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Abstract. We have developed a new class of generative algorithms capable of efficiently learning arbitrary target
distributions from possibly scarce, high-dimensional data and subsequently generating new samples.
These particle-based generative algorithms are constructed as gradient flows of Lipschitz-regularized
Kullback--Leibler or other f -divergences. In this framework, data from a source distribution can be
stably transported as particles towards the vicinity of the target distribution. As a notable result in
data integration, we demonstrate that the proposed algorithms accurately transport gene expression
data points with dimensions exceeding 54K, even though the sample size is typically only in the
hundreds.
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1. Introduction and main results. We construct new algorithms that are capable of effi-
ciently transporting samples from a source distribution to a target data set. The transporta-
tion mechanism is built as the gradient flow (in probability space) for Lipschitz-regularized
divergences, [16, 5, 7]. Samples are viewed as particles and are transported along the gradi-
ent of the discriminator of the divergence towards the target data set. Lipschitz regularized
f -divergences interpolate between the Wasserstein metric and f -divergences and provide a
flexible family of loss functions to compare nonabsolutely continuous probability measures.
In machine learning one needs to build algorithms to handle target distributions Q which
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1206 GU, BIRMPA, PANTAZIS, REY-BELLET, AND KATSOULAKIS

are singular, either by their intrinsic nature such as probability densities concentrated on
low-dimensional structures and/or because Q is usually only known through N samples. The
Lipschitz regularization also provides numerically stable, mesh free, particle algorithms that
can act as a generative model for high-dimensional target distributions. The proposed gen-
erative approach is validated on a wide variety of datasets and applications ranging from
heavy-tailed distributions and image generation to gene expression data integration, includ-
ing problems in very high dimensions and with scarce target data. In this introduction we
provide an outline of our main results, background material, and related prior work.

Generative modeling. In generative modeling, which is a form of unsupervised learning,
a data set (X(i))Ni=1 from an unknown ``target"" distribution Q is given and the goal is to
construct an approximating model in the form of a distribution P \approx Q which is easy to
simulate, with the goal to generate additional, inexpensive, approximate samples from the
distribution Q. Succinctly, the goal of generative modeling is to learn the target distribution
Q from input data (X(i))Ni=1. This is partly in contrast to sampling, where typically Q is
known up to normalization. In the last 10 years, generative modeling has been revolutionized
by new innovative algorithms taking advantage of neural networks (NNs) and more generally
deep learning. On one hand NNs provide enormous flexibility to parametrize functions and
probabilities and on the other, lead to efficient optimization algorithms in function spaces.
Generative adversarial networks (GANs) [22, 4], for example, are able to generate complex
distributions and are quickly becoming a standard tool in image analysis, medical data, cos-
mology, computational chemistry, materials science, and so on. Many other algorithms have
been proposed since, such as normalizing flows [33, 13], diffusion models [54, 27], score-based
generative flows [57, 58], variational autoencoders [31], and energy-based methods [34].

Information theory, divergences, and optimal transport. Divergences such as Kullback--Leibler
(KL) and f -divergences, and probability metrics such as Wasserstein, provide a notion of
``distance'' between probability distributions, thus allowing for comparison of models with
one another and with data. Divergences and metrics are used in many theoretical and prac-
tical problems in mathematics, engineering, and the natural sciences, ranging from statisti-
cal physics, large deviations theory, uncertainty quantification, partial differential equations
(PDE) and statistics to information theory, communication theory, and machine learning.
In particular, in the context of GANs, the choice of objective functional (in the form of a
probability divergence plus a suitable regularization) plays a central role.

A very flexible family of divergences, the (f,\Gamma )-divergences, were introduced in [5]. These
new divergences interpolate between f -divergences (e.g., KL, \alpha -divergence, Shannon--Jensen)
and \Gamma -Integral Probability Metrics (IPM) like 1-Wasserstein and MMD distances (where \Gamma 
is the 1-Lipschitz functions or an Reproducing Kernel Hilbert Space (RKHS) 1-ball, respec-
tively). Another way to think of \Gamma is as a regularization to avoid overfitting, built directly
in the divergenc;e see, for instance, structure-preserving GANs [7]. In this paper, we fo-
cus on one specific family which we view as a Lipschitz regularization of the KL-divergence
(or f -divergences) or as an entropic regularization of the 1-Wasserstein metric. In this context,
the interpolation is mathematically described by the Infimal Convolution formula

D\Gamma L

f (P\| Q) = inf
\gamma \in \scrP (\BbbR d)

\bigl\{ 
L \cdot W\Gamma 1(P,\gamma ) +Df (\gamma \| Q)

\bigr\} 
,(1.1)
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GENERATIVE PARTICLE ALGORITHMS FOR SCARCE DATA 1207

where \scrP (\BbbR d) is the space of all Borel probability measures on \BbbR d and \Gamma L = \{ \phi : \BbbR d \rightarrow 
\BbbR : | \phi (x)  - \phi (y)| \leq L| x  - y| for all x, y\} is the space of Lipschitz continuous functions with
Lipschitz constant bounded by L (note that L\Gamma 1 =\Gamma L). Furthermore, W\Gamma 1(P,Q) denotes the
1-Wasserstein metric with transport cost | x - y| which is an integral probability metric, and
has the dual representation

W\Gamma 1(P,Q) = sup
\phi \in \Gamma 1

\{ EP [\phi ] - EQ[\phi ]\} .(1.2)

Finally, if f : [0,\infty ) \rightarrow \BbbR is strictly convex and lower-semicontinuous with f(1) = 0 the f -
divergence of P with respect to Q is defined by Df (P\| Q) = EQ[f(

dP
dQ)] if P \ll Q and set to

be +\infty otherwise. The new divergences inherit desirable properties from both objects, e.g.,

0\leq D\Gamma L

f (P\| Q)\leq min
\bigl\{ 
Df (P\| Q),L \cdot W\Gamma 1(P,Q)

\bigr\} 
.(1.3)

The Lipschitz-regularized f -divergences (1.1) admit a dual variational representation,

D\Gamma L

f (P\| Q) := sup
\phi \in \Gamma L

\biggl\{ 
EP [\phi ] - inf

\nu \in \BbbR 
\{ \nu +EQ[f

\ast (\phi  - \nu )]\} 
\biggr\} 

,(1.4)

where f\ast is the Legendre transform of f . Some of the important properties of Lipschitz
regularized f -divergences, which summarizes results from [16, 5] are given in supplementary
material section SM1. Typical examples of f -divergences include the KL-divergence with
f\mathrm{K}\mathrm{L}(x) = x logx, and the \alpha -divergences with f\alpha (x) =

x\alpha  - 1
\alpha (\alpha  - 1) . The corresponding Legendre

transforms are f\ast 
\mathrm{K}\mathrm{L}(y) = ey - 1 and f\ast 

\alpha \propto y
\alpha 

(\alpha  - 1) . In the KL case the infimum over \nu can be solved
analytically and yields the Lipschitz-regularized Donsker--Varadhan formula with a logEQ[e

\phi ]
term; see [6] for more on variational representations.

Gradient flows in probability space. The groundbreaking work of [30, 47] recasted the
Fokker--Planck (FP) and the porous media equations as gradient flows in the 2-Wasserstein
space of probability measures. More specifically, the FP equation can be thought as the
gradient flow of the KL divergence

\partial tpt =\nabla \cdot 
\biggl( 
pt\nabla 

\delta DKL(pt\| q)
\delta pt

\biggr) 
=\nabla \cdot 

\biggl( 
pt\nabla log

\biggl( 
pt
q

\biggr) \biggr) 
,(1.5)

where pt and q are the densities at time t and the stationary density, respectively. A similar
result relates weighted porous media equation and gradient flows for f divergences [47]. This
probabilistic formulation allowed the use of such gradient flows and related perspectives to
build new Machine Learning concepts and tools. For instance, the FP equation plays a key
role in both generative modeling and in sampling.

In the remaining part of this introduction we provide an outline of our main results, as
well as a discussion of related prior work.

