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A. Exit problem: one population models

Proof of Lemma 4.1. (i) Since ¢\™ (z,z"*) = n(m, z) — 7(k,z), we obtain

I (y2) = 1M (1) = [w(m, x) = m(k, x) + 7 (m, 2"*) = 7 (l, 2"")]

([Ami + Ami + A — Aig] — [ Amm + Ami + At — Aix])

(Amm — Ay — A + A) >0

SI=3|e

from the MBP.
(ii) We find that

7(j ™) 4 (i, 27D T) — (i, o)

)
") -
WM@WU—W@x’)+MMm(mm% (i, 2T DY)
)
)

§|
8

) — (g, ™) + w(m, a0y (g (M Dm)))
. w(i,a™) + w(m, 2" ﬂ><mﬂ>> — n(j,almOmD)]
Ami — Amj + Ajim — Aji — Aim + Aijl + [Aim — Aij + Amj — Ami — Ajim + Aji

From this we obtain the desired results. O

Proof of Proposition 4.1. Part (i). In the proof, we suppress the superscript (n). Let v = (21,22, -+ ,27)
be a path in G, \ Jm. We recursively construct a new path 4 € J with a cost lower than or equal to the

cost of 7.

For this, let ¢ be the greatest number such that x;,1 = (x;)"! with i # m,l. We distinguish several
cases. If t =T — 1, we consider a new path 4 obtained by modifying the last transition as follows:

Y= (:L'l; T2yt ,TT—1, (fol)m’l)

Then, we have I(%) = I(7y), and show that the path still exits D(e;s). To prove this, we only need to show that
if z ¢ D(em) then 2™ ¢ D(ey,), because this implies that if (zp_1)"" ¢ D(es), then (z7_1)™! ¢ D(em).
Now, suppose that z ¢ D(ey) and that there exists k such that w(m, z) < 7(k, z). Then, we have

) . 1
[m(k,2™") —m(m, 2™")] — [7(k, z) — m(m, 2)] = o (Aki — Agm — A + Amm) > 0
by Condition A. Thus, we have [r(k, 2™%) — 7(m, 2™%)] > [r(k,2) — m(m, 2)] > 0 and so 2™ ¢ D(ez).

Now, suppose that ¢ < T — 1. Then we have z;; = (z;)"" and 24,5 = (xt)(i’l)(m’k) for k # m. Note
that k& # m and [ # ¢. Now we need to distinguish four cases.
)i,m

Case 1: If k = 4,1l = m, then x4 = (24 ,Tryo = xp. Thus, we consider ¥ = (x1, -+, Tt, Teq2, - ,TT);

clearly, I(y) < I(7), since (¢, T141) = 0,¢(@141, T42) = 0, and c(zy, T442) = 0.
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Case 2: If k =i,l # mthenz;15 = (xt)(i’l)(m’k) = (24)™!. Again, we consider the path ¥ = (21, -+ , 2, T10, -

and find that I(%) < I(y) because we have c(zy, Try1) = c(xy, Xp12) = m(m, xy) — 7(l, ) and c(xp11, Tga2) >
0.
Case 3: If k # 4,1 = m, then x40 = x%i’m)(m’k) = (z4)"*. Again, let ¥ = (z1,--- , %4, Tt42, - ,27). Then
we have c¢(zy, x;41) = 0 and

c(Tq1, Teq2) — (@, Toq2) = C(Ii’la Igi’l)(m’k)) —c(
= 7T(T_n, xi’m) - W(kv xi}m) - [W(mv xt) - W(k’ xt)]

= (A~ A~ A — A4i]) 2 0

(ivk))

l’t,IEt

from the MBP, implying that I(¥) < I(7).
Case 4: If k # i,m and [ # i,m, then we can apply Lemma 4.1. We modify the path by considering the
alternative transitions, Z;,1 = ()™ and ;49 = () ™DER) T (2,)™! ¢ D(ey), then we define

’7 = ($1,$2, s, Tty (wt)m’l)

and because c(z¢, (,)™!) = (x4, (x4)"!) and (2411, 7412) > 0, we obtain I(3) < I(v). If (z)™! € D(ewm),
then we define
’3/ = (l']_, T2, Tty (xt>m’l7 (‘rt)(M7l)(Z7k)7 o ?J;T)'

to find that I(§) < I(v) from Lemma 4.1. Proceeding inductively we construct a path 4 € 75 with a cost
lower than or equal to the cost of ~.

Part (ii). We denote by c(a, a®/*) be the cost of a path from a to a*/* in which agents switch from i to j,
p-times consecutively and let w(k,x —y) := 7(k, z) — 7(k,y) and vy,—p be a path from a to b. We first show
the following lemma.

Lemma A.1. We have the following results.

(i) cla,a™"P) —c(b,0™"P) = pl(n(m,a) - w(k,a)) — (x(m,b) — 7(k,b))]
(i) nle(a, ™) = c(b,b™ )] + ple(6™ ™", b) — c(a™", a)] = 0
(@) I (Yamwospmie) = L(Yamss)] + U (Yarmnsprmn) = I(a—p)] = 0

WHETE Yok, m.n_ypkmmy Yk mom bk mmy GNA Yo—p consist of the same transitions.

Proof. For (i), we have

c(a,a™*P) = w(m, x) — w(k,x) + 7(m, ™) — w(k, ™) + - - 4 7 (M, 2P — w(k, x™FPTL)

-1)1
= plw(m, ) —wka) + PO A At A — A,

For (ii), first using (i) (by setting b*™" = a), we first find that

c(BF™N ) — (™ a) = n[(x(m, BB — 7k, BT — (7(m, a0 — w(k, a® ).
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Then we have

lela, a™) = e(b, b)) + ple(HET ) — (b, a)
=npl(r(m, a) = w(k, @)) = (x(0m, b) = (%, b)) + 1ol (1m, B™1) — 1 (Je, BE1) — ((1m, 0577) — (I, a7 1))] = 0

For (iii), suppose that (a,b) = (a1, az,--- ,ar) where ap = b. Then a; 1 = (a;)*!* for some iz, ;. First we
find

U[C(atm’k’p, (atm’k»l’)ihlt) _ c(at,atihlt)] + p[c(atk’m‘", (atk,m,n)it,lt) _ c(at, atit,lt)]

=nlr(m, ;™" — a;) = w(ly, 0™ — a)] + pl(m, ar™™" = ap) = w(ly, ™ - ay)]

1
:EW[P(—Amm + Amr) = p(=Arm + A)] + pn(—=Amk + Amm) — 1(=Ayx + Ai,m)] =0
We thus find that

nle(a™ P, ™) — e(a,0)] + ple(a™ ™, BT — c(a, b)]

Next, we show the following extended version of comparison principle 2, where we e denote by (m,k;n)
n-times consecutive transitions from m to k. Also, let ™" be a new state induced by the agents’ 7-times
consecutive switches from m to k from an old state, x.

Lemma A.2. Consider the following paths (see Panel C, Figure 3):

T —_ Iﬁ’l,k,r[ s Y e 2z [ Zﬁl,kyp
(m,k;m) (m,k;p)
v ——— gk gk (k) mikp ZMsksp
(m,k5m) (m,k;p)
" T - ykﬂnsrl PN Zkumg'ﬂ [N 2z RN Zm’k’P
(m,k;m) (m,k50)
where - - - denotes the same transitions. Then the following holds:

W[I(n)(7> _ [(n)(’y/)} + p[[(n)(,y) _ I(n)(,y//>] —0.

