

f(δµ∗)
< 1

and
r1(µ∗)

l2(µ∗)
→ −f ′(s∗) < 1

from (D.3).

Next we show (ii). Similarly to (i), from Lemma D.6, we have we have

−f ′(sI) sI

f(sI)
> 1 and f ′(s∗) > 1

Then we have
l2(µI)

r2(µI)
< 1 ⇐⇒ δ

f(δµI)− f(δ(µI + 1))

f(δµI)

f(δ(µI − 1))

f(δµ)

δµ
< 1

and
l2(µ∗∗)

r1(µ∗∗)
< 1 ⇐⇒ δ

f(δµ∗∗)− f(δ(µ∗∗ + 1))

δ(µ∗∗ + 1)

δµ∗∗
f(δµ∗∗)

f(δ(µ∗∗ − 1))
< 1
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Figure D.8: Determinations of stochastically stable states. For Panel A, f(x) =
√

1− x
3 for x ∈ [0, 3],

δ = 0.01. For Panel B, f(x) =
√

3(1− x), for x ∈ [0, 1], δ = 0.01.

and from these, (ii) follows.

Lemma D.8. Suppose that µ∗ is given by (D.2).

(i) If s∗ > sE, then

µ∗ ∈ arg max
µ∈[0, s̄δ ]

min{r1(µ), r2(µ), l1(µ), l2(µ)}

(ii) If s∗ < sE, then

µ∗∗ ∈ arg max
µ∈[0, s̄δ ]

min{r1(µ), r2(µ), l1(µ), l2(µ)}

Proof. Let s∗ > sE . Choose δ satisfying Lemma D.7. Then for all δ < δ, we have

r1(µ∗) = l1(µ∗) < l1(µ0) = r2(µ0) < r2(µ∗)

and thus r1(µ∗) ≤ min{r2(µ∗), l1(µ∗), l2(µ∗)}. Now, if µ < µ∗ then r1(µ∗) > r1(µ) since r1(·) is increasing.

If µ > µ∗, then r1(µ∗) = l1(µ∗) > l1(µ) since l1(·) is decreasing. Thus we have

r1(µ∗) ≥ min{r1(µ), r2(µ), l1(µ), l2(µ)}

for all µ ∈ [0, s̄δ ]. This shows that

µ∗ ∈ arg max
µ∈[0, s̄δ ]

min{r1(µ), r2(µ), l1(µ), l2(µ)}

Now let s∗ < sE . Again choose δ satisfying Lemma D.7. Then for all δ < δ, we have

r2(µ∗∗) = l2(µ∗∗) < r1(µ∗∗) < r1(µI) = l1(µI) < l1(µ∗∗)

and similarly since r2 is increasing and l2 is decreasing, we obtain the desired result.

Thus we have the following result.
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α favored transition β favored transition Stochastic
stability

β mistake (A) α mistake (B) β mistake (C) α mistake (D)

Uniform δm
s̄−α

∆f(δm)
f(δm)

δ
δm

f(δm)
f(δ)

Unintentional
Intentional © © ∆f(δm)

f(δm) ≈
δ
δm

Logit
Unintentional ∆f(δm) δm

δ(m+1) δm∆f(δm)
f(δ(m)) f(δm) δ

δm δ f(δm)
f(δ(m−1))

sNB > sE © 4 © ∆f(δm) δm
δ(m+1) ≈ f(δm) δ

δm

sNB < sE © 4 © δm∆f(δm)
f(δ(m)) ≈ δ

f(δm)
f(δ(m−1))

Logit
Intentional © © δm∆f(δm)

f(δ(m)) ≈ f(δm) δ
δm

Table D.2: Comparison of solutions under various mistake models. ∆f(δm) := f(δm) − f(δ(m + 1)).
Resistances are determined by the minimum of A,B,C, and D. In the rows tilted with “unintentional”,
“intentional”, sNB > sE , sNB < sE , and “logit intentional” show the smaller ones. Thus under the logit
unintentional dynamic, when sNB > sE , the transition always occurs by β population, while sNB < sE ,
the transition always occurs by α population. Entries marked by 4 and © occurs in the minimal tree, but
entries marked by © are only binding and hence determining the stochastic stable convention.

Theorem D.1. Consider the logit choice rule. There exists δ such that for all δ < δ, the stochastic stable

state mst(δ) converges to sNB: i.e.,

δmst(δ)→ sNB

where

−f ′(sNB) =
f(sNB)

sNB
.

Proof. Choose δ satisfying Lemma D.7. Let δ < δ. If s∗ > sE , then pick mst(δ) to be the integer closest to

µ∗(δ) in (D.2). If s∗ < sE , the pick mst(δ) to be the integer closest to µ∗∗(δ). Then Lemma D.4, Lemma

D.8 and Theorem C.1 show that mst(δ) is a stochastically stable state. Since µ∗(δ), µ∗(δ) → s∗, we have

δmst(δ)→ s∗ = sNB and obtain the desired result.

Theorem D.2. Consider the intentional logit choice rule. There exists δ such that for all δ < δ, the

stochastic stable state mst(δ) converges to sI : i.e.,

δmst(δ)→ sI

where

−f ′(sI) = (
f(sI)

sI
)2.

Proof. Under the intentional logit choice rule, we have

min
j
RImj = min{δmf(δm)− f(δ(m+ 1))

f(δm)
, f(mδ)

δ

mδ
}

Then the exactly same argument as for the unintentional logit choice rule shows the desired result.
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