Lipschitz-regularized gradient flows in probability space. From a generative modeling per-
spective, where Q is known only through samples---and may not have a density, especially
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1208 GU, BIRMPA, PANTAZIS, REY-BELLET, AND KATSOULAKIS

if Q is concentrated on a low-dimensional structure---one cannot use gradient flows such as
(1.5) without further regularization. For instance, related generative methods such as score
matching and diffusion models regularize data by adding noise [57, 58]. Here we propose a
different and complementary approach by regularizing the divergence directly and without
adding noise to the data. We propose gradient flows for the Lipschitz-regularized divergences
(1.4) of the form

\partial tPt =div

\Biggl( 
Pt\nabla 

\delta D\Gamma L

f (Pt\| Q)

\delta Pt

\Biggr) 
,(1.6)

for an initial (source) probability measure P0 and an equilibrium (target) measure Q, for P0,Q
in the Wasserstein space \scrP 1(\BbbR d) =

\bigl\{ 
P \in \scrP (\BbbR d) :

\int 
| x| dP (x)<\infty 

\bigr\} 
. We want to emphasize that

\scrP 1(\BbbR d) includes singular measures such as empirical distributions constructed from data. In
section 2 we prove the first variation formula

\delta D\Gamma L

f (P\| Q)

\delta P
= \phi L,\ast = argmax

\phi \in \Gamma L

\biggl\{ 
EP [\phi ] - inf

\nu \in \BbbR 
(\nu +EQ[f

\ast (\phi  - \nu )])

\biggr\} 
.(1.7)

The optimal \phi L,\ast in (1.7) (called the discriminator in the GAN literature) in the variational
representation of the divergence (1.4) serves as a potential to transport probability measures,
leading to the transport/variational PDE reformulation of (1.6):

\partial tPt +div(Ptv
L
t ) = 0 , P0 = P \in \scrP 1(\BbbR d) ,

vLt = - \nabla \phi L,\ast 
t , \phi L,\ast 

t = argmax
\phi \in \Gamma L

\biggl\{ 
EPt

[\phi ] - inf
\nu \in \BbbR 

(\nu +EQ[f
\ast (\phi  - \nu )])

\biggr\} 
,

(1.8)

where we remind that \Gamma L = \{ \phi : \BbbR d \rightarrow \BbbR : | \phi (x)  - \phi (y)| \leq L| x  - y| for all x, y\} . This
transport/variational PDE should be understood in a weak sense since Pt and Q are not
necessarily assumed to have densities. However, the purpose of this paper is not to develop
the PDE theory for this new gradient flow but rather to first establish its computational
feasibility through associated particle algorithms, explore its usefulness in generative modeling
for problems with high-dimensional scarce data, and overall computational efficiency and
scalability. Given sufficient regularity, along a trajectory of a smooth solution Pt of (1.8) we
have the following dissipation identity:

d

dt
D\Gamma L

f (Pt\| Q) = - I\Gamma L

f (Pt\| Q)\leq 0, where I\Gamma L

f (Pt\| Q) =EPt

\Bigl[ 
| \nabla \phi L,\ast 

t | 2
\Bigr] 

(1.9)

and I\Gamma L

f (P\| Q) is a Lipschitz-regularized version of the Fisher Information. Due to the trans-

port/variational PDE (1.8) I\Gamma L

f (P\| Q) can be interpreted as a total kinetic energy; see
section 2, and section 3 for its practical importance in the particle algorithms introduced
next.

Lipschitz-regularized generative particle algorithms (GPA). In the context of generative mod-
els, the target Q and the generative model Pt in (1.6) are available only through their samples

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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GENERATIVE PARTICLE ALGORITHMS FOR SCARCE DATA 1209

and associated empirical distributions. However, as it can be seen from (1.3) the divergence
D\Gamma L

f (P\| Q) can compare directly singular distributions (e.g., empirical measures) without need
for extra regularization such as adding noise to our models. For precisely this reason the pro-
posed gradient flow (1.6) is a natural mathematical object to consider as a generative model.

From a computational perspective, it becomes feasible to solve high-dimensional transport
PDE such as (1.6) when considering the Lagrangian formulation of the transport PDE in (1.8),
i.e., the ODE/variational problem

d

dt
Yt = vLt (Yt) = - \nabla \phi 

L,\ast 
t (Yt) , Y0 \sim P ,

\phi L,\ast 
t = argmax

\phi \in \Gamma L

\biggl\{ 
EPt

[\phi ] - inf
\nu \in \BbbR 
\{ \nu +EQ[f

\ast (\phi  - \nu )]\} 
\biggr\} 

.
(1.10)

In order to turn (1.10) into a particle algorithm we need the following ingredients:
\bullet Consider samples (X(i))Ni=1 from the target Q and (Y (i))Mi=1 samples from an initial

(source) distribution P = P0. In this case for the corresponding empirical measures \widehat QN

and \widehat PM we will consider the gradient flow (1.6) for D\Gamma L

f ( \widehat PM\| \widehat QN ). A key observation

in our algorithms is that the divergence D\Gamma L

f ( \widehat PM\| \widehat QN ) is always well-defined and finite
due to Lipschitz regularization and (1.3).

\bullet Corresponding estimators for the objective functional in the variational representation
of the divergence D\Gamma L

f ( \widehat PM\| \widehat QN ) (see (1.4) and also (1.10)):

E \widehat PM [\phi ] - inf
\nu 
(\nu +E \widehat QN [f

\ast (\phi  - \nu )]) =

\sum M
i=1 \phi (Y

(i)
n )

M
 - inf

\nu \in \BbbR 

\Biggl\{ 
\nu +

\sum N
i=1 f

\ast (\phi (X(i)) - \nu )

N

\Biggr\} 
.

\bullet The function space \Gamma L in (1.10) is approximated by a space of neural network ap-
proximations \Gamma NN

L . The Lipschitz condition can be implemented via neural network
spectral normalization as discussed in section 3.

\bullet The transport ODE in (1.10) is discretized in time using an Euler or a higher order
scheme; see section 3. Furthermore, the gradient \nabla \phi L,\ast 

t is evaluated by automatic
differentiation of NNs at the positions of the particles.

By incorporating these approximations we derive from (1.10), upon Euler time discretization
the Lipschitz-regularized GPA:

Y
(i)
n+1 = Y (i)

n  - \Delta t\nabla \phi L,\ast 
n (Y (i)

n ) , Y
(i)
0 = Y (i) , Y (i) \sim P , i= 1, . . . ,M,

\phi L,\ast 
n = argmax

\phi \in \Gamma NN
L

\Biggl\{ \sum M
i=1 \phi (Y

(i)
n )

M
 - inf

\nu \in \BbbR 

\Biggl\{ 
\nu +

\sum N
i=1 f

\ast (\phi (X(i)) - \nu )

N

\Biggr\} \Biggr\} 
,

(1.11)

Besides the transport aspect of (1.11), it can be also viewed as a new generative algorithm,
where the input is samples (X(i))Ni=1 from the ``target"" Q. Initial data, usually referred to as

``source"" data, (Y
(i)
0 )Mi=1 from P are transported via (1.11), after time T = nT\Delta t, where nT is

the total number of steps, to a new set of generated data (Y
(i)
nT )

M
i=1 that approximate samples

from Q. See, for instance, the demonstration in Figure 1.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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1210 GU, BIRMPA, PANTAZIS, REY-BELLET, AND KATSOULAKIS

Figure 1. Sierpinski carpet embedded in three dimensions. Source data (purple particles) are transported
via GPA close to the target data (cyan particles). The target particles were sampled from a Sierpinski carpet
of level 4 by omitting all finer scales. See Figure 7 for a related two-dimensional (2D) demonstration and a
comparison to GANs.

In analogy to (1.10), this Lagrangian point of view has been recently introduced to write
the solution of the FP equation (1.5) as the density of particles evolving according to its
Lagrangian formulation, [41],

d

dt
Yt = vt(Yt) =\nabla log q(Yt) - \nabla log pt(Yt) , where Yt \sim Pt .(1.12)

In fact, in [58], the authors proposed the deterministic probability flow (1.12) as an alternative
to generative stochastic samplers for score generative models due to advantages related to
obtaining better statistical estimators. We note here that the score term \nabla log pt(Yt) in (1.12)
is not a priori known and can be estimated by score-based methods [28]. In practice, these
Lagrangian tools are used both for generation [58] as well as sampling [50, 9].