Thus, either
1) 2 1) or T0(3) 2 T7(")

holds.
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Proof. We find that

nI(Y') = I+ plI(v") = I(7)]
= nle(@™ RN, gmEMRL)) — oz, 2] 4 ple(2HTN, 2) — c(w, ™)
)
+le(aRMmER) ey — (g™ R )] 4 ple(a, yFTT) = o(a™ R, y)]
(ii)
+ 0l (e s zmikn) = L(Yy—2)] + pL (Vyrmm s zmmn) = 1(Yy—2)]
(iii)

Then for (i), if we let @ = 2™"" and b = z in Lemma A.1 (ii), we have (i)= 0. For (ii), if we let a = (™)
and b = y in Lemma A.1 (ii), we have (ii)= 0. For (iii), if we let a = y and b = z in Lemma A.1 (iii), we
have (iii)= 0. O

Then, Part (ii) follows from Lemma A.2. Suppose that v € ICj7,. Then, by applying Lemma A.2 repeatedly,
we collect the same transitions and find 4 € K7, such that I(¥) < I(v). Thus we obtain the desired result. [

Proof of Proposition 4.2. Recall that
DM (ey) : ={x e A . x(m,x) > n(l,z) for all I}

and let
D(em) :={p€ A: w(m,p) > n(l,p) for all I} (A1)

and dD(e;) be the boundary of D(es). The following lemma serves to find the continuous version of the
cost function, c(x,z"7). Suppose that p,q € A with ¢ = p + a(e; — e;) for some a > 0. If p,q € D(es), we

define
1

&(p,q) = 5(pj — ¢;)(m(m,p + ¢) = (i, p + q)). (A.2)

Lemma A.3. Let v = vy—y be a straight-line path between = and y™ in D(es) C AP ith y() =
(™ 4 #(ei —e;). Suppose that 2 — p and y™ — q for p,q € A asn — co. Then,

1 1 i .
lim —I¢ )(’Yx—w) :i(pj —q;)(m (m,p+q) — 7 (i,p+q))

n—oo n

Proof. Since the path lies in D(e;;) we have

M™ 1

1D(amy) = 3 7 (Aa® + (e =) =7 (3,2 + S(ei = ey)] - (A.3)
=0

Now using that 1+2+---+ K — 1= (K — 1)K/2, we obtain

M™ 1
" L ) (n M@ (M — 1)1
Z (IE( )+E(€i*€j)) = M( )’I'( )+¥ﬁ<62763) =M

t=0

2™ £y M

2 3 nlGim):
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By combining equations (A.3) and (A.4) and noting that @ — pj — ¢; as m — 0o, we obtain the desired
result. O

The expression of costs for continuous paths in Lemma 2 in Sandholm and Staudigl (2016) is the same as the
cost expression in Lemma A.3, since continuous paths in Lemma 2 in Sandholm and Staudigl (2016) belong
to the special class of paths obtained by comparison principles. Next, we prove the following lemma.

Lemma A.4. Suppose that X™) C X and f : X — R is a continuous function that admits a minimum and
f 2 X — R. Suppose also that for all x € X, there exists {x™} such that ™) € X 2 — 2 and
f(2™) = f(z). Then, we have

nin | f («) — min f(z)

Proof. Let {z(™},, be the sequence of minimizers of min ¢ y») f™ (z) and * be the minimizer of min,e x f(z).
Suppose that £ (z(™) does not converge to f(z*). Then there exist ¢g > 0 and {ny} such that

Fr (@) > f(a*) + €. (A.5)
Further, from the hypothesis, we choose ™ such y(™ — z*. Since {x(M1 is the sequence of minimizers, we

have

FOO (D) > 0 (200 (A.6)

Now, by taking & — oo in equations (A.5) and (A.6), we find that f(x*) > f(z*)+eo, which is a contradiction.
O

Now we let X(") := IC%ZZ) and X = K, and f® = %I(") and f = I. Then Lemmas A.3 and A.4 show
that 1
lim — min{I™(y):v e ICS—:LL)} =min{I(¢): ¢ € K} = min{w(t) : ((t) € K}

n—oo n

Proof of Proposition 4.3. The proof of Proposition 4.3 follows from Lemmas A.5 and A.6.

Lemma A.5. Let r € D(ey,). Suppose that
w=r+ale — en), 7(M,w) = m(k,w), andw & D(ey).
Then there exists j # k,m and B < a such that

z:=1+PB(ej —en), n(M, z) =n(j,2), and w(j,r) > w(k,r)

Proof. Since w ¢ D(ey,), there exists j # k,m such that «(j,w) > 7(m,w). Since 7(m,r) > m(j,r), there
exists 0 < o’ < «a such that v =7 + o/(e; — e) and
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Let o' =r + a(e; — em). Note that o' = v — o/(ex, — em) + a(e; — e5). Then

ﬂ(] —m, O/) = ﬂ(] —-m, 70‘/(616 - em) + a(ej - em))
= —d'n(m —j,em —ex) + an(m — j,eq — e;)
>a(n(j—m,e; —em) — (M —j,eq — €k))

>0

Thus since 7 (m,r) > 7(j,r), there exists z = r 4+ B(e; — e) such that 7(m, z) = 7(j,2) and 8 < a. Next,
we show that 7(j,7) > w(k,r). Suppose that 7(k,r) > 7(j,r). Then we find

m(m —j,w) =n(m —j,w) —7(m — k,w) =r(k,w) —n(j,w) =n(k —j,r) +ar(k—jex —em) >0

which is a contradiction to the fact that m(m — j,v) = w(m — j,r + &/ (ex — ez)) = 0 for & < a. Thus, we
have 7 (j,7) > w(k,r).

Lemma A.6. Let r € D(ey,) and ¢ € 0D(es,) and g =71 +tr(e; — em). Suppose that
m(m,q) = m(ky1,q) and w(m, q) = m(kz2, q)- (A7)
where ki # ky. Then there exists p € 0D(ew) such that j # 1,m and p =1+ [(e; — er,), where 0 < 5 < tr,

m(m,p) =m(j,p) and c(r,p) < c(r,q).

Proof. From the condition, ¢y, is the length of transition from m to I, leading to ¢q. Because of (A.7), we can
choose k # [ such that

m(m, q) = m(k,q).

Let 0:=r +tr(ex — €r). That is, o is the point obtained from r by ¢, transitions from m to k). Since

m(k —m,r+tr(ex —em)) =mlk —m,q+tr(em —e) +trler —em))
=trm(k —m,ex —e) >0

hold from the MBP, we have
w(m,r) > 7(k,r) and w(m,o0) < w(k,0)

and since the payoff function is linear and the game is a coordination game, there exists p such that p =
r + aer — em), where o > 0 and w(m,p) = 7(k,p). Then o = p + (t — a)(ex — e3). Thus

0 < m(k,0) —w(m,o0) =n(k —m,p+ (tr —a)(er —em))

< (tp —a)m(k —m, e, — em)

Thus from the MBP, we find ¢t;, > « which implies that px — 7 < ¢; — ;. We divide cases.
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Step 1. Suppose that p € D(es). We also find
1 _ 1 _
C(Ta Q) - C(Ta p) :it[;ﬂ-(m - l7 4+ q) - §(pk - Tk)ﬂ-(m - ka T+ p)
1 1
ZEtL(Tr(m - l,?" + q) - ,/T(m - ]C,T‘ +p)) = itL(ﬂ-(k7T) - ’/T(LT))

1 1 1
:itL’/T(k — l, q + tL(em - el)) = itL’/T('n_/L - l, q) + it%ﬂ'(k - l, Em — el) >0

where we used w(m—1,q) > 0, w(k,q) = w(m, q), and the MBP. Thus we take § := o and j := k and obtain
the desired result.