Main contributions. As discussed earlier, the purpose of this paper is to introduce the
new Lipschitz-regularized gradient flow (1.6), in section 2, and subsequently establish its
computational feasibility through associated particle algorithms, its computational efficiency
and scalability, and explore its usefulness in generative modeling for problems with high-
dimensional scarce data. Towards these goals our main findings can be summarized as follows.

1. GPA for generative modeling with scarce data. We demonstrate that our proposed
GPA, introduced in section 3, can learn distributions from very small data sets, in-
cluding MNIST and other benchmarks, often supported on low-dimensional structures;
see Figure 1. In section 4 we discuss generalization properties of GPA and strategies
for mitigating memorization of target data, which has proved to be a significant and
ongoing challenge in generative modeling. In section 8 we compare GPA to GANs and
score-based generative models (SGM) in a series of examples and show GPA to be an
effective data-augmentation tool.

2. Lipschitz-regularization. We demonstrate that Lipschitz-regularized divergences pro-
vide a well-behaved pseudo-metric between models and data or data and data. They
remain finite under very broad conditions, making the training of GPA (1.11) on data

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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GENERATIVE PARTICLE ALGORITHMS FOR SCARCE DATA 1211

always well-defined and numerically stable. In fact, Lipschitz regularization corre-
sponds to effectively imposing an advection-type Courant--Friedrichs--Lewy (CFL) nu-
merical stability condition on the FP PDE (1.5) through the Lipschitz-regularization
parameter L in (1.6). The example in section 6 demonstrates empirically that the
selection of L is important.

3. Choice of f -divergence in (1.6). Although KL is often a natural choice, a careful
selection of f -divergences, for example the family of \alpha -divergences where f\alpha = x\alpha  - 1

\alpha (\alpha  - 1) ,
will allow for training that is numerically stable, including examples with heavy-tailed
data; see section 7.

4. Latent-space GPA for very high-dimensional problems. GPA can be effective even for
scarce data sets in high dimensions. We provide a demonstration where we integrate
(real) gene expression data sets exceeding 50,000 dimensions. The goal of data trans-
portation in this context is to mitigate batch effects between studies of different groups
of patients; see section 9. From a practical perspective, to be able to operate in such
high-dimensions we need a latent-space representation of the data and subsequently
we use GPA to transport particles in the latent space. In section 5 we provide related
performance guarantees using a new Data Processing Inequality (DPI) for Lipschitz-
regularized divergences.

Related work. Our approach is inspired by the MMD and KALE gradient flows from [3, 21]
based on an entropic regularization of the MMD metrics, and related work using the Kernel-
ized Sobolev Discrepancy [44]. Furthermore, the recent work of [16, 5] built the mathematical
foundations for a large class of new divergences which contains the Lipschitz regularized
f -divergences and used them to construct GANs, and in particular, symmetry preserving
GANs [7]. Also related is the Sinkhorn divergence [19] which is a different entropic regulariza-
tion of the 2-Wasserstein metrics. Lipschitz regularizations and the related spectral normal-
ization have been shown to improve the stability of GANs [43, 4, 24]. Our particle algorithms
share similarities with GANs [22, 4], sharing the same discriminator but having a different gen-
erator step. They are also broadly related to continuous-time generative algorithms, such as
continuous-time normalizing flows (NF) [12, 33, 13], diffusion models [54, 27] and score-based
generative flows [57, 58]. However, the aforementioned continuous-time models, along with
variational autoencoders [31] and energy based methods [34], are mostly KL/likelihood-based.

On the other hand, particle gradient flows such as the ones proposed here can be classified
as a separate class within implicit generative models. Within such generative models that
include GANs, there is more flexibility in selecting the loss function in terms of a suitable
divergence or probability metric, enabling the direct comparison of even mutually singular
distributions, e.g., [4, 24]. Gradient flows in probability spaces related to the KL divergence,
such as the FP equations and Langevin dynamics [51, 17] or Stein variational gradient descent
[38, 37, 39], form the basis of a variety of sampling algorithms when the target distribution Q
has a known density (up to normalization). The weighted porous media equations form an-
other family of gradient flows based on \alpha -divergences, e.g., [47, 1, 15, 61] which are very useful
in the presence of heavy tails. Our gradient flows are Lipschitz-regularizations of such clas-
sical PDE's (FP and porous medium equations). Finally, deterministic particle methods and

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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1212 GU, BIRMPA, PANTAZIS, REY-BELLET, AND KATSOULAKIS

associated probabilistic flows of ODEs such as the ones derived here for Lipschitz-regularized
gradient flows, were considered in recent works for classical KL-divergences and associated FP
equations as sampling tools [41, 9], for Bayesian inference [50] and as generative models [58].

2. Lipschitz-regularized gradient flows. In this section we introduce the concept of
Lipschitz-regularized gradient flows in probability space, including the key computation of
the first variation of Lipschitz-regularized divergences. This will allow us to build effec-
tive particle-based algorithms in section 3. Indeed, given a target probability measure Q,
we build an evolution equation for probability measures based on the Lipschitz regularized
f -divergences D\Gamma L

f (P\| Q) in (1.4), by considering the PDE

\partial tPt =div

\Biggl( 
Pt\nabla 

\delta D\Gamma L

f (Pt\| Q)

\delta Pt

\Biggr) 
, with initial condition P0 \in \scrP 1(\BbbR d),(2.1)

where
\delta D

\Gamma L
f (P\| Q)

\delta P is the first variation of D\Gamma L

f (P\| Q), to be discussed below in Theorem 2.1. An
advantage of the Lipschitz regularized f -divergences is its ability to compare singular measures
and thus (2.1) needs to be understood in a weak sense. For this reason we use the probability
measure Pt notation in (2.1), instead of density notation pt as in the FP equation (1.5). In
the formal asymptotic limit L \rightarrow \infty and if P \ll Q, (2.1) yields the FP equation (1.5) (for
KL divergence) and the weighted porous medium equation (for \alpha -divergences) [47, 15]; see
Remark 2.6. Note that the purpose of this paper is not to develop the PDE theory for (2.1)
but rather to first establish its computational feasibility through associated particle algorithms
and demonstrate its usefulness in generative modeling.

Theorem 2.1 (first variation of Lipschitz regularized f -divergences). Assume f is superlinear,
strictly convex and P,Q\in \scrP 1(\BbbR d). We define

\phi L,\ast := argmax
\phi \in \Gamma L

\biggl\{ 
EP [\phi ] - inf

\nu \in \BbbR 
\{ \nu +EQ[f

\ast (\phi  - \nu )]\} 
\biggr\} 
,(2.2)

where the optimizer \phi L,\ast \in \Gamma L exists, is defined on supp(P ) \cup supp(Q), and is unique up to a
constant. Subsequently, we extend \phi L,\ast in all of \BbbR d using (2.6). Let \rho be a signed measure of
total mass 0, and let \rho = \rho +  - \rho  - , where \rho \pm \in \scrP 1(\BbbR d) are mutually singular, i.e., there exist
two disjoint sets X\pm such that \rho \pm (A) = \rho \pm (A\cap X\pm ) for all measurable sets A.
If P + \epsilon \rho \in \scrP 1(\BbbR d) for sufficiently small \epsilon > 0, then

lim
\epsilon \rightarrow 0

1

\epsilon 

\Bigl( 
D\Gamma L

f (P + \epsilon \rho \| Q) - D\Gamma L

f (P\| Q)
\Bigr) 
=

\int 
\phi L,\ast d\rho .(2.3)

Then we write

\delta D\Gamma L

f (P\| Q)

\delta P
(P ) = \phi L,\ast .(2.4)

Remark 2.2. The first variation of the Lipschitz-regularized KL divergence given in Theo-
rem 2.1 is defined on \scrP 1(\BbbR d) which includes singular measures such as empirical distributions.
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GENERATIVE PARTICLE ALGORITHMS FOR SCARCE DATA 1213

On the other hand, the classical FP (1.5) (where L=\infty ) can be rewritten in a gradient flow
formulation,

\partial tpt =\nabla \cdot (\nabla \phi \ast (x, t)pt) , where

\phi \ast 
t = log

pt(x)

q(x)
= argmax

\phi \in Cb(\BbbR d)

\biggl\{ 
EPt

[\phi ] - inf
\nu \in \BbbR 

\Bigl\{ 
\nu +EQ[e

\phi  - \nu  - 1]
\Bigr\} \biggr\} (2.5)

is built on the first variation of the (unregularized) KL divergence given by

\delta DKL(P\| Q)

\delta P
= log

dP

dQ
= \phi \ast = argmax

\phi \in Cb(\BbbR d)

\biggl\{ 
EP [\phi ] - inf

\nu \in \BbbR 

\Bigl\{ 
\nu +EQ[e

\phi  - \nu  - 1]
\Bigr\} \biggr\} 

,

where Cb(\BbbR d) is the space of all bounded continuous functions on \BbbR d. In this case, the first
variation is defined on the space of probability measures which are absolutely continuous with
respect to Q.

The proof of Theorem 2.1 is partly based on the next lemma (proof in supplementary
material section SM2.1).

Lemma 2.3. Let f be superlinear and strictly convex, and let P,Q \in \scrP 1(\BbbR d). For y /\in 
supp(P )\cup supp(Q), we define

\phi L,\ast (y) = sup
x\in \mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}(Q)

\bigl\{ 
\phi L,\ast (x) +L| x - y| 

\bigr\} 
.(2.6)

Then \phi L,\ast is Lipschitz continuous on \BbbR d with Lipschitz constant L and \phi L,\ast = sup\{ h(x) : h \in 
\Gamma L, h(y) = \phi L,\ast (y), for every y \in supp(Q)\} .

See Remark 2.4, part (b) for the algorithmic intepretation of this lemma.

Proof of Theorem 2.1. If \rho = \rho +  - \rho  - , we may assume (Jordan decomposition) that \rho \pm \in 
\scrP (X) are mutually singular so there exist two disjoint sets X\pm such that \rho \pm (A) = \rho \pm (A \cap X\pm )
for all measurable sets A. The measure P+\epsilon (\rho + - \rho  - ) has total mass 1 but to be a probability
measure we need that \epsilon \rho  - (A)\leq (P+\epsilon \rho +)(A) holds for all A. This implies that \rho  - is absolutely
continuous with respect to P . Indeed if P (A) = 0, then

\epsilon \rho  - (A) = \epsilon \rho  - (A\cap X - )\leq P (A\cap X - ) + \epsilon \rho +(A\cap X - )\leq P (A) = 0.(2.7)

If P + \epsilon \rho \in \scrP 1(\BbbR d), the divergence is finite and thus by (1.4)

D\Gamma L

f (P + \epsilon \rho \| Q) = sup
\phi \in \Gamma L

\biggl\{ 
EP+\epsilon \rho [\phi ] - inf

\nu \in \BbbR 
\{ \nu +EQ[f

\ast (\phi  - \nu )]\} 
\biggr\} 

\geq 
\int 

\phi L,\ast d(P + \epsilon \rho ) - inf
\nu \in \BbbR 

\biggl\{ 
\nu +

\int 
f\ast (\phi L,\ast  - \nu )dQ

\biggr\} 
= \epsilon 

\int 
\phi L,\ast d\rho +D\Gamma L

f (P\| Q).(2.8)

Thus

lim inf
\epsilon \rightarrow 0+

1

\epsilon 

\Bigl( 
D\Gamma L

f (P + \epsilon \rho \| Q) - D\Gamma L

f (P\| Q)
\Bigr) 
\geq 
\int 

\phi L,\ast d\rho .(2.9)
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1214 GU, BIRMPA, PANTAZIS, REY-BELLET, AND KATSOULAKIS

For the other direction let us define F (\epsilon ) = D\Gamma L

f (P + \epsilon \rho \| Q). By Theorem SM1.1 in the
supplementary material F (\epsilon ) is convex, lower semicontinuous, and finite on [0, \epsilon 0]. Due to the
convexity of F , it is differentiable on (0, \epsilon 0) except for a countable number of points. If \phi L,\ast 

\epsilon 

is the optimizer for D\Gamma L

f (P + \epsilon \rho \| Q) we have, using the same argument as before,

D\Gamma L

f (P + (\epsilon + \delta )\rho \| Q) - D\Gamma L

f (P + \epsilon \rho \| Q)\geq \delta 

\int 
\phi L,\ast 
\epsilon d\rho ,(2.10)

D\Gamma L

f (P + (\epsilon  - \delta )\rho \| Q) - D\Gamma L

f (P + \epsilon \rho \| Q)\geq  - \delta 
\int 

\phi L,\ast 
\epsilon d\rho .(2.11)

If F is differentiable at \epsilon , this implies that\int 
\phi L,\ast 
\epsilon d\rho \leq lim

\delta \rightarrow 0

1

\delta 

\Bigl( 
D\Gamma L

f (P + (\epsilon + \delta )\rho \| Q) - D\Gamma L

f (P + \epsilon \rho \| Q)
\Bigr) 
= F \prime (\epsilon )

= lim
\delta \rightarrow 0

1

\delta 

\Bigl( 
D\Gamma L

f (P + \epsilon \rho \| Q) - D\Gamma L

f (P + (\epsilon  - \delta )\rho \| Q)
\Bigr) 
\leq 
\int 

\phi L,\ast 
\epsilon d\rho .(2.12)

Consequently,

F \prime (\epsilon ) =

\int 
\phi L,\ast 
\epsilon d\rho .(2.13)

Let F \prime 
+(0) be the right derivative at \epsilon = 0, i.e. F \prime 

+(0) = lim\epsilon \rightarrow 0+
1
\epsilon (F (\epsilon ) - F (0)). By convexity,

for any sequence \epsilon n such that F is differentiable at \epsilon n and \epsilon n\searrow 0, we have

F \prime 
+(0) = lim

n\rightarrow \infty 
F \prime (\epsilon n) = lim

n\rightarrow \infty 

\int 
\phi L,\ast 
\epsilon n d\rho .

We write \BbbR d = \cup m\in \BbbN Km with Km \subset \BbbR d being compact set and Km \subset Km+1. The optimizer
\phi L,\ast 
\epsilon n is unique up to constant which we choose now such that \phi L,\ast 

\epsilon n (0) = 0. The Lipschitz
condition implies that the sequence \phi L,\ast 

\epsilon n is equibounded and equicontinuous on Km. By the
Arzel\`a--Ascoli theorem, there exists a subsequence of \phi L,\ast 

\epsilon n that converges uniformly in Km.
Using diagonal argument, by taking subsequences sequentially along \{ Km\} m\in \BbbN we conclude
there exists a subsequence such that \phi L,\ast 

\epsilon nk
converges uniformly in any Km and thus \phi L,\ast 

\epsilon nk

converges pointwise in \BbbR d. Let \phi L,\ast 
0 \in LipL(\BbbR d) be the limit and for simplicity we also denote

by \phi L,\ast 
\epsilon n the convergent subsequence. The choice \phi L,\ast 

\epsilon n (0) = 0 and the Lipschitz condition
implies that | \phi L,\ast 

\epsilon n (x)| \leq L| x| which is integrable with respect to \rho since \rho \pm \in \scrP 1(X). Thus by
dominated convergence

F \prime 
+(0) = lim

n\rightarrow \infty 

\int 
\phi L,\ast 
\epsilon n d\rho =

\int 
\phi \ast 
0d\rho .