Step 2. Suppose that p & D(e). We use Lemma A.5. By taking w = p and using Lemma A.5, we find z. If
z € D(em), then we set p’ = z. Otherwise, we apply the same argument using Lemma A.5 and to find z closer
to r. In this way, we can find j1, jo, - - - . Note that no two indices, j1, jo, are the same since if j = j; = jo then
m(m—j,r+p1(ej —em)) = m(m—j1,r+ (e, —em)) = m(M—ja, 7+ P2(ej, —em) = T(Mm—j, 7+ Pa(e; —em).
Thus we find 81 = 3 which is a contradiction. Since the number of strategies is finite, we can find z € D(ez).
Next, we show that j # 1. If j =1, n(m, z) = 7(l, z). Thus, we find that

0<m(m—1Il,r+trle;—em)) —mim—1r+pB(e—em))
=m(m —1,(tL — B)(er —em)) = (tr — B)(—Amm + Ami + Aim — Au)

and thus we find ¢;, < 8 which is a contradiction. So we have j # [. Then observe that p; —r; < 8 < tr.
Then, we compute as follows:

e(r,q) —e(r,p') = %tmr(m —lLr+q)— %(p; —rj)m(m—j,r+p)
> St (rlm b q) = w(m g7+ 8) = St r) — (7))
> %t,;(w(k:,r) —7(l,r)) >0
Thus, we can take p = p'.
O
Now, let t* = ((t1,t2, -+ ,tr); (i1,42, -+ ,ir)) be the solution to the minimization problem and (7 — i1, m —
i9,+ -+, — ir) be the corresponding transitions. Suppose that (40) does not hold. Then there exists k;

and ko, k1 # ko, such that

ﬂ_(ma q(t*)) = ﬂ—(kla q(t*)) and W(TTL, q(t*)) = ﬂ—(kQa q(t*))

We apply Lemma A.6 and can obtain a lower cost exit path, s* such that w(s*) < w(t*), which is a
contradiction to optimality of ¢*. O

Proof of Proposition 4.4. Suppose that ¢7 > 0 for some [ # k. To simplify notation, let ¢ = ¢(¢*) and
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t* = (t7,--- ,t}%) and define

t:r =t*+ Ek(ek — em) — el(el — em), t, = t* — ek(ek — em) + 61(6[ — em)

Then, we have

m(m,q(t)) — n(k,q(tS)) =erpm(m, k —m) — em(m,l —

m) — exm(k, k —m) + gn(k,l —m)

=—ex(Amm — Amk + Ak — Akm) + €(Amm — Akm + Ami — Awr)
m(m,q(t,)) —m(k,q(t])) =ex(Amm — Amr + Akk — Akm) — €(Amm — Arm + Ami — Ari)

and similarly, for j # k, we find that

w(m, q(t)) — (4, q(tF)) =n(m, q) — (4, q)

)
+exm(m, k —m) —em(m,l —m) — em(j, k —m) + (4,1 —m)
)

:W(ﬁ’b, q) — 7T(j, Q)

— ex(Amm — Amk + Ajk — Ajm

m(m,q(t;)) — 7(4,q(t;)) =n(m, q) — 7(j,q)

)+ € (Amm — Ajm + Ami — Ajl)

ek (Amm — Amk + Ajk — Ajim) — €(Amm — Ajm + Amu — Aj1)

Thus, we can choose small €, ¢, > 0 such that

which show that ¢ and ¢_ both satisfy the constraints. Recall

7(j,q(th)) for all I # k
7(4,q(t7)) for all I # k,

H; i = (Ai — Aji) — (Air — Aji).
Then we find that
If #; is ahead of g, (W(t}) —w(t)) — (wW(t) —w(t])) = —etn(m — I, m — 1) + 2qepm(m — k,m — 1) — esn(m — k,m — k)
If ty is ahead of ¢;, (w(tT) —w(t)) — (wW(t) —w(t.)) = —etn(m — I, m — 1) + 2eexm(m — 1, — k) — eam(im — k,m — k)

Thus, we find that

(wtl) —w(t)) — (w(t) —w(t.)) = —Hmkker + 2max{Hmg.1, Hmik fener — Hmpi6;

< —Hpprér + 2V HproVV Hiener — Hmpaed <

where we use

~(VHpmprer — VHmae)* <0

max{Hpmk:1, Hmin} < Hmkek, max{Hpp:t, Hppey < Hppa-

from MBP. This shows that either w(t) < w(t) or w(t) > w(t;
t.
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Proof of Theorem 4.1. Let t* be the solution to the minimization problem:
min{w(t) : {(t) € K}

Propositions 4.4 and 4.3 show that there exists k such that ¢ > 0 and ¢; = 0 for all [ # k and Theorem 4.1
follows immediately from this and Proposition 4.2. O

B. Exit problem: two-population models

The following lemma is analogous to Lemma 4.1, which shows that it always costs less (or the same) to
first switch from strategy m, than from other strategies.

Lemma B.1. Suppose that the WBP holds.

c(n)(xﬂ,m,k’ m(ﬁ,m,k)(a,j,h)> — (xﬁyz‘,k’x(ﬁ,i,k)(a,j,h)) =AY A FAY — AL <0
o) (pomok | g(emk)(B.5h)y _ o(n) (geik gt k)(Bih)y — _ 4B 4 Af’nh + Afﬁz _ Aiﬁh <0.

Proof. These are immediate from the definition. O

Proposition B.1 shows that Lemma B.1 can be extended to arbitrary paths. We use Proposition B.1 to
show how to remove the transitions from ¢ # /m in a given path to achieve a lower cost. In Proposition B.1,
(8,1, k), for example, refers to a transition by a S-agent from strategy i to k.

Proposition B.1. Suppose that the WBP holds. We consider two paths:

. L+ +@ 2B L p(L-1) #D)

(B,i,k) (a,j1,k1) (av,j2,k2) (ojr.kr) (B,m,1)
(1) (2) (3) ... (L=1) (L)

(B,m,k) Y (av,g1,k1) Y (av,j2,k2) Y Y (ovjr.kr) (B,3,0)

M-

Y2 T )

Then, we have I (y1) > I (v3) and a similar statement holds for a path with transitions of o agents from
i to k and m to |l and transitions of o agents from m to k and from i to l.

Proof. We find that

I (yy) = ™) (g, 2P0F) 4 ) (gB0k p(Bik)(@dik)y o) (gBik g (Bk)(e52,k2))
4o gk Bk g ke)y g () (g (E) (g (L))(BmD)y

I (yg) = ) (z, 2Pk o ) (kg (Bomk)(engika)y 4 o(n) (gBmoke g (Bomok)(asgz k2
+ M (gFmok Bkl (enike)y g o(0) (g (L) (5 (L))(B:00))

from the fact that ¢(™) (2@, (z(O)@ivk) = () (ghik g1k (@ink)) for | =2, ... L—1and c(y®, (y»)eivk) =
) (yfmok g (Bmk)(euk)) for | = 2,- -+ L—1 (see Lemma B.2). Observe that c¢(™ (z, z%™%) = (") (g, 285F)
and ¢ (x| (x(F)B00) = ) (L) ((E))(B:m.0)  Then by applying Lemma 2 successively, we obtain the
desired result. O
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We can also collect the same transitions as follows, analogously to Proposition A.2. We also denote by

(8,m, k;n) the consecutive transitions of S-agent from m to k n-times.

Proposition B.2. Consider the following paths:

vz m Bmskin - Yy 2 m o Bmskip
v ———— Bk Bk (Bmkip) g Bemakip o Bmkip
(B,m,k;5m) (B,m,k;p)
AR S E— AR ZBkmin - 2 —y GBmikp
(8,m,k;m) (B,m,k;p)
where - -- denotes the same transitions. Then either

1M (y) = 1), or I™(7) = 1™ (y")

holds. A similar statement holds for a path involving transitions of a agents’ transitions.

Proof. We start with the following lemma.

Lemma B.2. We have the following results:
c(")(x,xo"i’j) = c(")(z,za’i’j) for all xg = 25
A (2, 2P09) = M) (2, 209 for all ko = 24

Proof. This is immediate from the definition. O

Next we show the following lemma.

Lemma B.3. We have the following results:

nle™ (aPmkor pPmkiey — M) (g b)) + ple™ (o R BBk (W) (g, )] = 0

Proof. Suppose that (a,b) = (ai,as,--- ,ar) where ap = b. Suppose that a;y; = (a;)?*!. Then by
applying Lemma B.2, we obtain

77[c(n)(afﬂ7%k7p7 (afﬁ%k,p)ﬁ,ihlt) _ C(n)(at, afﬂ'mln)] + p[c(n)(af’k’m’n, (at&hmm)ﬁ,u?lt) _ C(n)(at, af,it,lt)] =0
We next suppose that as1 = (a;)®*!.

77[0(") (atﬂm’%k‘,p’ (af,ﬁhkm)a,it,lt) _ c(”)(at, a;x,it,ltﬂ + p[c(")(af’k’m’n, (af’k’m’")a’i“lt) _ C(TL)(at)a?J;talt)

= (i, @) ™) — o (L, @l ™Y = wo (i, ar) + T (It ar)]
+ plra(m, al B ™y — 1o (U, aldF ™Y < o (i ar) 4 Ta (s a)]

=0
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Thus we find

NI (Ygpmiosppmin) = I™ (Yas)] + pI™ (Vs kmn sppsimn) = I(Yasd)]
T-1
n[c(”)(atﬁ’m’k’p, (atﬁ,mkyp)it,lt) _ c(")(at, atﬁ,n,lt)] + p[c(”) (atﬁ’k’m’", (atﬁykﬂﬁqﬂ)itylt) — ™ (at7atit7lt)]

t=1
=0

Lemma B.4. We have the following results:
(i) n[ct™) (gBmkin g (B:mokin),(B:mokip)y _ c(n) (5 Z(Bmkip))] 4 ple(m) (z(Bkmim) 2y — c(n) (g, Bmokim)]

(ii) n[c(n)(x(ﬁmkm):(ﬂ,m,k;p)’ yﬁ,mk;p) — () (x'@’m’k?",y)] 4 p[c(n) (Lyﬂ,k,ﬁl;n) — ¢(n) (xﬁm’%k,n’y)] =0
(i) [T (yo.mnsozomie) = I ()] + I (Yys.kmn s zoibmn) = T (7 52)] = 0

0

Proof. (i) By applying Lemma B.2, we find that
nlet™ (zfmkn p(Bmkin,(Bmkip)y _ o(n) (5 o(Bimkio))] 4 ple() (Bkmm) oy o) (g gfmokiny)
277[0(”) (x’x(ﬁ,ﬁuk;p) _ c(")(z, Z(ﬂﬁ%’c;ﬂ)ﬂ + p[c(") (z, Z(ﬁym,km)) — M (xwﬁym,km)]
=nplrs(m,x) — wg(k, x) — mp(m, z) + mp(k, 2)] + pnlrp(m, z) — mp(k, 2) — mp(m, x) + w3 (k, x)]
=0

(ii) follows from by letting a := z%™F" and b := y in Lemma B.4 and (iii) follows from by letting a := y
and b := z in Lemma B.4. O

Proof of Proposition B.2. We find that

1™ (") = 1]+ plI™ (") = 1 ()]
=™ (PR g Bamkm) (Bimkip)y _ () (5 Z(Bmkie))] o ple™) (B Rmm) oy (1) (g gBmokiny]

(1)
+n[c(n)(x(ﬁ-,myk;n),(ﬁ,mk;p)’ yﬁ,myk;p) () (xﬁ,m,km’y)] + p[c(") (%yﬁ,k,mm) — ™ (xﬁﬁuk,n7y)]

(ii)
+ 77[[(7]) (,Yyﬁﬁm'ﬁk?ﬁ)*)zﬁw7ﬁ~kﬂ) - I(n) ('Yy—)z)] + p[I(n) (Vyﬁwkvmvn*)zﬁvkvmvn) - I(n) ('Yu—)z)]
(iii)

and Lemma B.4 (i), (ii), and (iii) show the desired result. O

We also define Zﬁnn) and IC%L ) analogously to equations (32) and (34). That is, jéln) is the set of all paths
in which all the transitions are from strategy m and ICgZ ) is the set of all paths consisting of consecutive
transitions from 7 to some other strategy. From Propositions B.1 and B.2, we next show that the minimum
transition cost path « involves only transitions from m.

Proposition B.3. Suppose that the WBP holds.
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(i) We have
min{I(") (7):v € gfg)} = min{I(") (v):v € jéln)}.

(ii) We have
min{1™ () 1y € G} = min{I™(y) : y € K}

Proof. For the proof, we suppress the superscript (n). Part (i). Let v € G\ T Let the last transition of
be from z to 2%%! for some i # m. Since (™ (z, 2541) = (M (2, 281 by modifying the last transition from
280l to 287! the cost will not be changed. Now, suppose that x is the last state from which a transition
occurs from ¢ # m in the modified path (see v in Proposition B.1). Then, by applying Proposition B.1, we
obtain the new path whose last transition is from ¢ # m (see 72 in Proposition B.1). By changing this last
transition again, we can obtain a new modified path. In this way, we can remove all S-agents’ transitions
from i # m. Similarly, we can also remove all a-agents’ transitions from ¢ # m using the corresponding part
for « agents in Proposition B.1. Thus, we can obtain the desired results. Part (ii) immediately follows from
Proposition B.2. O

Next, we consider the continuous limit. For this, we define a cost function &(p, q), for p = (pa, pg),d =
(qa,qp) € Ao X Apg. Let g =p + (p(ef —e5),0) orq=p + (O,p(ef - e?)) for some p > 0. If p,q € D(es),

&P ) = (Paj = 9a,j) (Ta (M, p) — ma (4, p)) or &(p,q) = (ps,j — 4p,5)(Ts(M, p) — 7a(4, p))-

We similarly define K, as in the one population model and from ¢ = ((t) € Ky, where t = ((t,t°); (i%,7%)) =
(((t(llv e 7t?{>7 (tlfv T 7t16())5 (Z(fv T 71’%); (]fv e ’]IIB{)) and define w(t) = Zf:_()1 E(p(s)> p(s+1))' Then, we
have the following lemma.

Lemma B.5. Let 1%, i%, j be fived. Then w(-,t%) is affine. A similar statement holds for the case where
t* is fized.

Proof. Suppose that t$ is associated with o agents’ transitions from m to ¢. Similarly, tf is associated with
B agents’ transitions from m to j. Let p be the state from which the transitions represented by t start.
Then we find that

Ow _ ) 7
opa = (Malm.pp) = Ta (i, pp)) + 1 (~Af + Al — Afu + AL
B B B B B
+ Z (= AG + A, — A + Aj)
J#i
and observe that 7, (1, pg) — 74 (i, ps) depends only on #7; this shows that w(-,#?) is affine. O

Thus, we similarly consider

min{w(t) : ¢(t) € Kz }.

Using the characterization that w is affine, we show that if £ > 0 in an optimal path, then 75 (1, q* (t*)) =
7(i,q" (t*)) at the exit point q*(¢*), where t¢~ denotes the transition by an a-agent from strategy m to i.
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Proposition B.4. Suppose that Condition B holds. Then, there exists ((t*) € Kg such that w(t*) =
min{w(t) : ((t) € K} and if t& > 0, then mg(m, q(t*)) = 75(i,q(t*)) and if tﬁ > 0, then mo (M, q(t*)) =
o (J, a(t*)), where q(t*) is the end state of C(t*).