By the lower semicontinuity of D\Gamma L

f (\cdot \| Q) (see Theorem SM1.1 in the supplementary material),
we have

D\Gamma L

f (P\| Q)\leq lim inf
n\rightarrow \infty 

D\Gamma L

f (P + \epsilon n\rho \| Q)

= lim inf
n\rightarrow \infty 

\biggl\{ 
EP+\epsilon n\rho [\phi 

L,\ast 
\epsilon n ] - inf

\nu \in \BbbR 

\bigl\{ 
\nu +EQ[f

\ast (\phi L,\ast 
\epsilon n  - \nu )]

\bigr\} \biggr\} 
= lim inf

n\rightarrow \infty 
EP+\epsilon n\rho [\phi 

L,\ast 
\epsilon n ] - limsup

n\rightarrow \infty 
inf
\nu \in \BbbR 

\bigl\{ 
\nu +EQ[f

\ast (\phi L,\ast 
\epsilon n  - \nu )]

\bigr\} 
\leq EP [\phi 

L,\ast 
0 ] - inf

\nu \in \BbbR 

\Bigl\{ 
\nu +EQ[f

\ast (\phi L,\ast 
0  - \nu )]

\Bigr\} 
\leq D\Gamma L

f (P\| Q),
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GENERATIVE PARTICLE ALGORITHMS FOR SCARCE DATA 1215

where for the second inequality we use the dominated convergence theorem, (2.13) and that
by Fatou's lemma (using that f\ast (x)\geq x and that | \phi L,\ast 

\epsilon n (x)| \leq L| x| ),

limsup
n\rightarrow \infty 

\int 
f\ast (\phi L,\ast 

\epsilon n )dQ\geq lim inf
n\rightarrow \infty 

\int 
f\ast (\phi L,\ast 

\epsilon n )dQ\geq 
\int 

f\ast (\phi L,\ast 
0 )dQ.

From (2.14) we conclude that \phi L,\ast 
0 must be an optimizer, and thus \phi L,\ast 

0 (x) = \phi L,\ast (x), P a.s.,

and \phi L,\ast 
0 (x)\leq \phi L,\ast (x) for all x (see Lemma 2.3). Using that \rho  - is absolutely continuous with

respect to P we have then

F \prime 
+(0) =

\int 
\phi L,\ast 
0 d\rho =

\int 
\phi L,\ast 
0 d\rho +  - 

\int 
\phi L,\ast 
0 d\rho  - =

\int 
\phi L,\ast 
0 d\rho +  - 

\int 
\phi L,\ast d\rho  - \leq 

\int 
\phi L,\ast d\rho .(2.14)

Combining with (2.9) implies that F \prime 
+(0) =

\int 
\phi L,\ast d\rho .

Remark 2.4 (algorithmic perspectives and related results). The statement and the proof
of Theorem 2.1 contain certain key algorithmic elements that will become relevant in later
sections: (a) A version of Theorem 2.1 was proved in [16] for the special case of KL divergence.
In Theorem 2.1 our results are proved for general f -divergences. This generality is necessary
in generative modeling based on both past experience in GANs [45, 40, 5, 7], as well as the
demonstration examples with heavy tails considered here. (b) In Theorem 2.1, the maximizer
\phi L,\ast \in \Gamma L defined on supp(P ) \cup supp(Q), is maximally extended as an L-Lipschitz function
to all of \BbbR d; see Lemma 2.3. Notice that in our algorithm in section 3, we also allow for
L-Lipschitz extensions which are constructed algorithmically simply by optimization in the
space of L-Lipschitz NNs; see Algorithm 3.1. (c) The derived (not assumed!) absolute con-
tinuity of the perturbation \rho in (2.7), captures some important intuition about the nature of
P+\epsilon \rho when P is an empirical measure, e.g., when it is built from particles as in Algorithm 3.1:
in this perturbation, existing particles can be removed from P according to \rho  - , corresponding
to the absolute continuity (2.7), while new particles can be created anywhere according to
\rho +, the latter not requiring absolute continuity. These perturbations/variations of empirical
measures are precisely the ones arising in the particle algorithm (3.2).

Using Theorem 2.1 we can now rewrite (2.1) as a transport/variational PDE,

\partial tPt +div(Ptv
L
t ) = 0 , P0 = P \in \scrP 1(\BbbR d) ,

vLt = - \nabla \phi L,\ast 
t , \phi L,\ast 

t = argmax
\phi \in \Gamma L

\biggl\{ 
EPt

[\phi ] - inf
\nu \in \BbbR 

(\nu +EQ[f
\ast (\phi  - \nu )])

\biggr\} 
.

(2.15)

The transport/variational reformulation (2.15) is the starting point for developing our gen-
erative particle algorithms in section 3 based on data, when P and Q are replaced by their
empirical measures \^PM , \^QN based on M and N i.i.d. samples, respectively. Furthermore,
(2.15) provides a numerical stability perspective on the Lipschitz regularization (2.1) In par-
ticular, the Lipschitz condition on \phi \in \Gamma L enforces a finite speed of propagation of at most
L in the transport equation in (2.15). This is in sharp contrast with the FP equation (1.5),
which is a diffusion equation and has infinite speed of propagation. We refer to section 6 for
connections to the CFL stability condition.
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1216 GU, BIRMPA, PANTAZIS, REY-BELLET, AND KATSOULAKIS

The gradient flow structure of (2.1) is reflected in dissipation estimates, namely an equation
for the rate of change (dissipation) of the divergence along smooth solutions Pt of (2.1).

Theorem 2.5 (Lipschitz-regularized dissipation). Along a trajectory of a smooth solution
\{ Pt\} t\geq 0 of (2.15) with source probability P0 = P we have the rate of decay identity

d

dt
D\Gamma L

f (Pt\| Q) = - I\Gamma L

f (Pt\| Q)\leq 0,(2.16)

where we define the Lipschitz-regularized Fisher Information as

I\Gamma L

f (Pt\| Q) =EPt

\bigl[ 
| \nabla \phi L,\ast | 2

\bigr] 
.(2.17)

Consequently, for any T \geq 0, we have D\Gamma L

f (PT \| Q) =D\Gamma L

f (P\| Q) - 
\int T
0 I\Gamma L

f (Ps\| Q)ds .

The proof can be found in supplementary material section SM2.2. For the generative
particle algorithms of section 3 the Lipschitz-regularized Fisher Information will be interpreted
as the total kinetic energy of the particles (3.3).

Remark 2.6 (formal asymptotics of Lipschitz-regularized gradient flows). The rigorous
(L\rightarrow \infty )-asymptotic results of the limit of the Lipschitz-regularized f -divergences to (unreg-
ularized) f -divergences presented in [16, 5] (see also Theorem SM1.1 in the supplementary
material) motivates a discussion on the formal asymptotics of the corresponding gradient
flows. In particular, the Lipschitz-regularization L\rightarrow \infty asymptotics towards the (unregular-
ized) gradient flows can be formally obtained as the limit of the transport/variational PDEs
(2.15), i.e.,

\partial tPt =div
\Bigl( 
Pt\nabla \phi L,\ast 

t

\Bigr) 
\underbrace{}  \underbrace{}  

\mathrm{L}\mathrm{i}\mathrm{p}. \mathrm{r}\mathrm{e}\mathrm{g}\mathrm{u}\mathrm{l}\mathrm{a}\mathrm{r}\mathrm{i}\mathrm{z}\mathrm{e}\mathrm{d}f -\mathrm{d}\mathrm{i}\mathrm{v}\mathrm{e}\mathrm{r}\mathrm{g}\mathrm{e}\mathrm{n}\mathrm{c}\mathrm{e} fl\mathrm{o}\mathrm{w}

 - \rightarrow 
L\rightarrow \infty 

\partial tPt =div (Pt\nabla \phi \ast 
t )\underbrace{}  \underbrace{}  

f -\mathrm{d}\mathrm{i}\mathrm{v}\mathrm{e}\mathrm{r}\mathrm{g}\mathrm{e}\mathrm{n}\mathrm{c}\mathrm{e} fl\mathrm{o}\mathrm{w}

, where \phi \ast 
t = f \prime 

\biggl( 
dPt

dQ

\biggr) 
.(2.18)

When pt, q are the probability densities of Pt and Q, respectively, and f(x) = f\mathrm{K}\mathrm{L}(x) = x log(x)
and f\alpha (x) = x\alpha  - 1

\alpha (\alpha  - 1) , the Lipschitz regularized f -divergence flow in (2.18) converges to the

classical FP equation given by \partial tpt =div(pt\nabla log(pt

q )) and Weighted Porous Medium equation

given by \partial tpt =
1

\alpha  - 1div(pt\nabla (
pt

q )
\alpha  - 1), respectively. Similarly, when f = f\mathrm{K}\mathrm{L}, as L \rightarrow \infty , we

formally recover from (2.17) the usual Fisher information I\Gamma f (P\| Q) =EP [| \nabla log(pq )| 
2].