Proof. Let t* be given such that w(t*) = min{w(t) : ((t) € Kn}. Suppose that t&° > 0. The other case
follows similarly. Let % such that

ma(m, (1 =17 )es, + tef’) = mp(i, (1 — £ )er, + teg,)
Then, we have

51, 4o (t°7)) — 751, 4 (1))
=m(i —m, (1 — & )ed + 18 ed) + >t ma(i — m, ef — e2)
1#i
=g (i —m, (1 — 0 el + 1 ef) + 38 (A], — Al — AL+ Al (B.1)
1#i

Now, we have two cases:

Case 1: t& =12,
Since t* € Ko, 751,40 (t*)) — 75(1m, ¢a(t*)) < 0, the second term in (B.1) (X1 t?*(Aﬁ Afm - Aﬁ

Afﬁm)) is non-positive. Also, the WBP implies that the same term is non-negative, and hence zero. Thus,
we have 73(i, ¢ (t*7)) = 75(M, ¢o (t*")), which is the desired result.

Case 2: 0 < t& <12
Suppose that
ﬂ'ﬂ(mv Qa(ta )) > Trl?(iv Q(x(ta )) (Bz)

and

(M, 00 (1) = (71, 40 (0°)) (M, 00 (1)) = Ta (s 4o (0))s - 730, 00 (1)) = Ta (i ga (1)),
(B.3)
where the other constraints for w3 are non-binding. To reach qa(to‘*)7 there are transitions, m — j1,m —
Jo,- -+ ,m — jr and thus

L
o Z m +ta e +Zsk
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And we find that

M=

w5 — M qa(t®) =3 iy — M, €S — ety + m(jn — m, e — eg )+ m(iy —miel + D sulef —em))
k

=1
L

= Z(Agwﬁ - Aflm) - (Amjz - Ajljl)tjl + (1 —m,ef —eg )t +m(jr —m,eq + Z sk(e
=1 k

I
M=

ma(jL — M, qa(t™) mp(jr — M, e — en )t + (i — m, el — e@ )ty + (i — m, el + Y sp(ef —em))
k

N
Il
-

I
M=

JjLm

N
Il
-

Thus we can regard equations in (B.3) as a set of linear equations in variables, t;,,¢;,,-- - ,t;,. Then, from
the implicit function theorem and Lemma B.6 (Condition B) we can find functions 5 (¢;), t},(t:), -, t;, (i)

satisfying (B.2) and (B.3) for all t; € [t —¢,t¢ +¢] for some € > 0. Observe that 5 (i), 6, (ta), -+, 5, (i)

are affine in ¢;. Then, we define ¢(t;) = w((ts, 15, (£:),¢5,(t:), -+ &5, (), ti, iy, -+ 1 Li,,), 7). From Lemma
B.5, we see that ¢(t;) is affine with respect to ¢;. We then find ¢’ and again have two cases.

Case 2-1. Suppose that ¢’ = 0. Then, by increasing ¢; up to 73(m, q(ts)) = 73(%,d(ta)), we can find t**
which satisfies w(t**) = w(t*) and obtain the desired properties in the proposition.

Case 2-2. Suppose that ¢’ # 0. Then, we have either ¢(t* —¢) > ¢(t8) > ¢(t¥ +¢€) or ¢t —¢€) <
p(t&") < d(t&” + €), in contradiction to the optimality of t*. O

Lemma B.6. The following statement holds:

K
ﬂ-ﬁ(ma’r) = 7T,€(7:1,7"), e 77T,§(m,7") = 7T,g(iK,7’), T'm + Zr’il = 13 27" = {ﬁl,il, e 7ZK}
i=1

have a unique solution.
<= det(D) # 0 where
A — A

— (AR, — AFiyiy) - A — AF

11m miy 11m mig 111K
D= Arﬁ?nﬁ - A?z’ﬁl - (Afhzl - Angl) e Alr{ﬁm - A?z’ﬁl - (AZ’L’iK AiziK)
Ammm - A?Km - (A'fml - Afml) A%m - A?Km - (A;%iK A?KZK)
Proof. We have the following equivalence:
K
Wﬁ(ﬁ%r) = ﬂ_n(ilvr)v te ,’/T,{(T?L,T) - ﬂ—li(iK) T)v T + ZTil = 1; Er - {mailv te ,ZK}
=1
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have a unique solution if and only if
K K
m, (1= riem + Y rie) — me(i, Zr” em+zr”e” =0,
=1 =1
K K
1727"1'1)67%4’27’2'16“)7 ZK, Zr” em Zrllell
=1 =1 =1 =1

have a unique solution. Let fix k. Then we have

K K K K
w (ks (1 — Zru)em + Zrizeiz) — me(m, (1 — Zriz)em + Zrizeiz)
=1 =1

K
_Afkm mm + Z zkm) (Anmzl Aszl))ril
=1

and from this, we obtain the desired result.

Let K%, be the set of all paths in /Cj, that satisfy the conditions in Proposition B.4. Then, we obviously
have
min{w(t) : t € K} = min{w(t) : t € K7, }

Next, suppose that g* is the exit point of the minimum escaping path. If w5(m, q*) = m5(i,q*) for some 1,
then 7o (M, q*) > 7, (1, q*) for all I and vice versa. This is because if m5(m, q*) = 73(i,q*) and 7, (M, q*) =
mo(l,q*), then we can always construct the escaping path with a smaller cost by removing a-agents’ (or
B-agents’) transitions. Thus, Proposition B.4 implies that if 75(m, q*) = m3(i,q*) for some 1, t]o-‘* = 0 for all
j.

Proposition B.5 (One-population mistakes). Suppose that Condition B holds. Then there exists t* such
that w(t*) = min{w(t) : t € KL} and t* involves only mistakes of one population.

Proof. Let t* that satisfies Proposition B.4 be given. Suppose that t;?‘* > 0. The other case follows similarly.
Then, by Proposition B.4, ng(m,q*) = 7s(i,q*) for some 7. From the remarks before the proposition, we
have 7, (M, q*) > (1, q*) for all I. Again, Proposition B.4 implies that tf =0 for all [. O

Finally, we have the following result.

Proposition B.6. Suppose that Condition B holds. Then there exists t* such that min{w(t) : {(t) € K%}
and
t >0 for some k and t§ =0 for all k # 1

or
tg* > 0 for some k and tf* =0 forallk#1

Proof. Suppose that the minimum cost escaping path involves only one population, say a-population, by
Proposition B.5. Then, zg = egl for all z in the minimum cost escaping path. Thus we have 7, (i,2) =
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7o (j, z) for all 4, j # m and for all z in the minimum cost escaping path. The costs of intermediate states in
the minimum cost escaping path are the same; the WBP implies that the minimum cost escaping path lies
in at the boundary of the simplex, yielding the desired result. O

Now the proof for Theorem 5.1 follows from Proposition B.6.

C. Stochastic stability: the maximin criterion

In this section, we examine the problem of finding a stochastically stable state (Foster and Young, 1990).
When 8 = oo, the strategy updating dynamic is called an unperturbed process, where each convention
becomes an absorbing state for the dynamic. For all 8 < oo, since the dynamic is irreducible, there exists a
unique invariant measure. As the noise level becomes negligible (8 — o0), the invariant measure converges
to a point mass on one of the absorbing states, called a stochastically stable state. One popular way to
identify a stochastically stable state is the so-called “maxmin criterion””; when some sufficient conditions
are satisfied, this method, along with our results on the exit problem (Theorems 4.1 and 5.1), provides the
characterization of stochastic stability.

To study stochastic stability, we have to find a minimum cost path from one convention to another. More
precisely, we fix conventions ¢ and j. For one-population models, we let the set of all paths from convention
i to j be

EEZ) c={y:y= (w0, - ,2z7r)andzg = €;, 441 = (2,)®!, for some k,1, forallt <T —1,

xr € D(e;) for some T > 0}.
We define a similar set for two-population models. We then consider the following problem:

(n) ._ s . (n)
Ci = min{I™ (y) 1y € £} (C.1)
Again, when n is finite, Ci(}z) is complicated, involving many negligible terms; we thus study the stochastic
stability problem at n = oo, which again provides the asymptotics of the invariant measure and stochastic
stability when n is large. We let

1
Cij = lim —C{V (C.2)

n—oco n

and C be a |S| x |S| matrix whose elements are given by C;; for i # j (we set an arbitrary number if i = 7).
Having solved the problems in equation (C.1) (and (C.2)), the standard method to find a stochastically
stable state is to construct an i— rooted tree with vertices consisting of the absorbing states and whose cost
is defined as the sum of all costs between the absorbing states connected by edges. Then, the stochastic
stable state is precisely the root of the minimal cost tree from among all possible rooted trees (see Young
(1998b) for more details). In principle, to find a minimal cost tree (hence a stochastically stable state),
we need to explicitly solve the problem in equation (C.1). However, in many interesting applications such
as bargaining problems, the minimum cost estimates of the escaping path in Theorem 4.1 are sufficient to
determine stochastic stability without knowing the true costs of transition between conventions; this method

"See Young (1993b, 1998b); Kandori and Rob (1998); Binmore et al. (2003); Hwang et al. (2018)
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is called the “maxmin” criterion (see the papers cited in footnote 7; see also Proposition C.1 below). More
precisely, we define the incidence matrix of matrix C, Inc(C), as follows:

1if j = argmin;; Cy
(Inc(C))ij = .
0 otherwise

In words, the incidence matrix of C' has 1 at the i-th and j-th position if the minimum of elements in the
ith row achieves at the i-th and j-th position, and 0 otherwise. We also say that the incidence matrix of C'
contains a cycle, (i,41,49, - ,i¢_1,1), if

Inc(C)iilInc(C)iliZ s IHC(C)Z'F”‘ >0

for t > 2. Observe that we can obtain a graph by connecting the vertices of conventions 4, j whose (Inc(C));;
is 1. Also, Inc(C) always contains a cycle and hence the graph contains the corresponding cycle. If this
cycle is unique, by removing an edge from the cycle, we can obtain a tree; this is a candidate tree to the
problem of finding a minimal cost tree. Now, we are ready to state some known sufficient conditions to
identify stochastic stable states.

Proposition C.1 (Binmore et al. (2003)). Let i* € argmax; min;-; Cj;. Suppose that either
(Z) max;£; Cji* < minﬁgi Ci*j

or

(ii) Inc(C) has a unique cycle containing i*.

Then i* is stochastically stable.

Proof. See Binmore et al. (2003) O

The sufficient conditions (i) and (ii) for stochastic stability in Proposition C.1 are called the “local
resistance test” and “naive minimization test,” respectively (Binmore et al., 2003). If strategy ¢ pairwisely
risk-dominates strategy j (i.e., Ay — Aj; > Aj; — Aji), then under the uniform mistake model, C;; > 1/2
and Cj; < 1/2 hold. Thus, if strategy i* pairwisely risk-dominates all strategies (called a globally pairwise
risk-dominant strategy), then C;«; > 1/2 for all j # i and Cj;+ < 1/2 for all j # . Thus condition (i)
in Proposition C.1 holds and i* is stochastically stable (see Theorem 1 in Kandori and Rob (1998) and
Corollary 1 in Ellison (2000)).

The number min;; C;; in Proposition C.1 is, as mentioned, often called the “radius” of convention 7;
this measures how difficult it is to escape from convention ¢ (Ellison, 2000). Proposition C.1 shows that if
either (i) or (ii) holds, the state with the greatest radius (and hence the state most difficult to escape) is
stochastically stable. To check whether either condition (i) or (ii) holds, clearly it is enough to know that
min;; Cyj, max;j; Cj; ete.

An important consequence of our main theorem on the exit problem (Theorem 4.1) is that it provides
the lower and upper bounds of the radius of convention %, min;; C;;, as follows. On the one hand, a path
escaping from convention i to j (in EE?) by definition exits the basin of attraction of convention ¢ and thus

Ez(‘,? C Qi(n) in equation (30). Thus,

CiY = min{I™ (y) 1y € £} > min{1™ (7) : y € G}, (C.3)
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and Theorem 4.1 shows that

lim 1 min{I™(y) : v € gi(”)} = m;n R;;. (C4)
j#i

n—oco N

Then equations (C.3) and (C.4) together give a lower bound for min;.; Cj;. On the other hand, if v;_,; is
the straight line path from convention ¢ to j ending at the mixed strategy Nash equilibrium involving ¢ and

7, we have
1™ (y,5;) > min{I™ () : y € L} = CV (C.5)
and )
Jim 1 () = By, (C6)

Thus, equations (C.5) and (C.6) give an upper bound for min;x; C;;. These are the main contents of the
following proposition.

Proposition C.2. Suppose Condition A or Condition B holds. Then
(7/) Cij S Rij fOT’ all Z7j
(ZZ) minj# Cij = Il'lil’lj#i R”

(i11) argmin,»; R;; C argmin;»,; Cy; for all i.

Proof. We obtain (i) by dividing equation (C.5) by n , taking the limit, and using (C.6). For (ii), from
equations (C.3) and (C.4), lim, o 20 > minj; Ryj, implying that minj; C; > minj; Ry Also
from (i), we have minj»; C;; < minjx; R;j. Thus, (ii) follows. We next prove (iii). Suppose that j** €
argminj»; R;; and j* € argminjy; C;;. Then from (i) and (ii), R;j+« = Cij» < Cij=» < Ryje«. Thus

j** € arg Ininj# Cij and we have arg minjﬂ Rij C arg minj;ﬁi CU O

The immediate consequence of Proposition C.2 is that arg max; min;»; C;; = arg max; min;»; R;; and
max;; Cj; < max;x; Rj;. Further, if arg minj; Cy; is unique for all 7, from Proposition C.2, the incidence
matrices of C' and R are the same. In general, argmin;; C;; may not be unique for some ¢. In this case,
Proposition C.2 (iii) implies that if R;; = 1, then C;; = 1, which, in turn, implies that whenever R yields a
graph containing a unique cycle, C yields the same graph containing the unique cycle. These facts enable
us to replace C' in Proposition C.1 by R—a |S| x |S| matrix consisting of R;;s (again, we assign arbitrary
numbers at the diagonal positions). This is our main result on stochastic stability.

Theorem C.1 (Stochastic Stability). Suppose that Condition A or Condition B holds. Let i* €
arg max; min;; R;;. Suppose also that either

(1) max;jz; Rj;» < minjz; R«

or

(ii) Inc(R) has a unique cycle containing i*.

Then, ©* is stochastically stable.