Some PDE questions for Lipschitz-regularization. A rigorous analysis encompassing aspects
such as well-posedness, stability, regularity, and convergence to equilibrium Q, remains to be
explored. For example, the DiPerna--Lions theory [2, 14] for transport equations with rough
velocity fields and its more recent variants could be useful for proving well-posedness. Ad-
ditionally, functional inequalities tailored for porous medium and FP equations contribute
to proving convergence of a PDE to its equilibrium such as exponential or polynomial con-
vergence. Classical examples of such inequalities are Poincar\'e and Logarithmic Sobolev-type
inequalities, and generalizations thereof for FP and porous medium equations [1, 48, 15].
However, convergence of the new class of PDE gradient flows (2.1) to their equilibrium states,
will require new functional inequalities entailing the Lipschitz-regularized Fisher Information
and probability measures Q which may not have densities.
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GENERATIVE PARTICLE ALGORITHMS FOR SCARCE DATA 1217

3. Generative particle algorithms. In this section we build a numerical algorithm to
solve the transport/discriminator gradient flow (2.15) when N i.i.d. samples from the target
distribution Q are given. We first discretize the system in time using a forward-Euler scheme,

Pn+1 =
\bigl( 
I  - \Delta t\nabla \phi L,\ast 

n

\bigr) 
\#
Pn, whereP0 = P,

\phi L,\ast 
n = argmax

\phi \in \Gamma L

\biggl\{ 
EPn

[\phi ] - inf
\nu \in \BbbR 
\{ \nu +EQ[f

\ast (\phi  - \nu )]\} 
\biggr\} 

.
(3.1)

Here, the pushforward measure for a map T :\BbbR d\rightarrow \BbbR d and P \in \scrP (\BbbR d) is denoted by T\#P (i.e.,
T\#P (A) = P (T - 1(A)). Next, given N i.i.d. samples \{ X(i)\} Ni=1 from the target distribution

Q, we consider the empirical measure \^QN =N - 1
\sum N

i=1 \delta X(i) . Likewise, given M i.i.d. samples

\{ Y (i)
0 \} Mi=1 from a known initial (source) probability measure P and consider the empirical

measure \^PM =M - 1
\sum M

i=1 \delta Y (i)
0

. By replacing the measures P and Q in (3.1) by their empirical

measures \^PM and \^QN we obtain the following particle system:

Y
(i)
n+1 = Y (i)

n  - \Delta t\nabla \phi L,\ast 
n (Y (i)

n ) , Y
(i)
0 = Y (i) , Y (i) \sim P , i= 1, . . . ,M

\phi L,\ast 
n = argmax

\phi \in \Gamma NN
L

\Biggl\{ \sum M
i=1 \phi (Y

(i)
n )

M
 - inf

\nu \in \BbbR 

\Biggl\{ 
\nu +

\sum N
i=1 f

\ast (\phi (X(i)) - \nu )

N

\Biggr\} \Biggr\} 
,

(3.2)

where the function space \Gamma L in (3.1) is approximated by a space of NN approximations \Gamma NN
L .

We will refer to this particle algorithm as (f,\Gamma L)-GPA or simply GPA. The transport mech-
anism given by (3.2) corresponds to a linear transport PDE in (2.15). However, between
particles nonlinear interactions are introduced via the discriminator \phi L,\ast 

n which in turn de-
pends on all particles in (3.2) at step n of the algorithm, namely the generated particles

(Y
(i)
n )Mi=1, as well as the ``target"" particles (X(i))Ni=1. Notice that \phi L,\ast 

n discriminates the gen-
erated samples at time n from the target data using the second equation of (3.2), and is not
directly using the generated data of the previous steps up to step n - 1. Moreover the gradient
of the discriminator is computed only at the positions of the particles.

Overall, (3.2) is an approximation scheme of the Lagrangian formulation (1.10) of the
Lipschitz-regularized gradient flow (1.6), where we have (a) discretized time, (b) approxi-
mated the function space \Gamma L in terms of neural networks, and (c) used empirical distribu-
tions/particles to build approximations of the target Q, (d) used gradient-based optimization
methods to approximate the discriminator \phi L,\ast 

n such as stochastic gradient descent or the
Adam optimizer. All these elements are combined in Algorithm 3.1.

Remark 3.1 (Lipschitz regularization for GPA). Lipschitz regularized f -divergences are
practically advantageous since they allow one to calculate divergences between arbitrary em-
pirical measures with nonoverlapping supports. Indeed, given a Lipschitz constant
L, the L-Lipschitz regularized f -divergence is bounded by L times the 1-Wasserstein met-
ric as stated in (1.3) and discussed in more detail in [5]. Therefore, a suitable choice of L
depending on data offers numerical tractability for the particle system in (3.2) and Algorithm
3.1. Without proper Lipschitz regularization, GPA diverges or produces inaccurate solutions
as illustrated in Figure 3. In our implementation, the Lipschitz regularization is enforced via
Spectral Normalization (SN) for NNs, [43]. Despite its clear numerical benefits, SN incurs a
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1218 GU, BIRMPA, PANTAZIS, REY-BELLET, AND KATSOULAKIS

relatively modest computational cost. Applying SN in an experiment leads to a 10\% increase
in computational time compared to a nonregularized counterpart. Another way to impose
Lipschitz regularization for NNs is to add a gradient penalty to the loss [24, 5].

Remark 3.2 (improved accuracy and higher-order schemes). Replacing the forward Euler
in (3.2) or line 10 in Algorithm 3.1 with Heun's predictor/corrector method is observed to lead
to a significant improvement in the accuracy of the GPA for several examples; see, for instance,
Figure SM1. In addition, adopting a smaller \Delta t in (3.2) and Algorithm 3.1 may contribute
to enhanced accuracy in GPA outcomes. Employing a smaller \Delta t often requires a smoother
discriminator, achieved by substituting the ReLU activation function with a smoothed ReLU.
We refer to supplementary material section SM3.2 for details.

GPA kinetic energy and Lipschitz-regularized Fisher information. Theorem 2.5 suggests the
empirical Lipschitz-regularized Fisher Information,

I\Gamma L

f ( \^PM
n \| \^QN ) =

\int 
| \nabla \phi L,\ast 

n | 2 \^PM
n (dx) =

1

M

M\sum 
i=1

| \nabla \phi L,\ast 
n (Y (i)

n )| 2 ,(3.3)

as a quantity of interest to monitor the convergence of GPA (3.2). Here \^PM
n denotes the

empirical distribution of the generative particles (Y
(i)
n )Mi=1. Indeed, I

\Gamma L

f ( \^PM
n \| \^QN ) is the total

kinetic energy of the generative particles since \nabla \phi L,\ast 
n (Y

(i)
n ) is the velocity of the ith particle

at time step n. The algorithm will stop when the total kinetic energy I\Gamma L

f ( \^PM
n \| \^QN )\approx 0.

Algorithm 3.1. [(f,\Gamma L)-GPA] Lipschitz regularized generative particles algorithm.

Require: f for the choice of f -divergence and its Legendre conjugate f\ast ,L: Lipschitz constant,
n\mathrm{m}\mathrm{a}\mathrm{x}: number of updates for the particles, \Delta t: time step size, M : number of initial
particles, N : number of target particles

Require: W = \{ W l\} Dl=1: parameters for the neural networks (NN) \phi :\BbbR d\rightarrow \BbbR , D: depth of
the NN, \delta : learning rate of the NN, m\mathrm{m}\mathrm{a}\mathrm{x}: number of updates for the NN.