Proof. Let i* € argmax; min;»; R;;. From Proposition C.2 (iii), * € argmax; min,; C;;. We first suppose
that (i) holds. Now, Propositions C.2 (i) and C.2 (ii) imply that

max Cj;» < max Rj;+ < min R;«; = min G+
J#i J#i J#i j#i*
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Thus, Proposition C.1 implies that i* is stochastically stable. Now, suppose that (ii) holds. From Proposition
C.2 (iii) and the remarks before Theorem C.1, Inc(C) contains a unique cycle containing i*, too. Thus,
Proposition C.1 again implies that i* is stochastically stable. O

Note that two-strategy games trivially satisfy both conditions (i) and (ii) in Theorem C.1. Here, we
can easily check that the stochastic stable state is the risk-dominant equilibrium. In particular, Kandori
and Rob (1998) show that when a coordination game exhibits positive feedback (the marginal bandwagon
property), a “globally pairwise risk-dominant equilibrium” is stochastically stable under the uniform mistake
model (see also Binmore et al. (2003)). However, when the number of strategies exceeds two, Theorem C.1
shows that stochastically stable states under the logit choice rule do not necessary satisfy the criterion of
pairwise risk dominance. To summarize, Theorem C.1 asserts that when either condition (i) or condition (ii)
is satisfied, the state with the largest radius (and hence the most difficult state to escape) is stochastically
stable, in line with the existing results for uniform interaction models. However, the radius now depends on
the opportunity cost of individuals’ mistakes as well as the threshold number of agents inducing others to
play a new best-response.

D. Stochastic stable states for Nash demand games

We first show that Nash demand game,

(61, f(07)), ifi<j
AQ»,A@} = D.1
(45 4i) (0,0), if i > j, (B

satisfies Condition B.
Condition B (i).
We divide cases as follows:
()ym>i>j.

AL — A% — (A%, — AY) =0m —6i >0, Ap, — AL, — (AL — ALY = f(om) — (f(6m) — f(3i)) >0
(2) m>j>i.

AR = Ay — (A% =A%) = 0m = 8i+6; > 0, Ap — AL, — (A, — AJ) = f(6m) — f(6m) > 0

3)i>m>j.
Ay — Ay — (A =A%) = 0m >0, Ag — AL, — (AJ,, — A7) = f(6m) — £(6i) — (f(6m) — f(61)) = 0
(4) j > m > 1.

A — A — (A% — A%) = 6 — 6i — (6m — 6i) = 0, AL — Al

mi

— (AP — AP = f(6m) >0

Jm )
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(5) i > j > m.

AL — A% — (A% — A%) = 0m — din =0, Al — AL, — (A5 — AL) = f(6m) — f(8i) — (= f(8i)) > 0

mi

(6) j>1>m.
o (a7 «@ « _ s - > ﬁ ﬁ B ﬁ J— . y
Af i — Ay — (AR — AS) = 0m — (dm — 0i) > 0, Any — Ay — (A5, — A5) = f(om) — f(di) >0

Condition B (ii).
We first show the following lemma.

Lemma D.1. Suppose that A is a n X n matriz such that
Ajj=a; ifi<j, =04fi>j, a; <ajpq foralli=1,--- ,n—1

Then there exists a unique x > 0 such that Ax = 1 where 1 is the column vector consisting all 1’s.

Proof. Let x be

T (1 1 1 1 1 )
r = —_— =, -, —
a1 as Qp_1 Gy Ap

Note that by the assumption, we have > 0. Then we have

n & "
1
(Az)p =D Apiw; =Y apw; =ap y_a; = o= 1
i=1 i=k

i=1

Suppose that there exists y such that Ay = 1. Then, since det(A) # 0, y = A~'1 = 2. Thus x > 0 is

unique. O
Now let i1,--- ,ix. We rearrange iy’s such that iy < --- < ig. Let A be a matrix whose rows and columns
consist of i1, -+ ,ix. Then from (D.1), the hypothesis of Lemma D.1 is satisfied. Thus, by normalizing z,

we can find a unique ¢ € Ag which satisfies the desired property.

Recall that

(Agzm - A?m)
(A — AS) + (A3 — AD)

(Ang - Arﬁn])

B B B B
(Ao — A7) + (AT, - A

U . B B
ij T mln{(Amm - Am]) : )
jim

}

(Ajm = A5,)

am

and
Si 5i ’ i<
(A%,AZ):: (Z)f(])) 117‘7
(0,0), ifi>j

Then we divide cases:
(i) m < j. We find that

AB = f(6m), AL = f(87), A, = dm, A%, = 0,AS; = 6j, A% = dm

mj

o4



and

o a B B _ N oAP — B _ ;
Amm - 5m7Ajm - O’Amm - f(ém)vA - f(6j)’Ajm - O7Ajj - f((i])

mj

Using these, we find that

@ a
Amm - Ajm

B _ gB - _ )
(Amm Am])Agnm _ A?m 4 (A?j _ A%j) - (f((sm) f(éj)) )
and 5 5
Amm - Am f(5m) B f(5])
A% A J =4
( mm ]m)Aglm —Afnj N (Afj —A]ﬁ,m) m f(ém)

(ii) m > j. We find that

_ B _ a o _ ss A0 S5 opo
Aﬁbm = f(0m), A,,; =0, A7, =dm, Aj,, = 0j, A}; = 05, Ap,; =0

mj

and

AZ = 0m, AS, =05, A8, = f(om), AL =0,A7 = f(0m), A, = f(5])

Jjj

Using these, we find that

«@ «
Amm - Ajm

om —0j
(A8, — AL )— “ S = f(dm)
a,nd 8 8
AP — AP f(6m)
(A2 — A ) z = (6m —6j) -
/ Arﬁnm - Afnj + (A?j - Agzj) f((;‘])
Thus we have '
gy, = {00m) — F03) 5 A om AR it m <
F(0m) 2501 A (5m — 67) L) if m > j
Or
. L\ Om f(om) — f(d5) . om — &3
U _ o _ g~ L0 TNV
Riny = min{(£(6m) = F(07)) 55 A bm==rm s Sy A min f (0m) =5
Note that we have
om —0j

I — min mM min m)——
By = AOM ™Gy 3 " i (om) =

Then we would like to find min; R,L,’lj. To do this, we first have the following lemma.

Lemma D.2. Suppose that f(z) >0, f'(z) <0 and f"(z) <0 for all xz. Let y be given.
(i) J;,((zf)) is decreasing in x.

(ii) zf'(x) — f(x) is decreasing in x.

(iii) f'(x) + @ is decreasing in x.

() f'(z) + (M)2 is decreasing in x.

x

(v) (f(y) — f(x))2 is increasing in x

(vi) (y — x)% is decreasing in x.
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Proof. (i)-(iv) are easily verified by taking derivatives. We show (v). (vi) follows similarly. Let op(z) :=
(f(y) — f(z))%. We find that
—f'@a+ f(@) - fy)

x2

¢'(z) =y

Then since — f/(z)x + f(x) is increasing in x, we have

—f'(@)az+ f(z) = fly) = £(0) = f(y) = 0

since f is decreasing. Thus ¢'(z) > 0. O

Thus using Lemma (D.2), we find that

min RY . = min m) — m om mf(ém) — fO(m +1)) m i M
i R = min (/(6m) = F(8(m -+ 1)) 5570 Feemy O 5 Fm - 1))
We let Sm f(om) — f(0(m + 1))
ram) = (f(0m) = FO(m + D) Fr=rye ralm) i= om==—p5e0
and
I (m) := f(ém)%7 la(m) := 51m~

Lemma D.3. We have the following results:
(i) r1 and ro are increasing in m.
(ii) 1 and ly are decreasing in m.

Proof. (i). Since f” <0, f(ém) — f(6(m + 1)) is increasing. Since % is increasing, two terms in r; are

both positive and increasing, hence r; is increasing. Also since f” < 0, % is decreasing in m. Thus

r9 is increasing. O

Then ry and 79 are increasing in m and /; and ls are decreasing in m.