Result: \{ Y (i)
n\mathrm{m}\mathrm{a}\mathrm{x}\} Mi=1

1: Sample \{ Y (i)
0 \} Mi=1 \sim P0 = P , a batch of prior samples

2: Sample \{ X(j)\} Nj=1 \sim Q, a batch from the real data

3: Initialize \nu \leftarrow 0

4: Initialize W randomly and W l\leftarrow L1/D \ast W l/\| W l\| 2, l= 1, . . . ,D  \triangleleft \phi L
0 (\cdot ;W )\in \Gamma L

5: for n= 0 to (n\mathrm{m}\mathrm{a}\mathrm{x}  - 1) do
6: for m= 0 to m\mathrm{m}\mathrm{a}\mathrm{x}  - 1 do

7: gradW,\nu \leftarrow \nabla W,\nu 

\Bigl[ 
M - 1

\sum M
i=1 \phi 

L
n(Y

(i)
n ;W ) - N - 1

\sum N
j=1 f

\ast (\phi L
n(X

(j);W ) - \nu ) + \nu 
\Bigr] 

8: (\nu ,W )\leftarrow (\nu ,W ) + \delta \cdot optimizer(grad\nu , gradW )

9: W l\leftarrow L1/D \ast W l/\| W l\| 2, l= 1, . . . ,D

10: end for  \triangleleft \phi L,\ast 
n (\cdot ;W )\in \Gamma L

11: Y
(i)
n+1\leftarrow Y

(i)
n  - \Delta t\nabla \phi L,\ast 

n (Y
(i)
n ;W ), i= 1, . . . ,M  \triangleleft forward Euler

12: end for

L-Lipschitz continuity is imposed by W l\leftarrow L1/D \ast W l/\| W l\| 2, l= 1, . . . ,D.
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GENERATIVE PARTICLE ALGORITHMS FOR SCARCE DATA 1219

Overall, Algorithm 3.1 estimates two natural quantities of interest: the Lipschitz regular-

ized f -divergence M - 1
\sum M

i=1 \phi 
L,\ast 
n (Y

(i)
n ;W )  - N - 1

\sum N
j=1 f

\ast (\phi L,\ast 
n (X(j);W )  - \nu \ast ) + \nu \ast and the

Lipschitz regularized Fisher information (3.3). These quantities are used to track the progress
and terminate the simulations.

4. Generalization properties of GPA. The transport/discriminator formulation in (3.1) is
the core mechanism in GPA, facilitating sample generation by transporting particles through
time-dependent vector fields obtained by iteratively solving (3.2) over time. Ensuring the
diversity of generated samples and avoiding ``memorization"" of the target data, is a critical
challenge in generative modeling, as discussed extensively in recent publications, for instance
in the context of diffusion models, [49, 55, 56, 23, 36, 10], including empirical [56] and theory-
based mitigation strategies [63]. In GPA as well, there is the theoretical possibility, based
on the gradient flow dynamics and the dissipation estimate in Theorem 2.5, that with a
rich enough NN to learn the discriminator, suitable learning rates, and long enough runs,
Algorithm 3.1 may reproduce the empirical distribution of the target data, especially when
M = N . This phenomenon can be observed for the MNIST data set in Figure SM4. To
mitigate these challenges and ensure better generalization for the proposed GPA algorithms,
we explore three distinct strategies:

1. From training particles to generated particles. In this approach we use M training
particles from an initial distribution P0 and N target particles to learn the time-
dependent vector fields given by Algorithm 3.1. This vector field is constructed as
an NN on the entire space. Therefore, we can transport (e.g., simultaneously) any
additional number of particles sampled from P0 using this, already learned, vector
field. We refer to the latter type of particles as ``generated particles"". See Figure 5
and also Figure SM6 in the supplementary material for practical demonstrations of
such generated particles.

This approach, which is based on learning a time-dependent vector field, aligns
with other flow-based generative models such as SGM [58], and normalizing flows [13].
However, the latter methods are more efficient in learning their time-dependent vector
field by employing a corresponding space/time objective functional. We believe that
a similar formulation can be built for GPA, by using the mean-field game functionals
for Wasserstein gradient flows in [62]. We plan to explore this space/time approach in
a follow-up work.

2. Imbalanced sample sizes. In this strategy we chooseM \gg N in Algorithm 3.1. First, we
empirically found strong evidence of overfitting and memorization in the M =N case,
i.e., training particles eventually match the target particles. However, in the setting
of the imbalanced sample sizes M \gg N particles maintain their sample diversity. See
Figure SM3 in the supplementary material. These different behaviors are captured
and quantified by the two estimators (divergence and kinetic energy) in Algorithm
3.1; compare the findings in parts (c, e) of Figure SM3 in the supplementary material.

3. GPA for data augmentation. Lastly, we demonstrate that GPA can serve as a data
augmentation tool to train other generative models particularly those requiring large
sample sizes. For instance, the examples in Figures 6 and 9 showcase the effectiveness
of GPA-based data augmentation for GANs.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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1220 GU, BIRMPA, PANTAZIS, REY-BELLET, AND KATSOULAKIS

Overall, GPA learns from target data and training particles, a time-dependent vector field
represented by Lipschitz NNs defined on the entire space. In this sense, GPA is expected to
gain in extrapolation properties since the learned vector field can be used to move arbitrary
new particles towards the target data.

5. Data processing inequality and latent space GPA. Performance degradation is a com-
mon challenge for all generative models in high-dimensional settings, a problem that becomes
more pronounced in regimes with low sample sizes. For GPA, the optimization of the discrim-
inator within the NN space exhibits superior scalability, particularly in regimes of hundreds
of dimensions, compared to optimization in RKHS which typically performs well in lower
dimensions. However, similarly to other neural-based generative models, GPA faces chal-
lenges in really high-dimensional problems. To overcome this type of scalability constraints,
we can take advantage of latent space formulations used in recent papers in generative flows,
e.g., [60, 52, 46], to complement and scale-up score-based models, diffusion models, and nor-
malizing flows. The key idea is simple and powerful as demonstrated in these earlier works: a
pretrained auto-encoder first projects the high-dimensional real space to a lower-dimensional
latent space and then a generative model is trained in the compressed latent space. Subse-
quently, the decoder of the auto-encoder allows one to map the data generated in the latent
space back to the original high-dimensional space.

In Theorem 5.1, we demonstrate that operating in the latent space can be understood in
light of a suitable Data Processing Inequality (DPI) and we provide conditions which guaran-
tee that the error induced by the transportation of a high-dimensional data distribution via
combined encoding/decoding and particle transportation in a lower-dimensional latent space
is controlled by the error only in the (much more tractable) latent space. More specifically,
we consider the following mathematical setting: (i) a probability Q=Q\scrY , defined on the orig-
inal, high-dimensional space \scrY , typically supported on some low-dimensional set S \subset \scrY =\BbbR d;
(ii) an encoder map \scrE :\scrY \rightarrow \scrZ where \scrZ \subset \BbbR d\prime 

, d\prime <d, and a decoder map \scrD :\scrZ \rightarrow \scrY which are
invertible in S, i.e., \scrD \circ \scrE (S) = S. Let \scrE \#Q\scrY denote the image of the measure Q\scrY by the map
\scrE , i.e., for A \subset \scrZ , \scrE \#Q\scrY (A) := Q\scrY (\scrE  - 1(A)). Similarly, we define \scrD \#P

\scrZ as the combination
of the encoding/decoding and particle transportation \scrT n in a lower-dimensional latent space
where P\scrZ := \scrT n

\#\scrE \#P0 . The fidelity of the approximation Q\scrY \approx \scrD \#P
\scrZ of the target measure

Q\scrY in the original space \scrY will be then guaranteed by the a posteriori estimate in Theorem
5.1, interpreted in the sense of numerical analysis, where the approximation in the compressed
latent space \scrZ bounds the error in the original space \scrY . Its proof is a consequence of a new,
tighter data processing inequality derived in [5]; see also Theorem SM1.2 in the supplementary
material that involves both transformation of probabilities and discriminator space \Gamma .