Lemma D.4. Suppose that

m* € arg maxmin RY ;
m 7 J

Then for all m < m*, min; R%j = R, i1 and for all m > m*, min; R%j =RY .1

Proof. Let R(m) :=min; RY,;. We show that

If m < m*, then R(m) = ri(m) or ry(m)

If m > m*, then R(m) = 11(m) or ly(m)
and then the desired results follow. We show the first claim. (the second claim follows similarly). Let
m < m* and R(m) = l1(m). Then since [, (m) is decreasing in m, Iy (m) > I1(m*) and by definition, we have

R(m*) < I;(m*). Thus we have

mjin Rglj = R(m) = I,(m) > l,(m*) > R(m*)
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which is contradiction to m* € arg max,, min; RY,; If R(m) = ly(m), the exactly same argument leads to a

contradiction. Thus if m < m*, then R(m) = r1(m) or ro(m). O

Let s* and s! such that

s* st
—f’(s*): fi*) and —f/(SI):(f( ))2

and for pu € [0, 2] NR, let p! = p/(6), p* = p*(8), and p** = p**(9) such that

Lemma D.5. We have the following results. As § — 0,

o™ (0) — s*, S (8) — s*, Sut(8) — st

Proof. For §u*(§) — s*, let

_ @<= fa+d) o T

Then ¢s converge uniformly to ¢ and @s(du*(4)) = ?11((5*)) =1 and ¢(«*) = 1. Then the uniform convergence

of s to ¢ implies that du*(d) — s*. The second and third parts follow similarly. O

Next we show that
Lemma D.6. We have the following result.
(i) If s* > s¥, then s* > st > s¥ and —f/(sf)#;) <1land—f'(s*) <1
(ii) If s* < sP, then s* < s! < sF and —f’(sl)#;) >1—f'(s*) >1

Proof. We show (i) and (ii) follows similarly. Suppose that s* > s¥. Let s > s*. Since from Lemma D.2
—f'(z) = % is increasing, we have

ey = 18D s ey - 18D ooy - (LD
which implies that
f(j’) >1— f(j)
Since £) is decreasing in s, we have

S

sP>sl > > sF

which is a contradiction. Now suppose that s/ < s¥. Then since s¥ < s*,

J6h)

sl

~f'(s") -

which implies that




which is a contradiction to fgslj) > fif) =1 from s’ < s¥. Now from s* > s’ and s* > sP, respectively we
have
—f’(sl)i <land — f'(s*) <1
f(sh) '
O
Lemma D.7. We have the following results.
(i) If s* > sP, then there exists & such that for all § < &, pu* > p! and
ri(ut) <ra(u') = Li(p') and ri(p*) < lo(u*)
where p! = p!(8) and p* = p*(8) are defined in (D.2).
(ii) If s* < s¥, then there exists § such that for all § < §, p** < u! and
() < ra() = b () and (™) < i (5™)
where u! = p(6) and p* = p*(8) are defined in (D.2).
Proof. We first prove (i). Suppose that s* > s¥. From Lemma D.6, we have
rd 51 1(o*
—f(s") =7 <land — f'(s*) <1 (D.3)

f(s?)
Since §u! — s! (Lemma D.5) and s’ < s* and from (D.3)

!

= —f'(s") 7 < 1,

fsh)

there exists d such that for all § < &, rq(u!) < I3(u!) and p! < p*. For the second inequality 71 (u*) < lo(p*)

similarly follows from

ri(p*) flop*) = fO(p*+1)) du*  f(6(p"—1))
L) < 5 S+ 1) T
and ()
ri\p 1%
L) - —f'(s") <1
from (D.3).
Next we show (ii). Similarly to (i), from Lemma D.6, we have we have
1o I SI 1 %
—f'(s )m>1andf(s)>1
Then we have 1 I) 5 % 1) 6
2(p 0 0
ra(ul) < Fou) — O+ 1) FO( — 1) on
and 1o (4™) 5 S +1)  fou)
2(p p 1
n) SN e feGe ) o Foe—1)
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Figure D.8: Determinations of stochastically stable states. For Panel A, f(z) = /1 — £ for z € [0, 3],
= 0.01. For Panel B, f(z) = 1/3(1 — z), for € [0,1], 6 = 0.01.

and from these, (ii) follows. O

Lemma D.8. Suppose that u* is given by (D.2).
(i) If s* > s, then

u* € arg max min{ry(u), r2(p), b (p), l2(p) }
rellss

(ii) If s* < sP, then

p € arg ma min{ry(u), r2(p), 11 (1), l2(1) }
rEelV: 5

Proof. Let s* > s¥. Choose ¢ satisfying Lemma D.7. Then for all § < §, we have

ri(p) = L(p") <li(po) = r2(po) < ro(p*)

and thus r1(p*) < min{ra(u*), 1 (%), l2(p*)}. Now, if g < p* then r1(p*) > r1(p) since r1(-) is increasing.
If > p*, then m (p*) =l (") > 11 () since I4(+) is decreasing. Thus we have

r1(p*) > min{ry (w), ro(p), l (@), la(p) }

for all 1 € [0, £]. This shows that
pt € arg ren[axg]min{m(u),rz(u),ll(u),lz(u)}
M s

Now let s* < s¥. Again choose J satisfying Lemma D.7. Then for all § < §, we have

(i) = L) < r(p™) < ri(p') = L(u") < L(p™)

and similarly since 75 is increasing and [, is decreasing, we obtain the desired result. O

Thus we have the following result.
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‘ « favored transition

‘ [ favored transition

Stochastic

stability
‘ B mistake (A) | a mistake (B) ‘ B mistake (C') | « mistake (D) ‘
: om Af(Sm) s f(6m)
Uniform — f(5n2r)L 5o f((;)l
nintentiona Af(dm)
UIntetntiE)nall O O f]E((sm)) ~ %
i 5 Af(6m 5 F(6m
Unin[égﬁtﬁonal Af(ém) 6(mril) om f(6((m)§ f(ém)% 5f(5((m7)1))
sNB > P O A O Af(Om) s ~ f(om) 2
NB E Af(dm) f(dm)
VB < O A O OMFiamy) ~ O F0stm-1)
ogi Af(om) )
IntIeJntgicfnal O O om f(5(rr?;) ~ f(5m)%

Table D.2: Comparison of solutions under various mistake models. Af(dm) = f(dm) — f(é(m + 1)).
Resistances are determined by the minimum of A, B,C, and D. In the rows tilted with “unintentional”,
“intentional”, s™VB > s¥ sNB < sF and “logit intentional” show the smaller ones. Thus under the logit
unintentional dynamic, when sV¥Z > sF_ the transition always occurs by 3 population, while sVZ < s,
the transition always occurs by « population. Entries marked by A and () occurs in the minimal tree, but
entries marked by () are only binding and hence determining the stochastic stable convention.

Theorem D.1. Consider the logit choice rule. There exists § such that for all 6 < §, the stochastic stable

B

state m*t(8) converges to sNB: i.e.,

omst(8) — VB

where
f(sNP)

sNB

J(sVP) =

Proof. Choose ¢ satisfying Lemma D.7. Let § < §. If s* > s, then pick m*!(§) to be the integer closest to
p*(8) in (D.2). If s* < s¥ the pick m*!() to be the integer closest to 1**(§). Then Lemma D.4, Lemma
D.8 and Theorem C.1 show that m®t(d) is a stochastically stable state. Since u*(8), u*(8) — s*, we have
dm*t(0) — s* = s™B and obtain the desired result. O

Theorem D.2. Consider the intentional logit choice rule. There exists § such that for all § < &, the

stochastic stable state m*t(5) converges to s': i.e.,
oms(5) — st

where

Proof. Under the intentional logit choice rule, we have

. I . f((sm) _f(é(m+1)) 0
min R;,; = min{ém Fom) ,f(mé)%}
Then the exactly same argument as for the unintentional logit choice rule shows the desired result. O

60



	Exit problem: one population models 
	Exit problem: two-population models
	Stochastic stability: the maximin criterion
	Stochastic stable states for Nash demand games  