Theorem 5.1 (autoencoder performance guarantees). For Q\scrY \in \scrP (\scrY ), suppose that there is
a exact encoder/decoder with encoder \scrE : \BbbR d \rightarrow \BbbR d\prime 

and decoder \scrD : \BbbR d\prime \rightarrow \BbbR d, where exact
means perfect reconstruction \scrD \#\scrE \#Q\scrY = Q\scrY . Furthermore, assume the decoder is Lipschitz
continuous with Lipschitz constant a\scrD . Then, for any P\scrZ \in \scrP 1(\scrZ ) we have

D\Gamma L

f (\scrD \#P
\scrZ \| Q\scrY )\leq Da\scrD \Gamma L

f (P\scrZ \| \scrE \#Q\scrY ).(5.1)
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GENERATIVE PARTICLE ALGORITHMS FOR SCARCE DATA 1221

Proof. From the data processing inequality Theorem SM1.2 in the supplementary material
and using that the composition of Lipschitz functions with Lipschitz constants L1,L2 is L1L2-
Lipschitz, we have

D\Gamma L

f (\scrD \#P
\scrZ \| \scrD \#\scrE \#Q\scrY )\leq Da\scrD \Gamma L

f (P\scrZ \| \scrE \#Q\scrY ).(5.2)

Since the encoder \scrE and the decoder \scrD perfectly reconstruct Q\scrY , namely \scrD \#\scrE \#Q\scrY =Q\scrY , we
obtain that

D\Gamma L

f (\scrD \#P
\scrZ \| Q\scrY )\leq Da\scrD \Gamma L

f (P\scrZ \| \scrE \#Q\scrY ).(5.3)

Note also that if a\scrD \leq 1, D\Gamma L

f (\scrD \#P
\scrZ \| \scrD \#\scrE \#Q\scrY )\leq D\Gamma L

f (P\scrZ \| \scrE \#Q\scrY ) .

We apply this result in section 9 where the merging (transporting) of high-dimensional
gene expression data sets with dimension exceeding 54K in performed in a latent space which
is constructed via Principal Component Analysis (PCA), i.e., a linear auto-encoder.

Remark 5.2 (autoencoder guarantees in generative modeling). It is clear that Theorem
5.1 is a result about autoencoders and it is independent of the choice of any specific trans-
port/generation algorithm in the latent space. In this sense our conclusions from Theorem
5.1 are generally applicable to other latent space methods for generative modeling, such as
GANs.

6. Lipschitz regularization and numerical stability. In this section, we discuss the nu-
merical stability of GPA induced by Lipschitz regularization. The Lipschitz bound L on the

discriminator space implies a pointwise bound | \nabla \phi L,\ast 
n (Y

(i)
n )| \leq L. Hence the Lipschitz regu-

larization imposes a speed limit L on the particles, ensuring the stability of the algorithm for
suitable choices of L, as we will discuss next.

We first illustrate how Lipschitz regularization works in GPA Algorithm 3.1 in a mixture
of 2D Gaussians. We explore the influence of the Lipschitz regularization constant L by
monitoring the Lipschitz regularized Fisher information (3.3) (i.e., kinetic energy of particles).
In Figure 2 we track this quantity in time. We empirically observe that a proper choice of L
enables the particles slow down and eventually stop near the target particles, using (3.3) as
a convergence indicator. Time trajectories of particles are displayed in Figure 3. Individual
curves in Figure 2 result from the Lipschitz regularized (f\mathrm{K}\mathrm{L},\Gamma L)-GPA with L= 1, 10, 100,\infty .
We fix all other parameters including time step \Delta t, focusing on the influence of the Lipschitz
constant L. For L= 1,10, the kinetic energy decreases and particles eventually stop. However,
without Lipschitz regularization, the particles keep (relatively) high speeds of propagation.
Figure 3 verifies that in this case (L=\infty ) the algorithm fails to converge.

Numerical stability of GPA. Based on these empirical findings, we observe a close relation-
ship between a finite propagation speed L and numerical stability of the algorithm. Indeed,
from a numerical analysis point of view, (3.1) is a particle-based explicit scheme for the
PDE (2.15). In this context, the CFL condition for stability of discrete schemes for trans-
port PDEs such as the first equation in (2.15) becomes supx | \nabla \phi 

L,\ast 
t (x)| \Delta t

\Delta x \leq 1, [35]. Clearly,

the Lipschitz regularization | \nabla \phi L,\ast 
t (x)| \leq L enforces a CFL type condition with a learning

rate \Delta t proportional to the inverse of L. It remains an open question how to rigorously ex-
tend these CFL-based heuristics to particle-based algorithms, we also refer to some related
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1222 GU, BIRMPA, PANTAZIS, REY-BELLET, AND KATSOULAKIS

Figure 2. (2D mixture of Gaussians) Kinetic energy of particles (3.3) for (f\mathrm{K}\mathrm{L},\Gamma L)-GPA with different L's.
Theorem 2.5 suggests that particles need to slow down and practically stop when they reach the ``vicinity"" of the
target particles.

Figure 3. (2D mixture of Gaussians) We empirically observe that Lipschitz constant L controls the prop-
agation speed of (f\mathrm{K}\mathrm{L},\Gamma L)-GPA with different L's. For L < \infty , the particles are propagated to the four wells.
As L gets larger, the algorithm becomes more unstable. For L = \infty (unregularized KL), GPA fails to capture
the target.

questions in [11]. However, in the context of (3.2), the speed constraint L on the particles
induces an implicit spatial discretization grid \Delta x where particles are transported for each \Delta t
by at most \Delta x = L\Delta t. Intuitively, this implicit spatio-temporal discretization suggests that

supx | \nabla \phi 
L,\ast 
t (x)| \Delta t

\Delta x = \mathrm{s}\mathrm{u}\mathrm{p}x | \nabla \phi L,\ast 
t (x)| 

L \leq 1. Hence (3.2) or Algorithm 3.1 are expected to satisfy
the same CFL condition for the transport PDE in (2.15). Based on these CFL heuristics for
particles, here we keep the inversely proportional relation between L and \Delta t as a criterion
for tuning the learning rate \Delta t. Finally, these CFL-based bounds and the empirical findings
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GENERATIVE PARTICLE ALGORITHMS FOR SCARCE DATA 1223

in Figure 3 suggest that a time-dependent ``schedule"" for L could enhance the stability and
convergence properties of GPAs, as the quantity supx | \nabla \phi 

L,\ast 
t (x)| could serve as (or inspire) an

indicator of proximity to the target distribution. However, in this paper we do not explore
further such time-adaptive strategies for L.

7. Generative particle algorithms for heavy-tailed data. Lipschitz regularized gradient
flows in section 2 and GPA in section 3 are built on a family of f -divergences as discussed in
section 1. Here we study the choice of f\mathrm{K}\mathrm{L} versus f\alpha on GPA for samples from distributions
with various tails, e.g., Gaussian, stretched exponential, or polynomial. This exploration rests
on the intuition that transporting a Gaussian to a heavy-tailed distribution and vice-versa is
a nontrivial task. This is due to the fact that a significant amount of mass deep in the tail
needs to be transported to and from a (light-tailed) Gaussian. Furthermore, for heavy tailed
distributions, KL divergence may become infinity, and thus cannot be trained, while in the f\alpha 
divergence we have flexibility to accommodate heavy tails using the parameter \alpha . However,
even with the use of an f\alpha divergence, transporting particles deep into the heavy tails takes
a considerable amount of time due to the speed restriction L of Lipschitz regularization; see
section 6. Therefore, in our experiments, we are less focused on ``perfect"" transportation and
more on ``numerically stable"" transportation of moderately heavy-tailed distributions.

Indeed, in our first experiment we observe the following. The choice of f\mathrm{K}\mathrm{L} for heavy-tailed
data renders the function optimization step in (3.2) numerically unstable and eventually leads
to the collapse of the algorithm. On the other hand, the choice of f\alpha with \alpha > 1 makes the
algorithm stable. The different behaviors of f\mathrm{K}\mathrm{L} and f\alpha on heavy-tailed data is illustrated in
Figure 4 and also Figure SM2 in the supplementary material.

Next, we explore the performance of GPA for several distributions with varying degrees
of heavy-tailed structure. Initial distributions P0 are chosen as heavy-tailed distributions in
cases 1--4 in Table 1, whereas target distribution Q are chosen as heavy-tailed distributions
in cases 5--8. We chose Generalized Gaussian distribution (Stretched exponential distribu-
tion, GMM(\beta ) \propto exp( - | x| \beta )) with \beta = 0.5 as a heavy-tailed distribution because it fails to
be subexponential. But it has finite moments of all orders. On the other hand, Student-t
distributions with degree of freedom \nu (Student - t(\nu )) have polynomial tails. Among them,
Student - t(3.0) has a finite second moment, Student - t(1.5) has an infinite second moment
but has a finite first moment, and Student - t(0.5) has an infinite second moment but its first
moment is undefined. In all cases in Table 1 we use the Gaussian distribution N((10,10), I)
as either source or target. Table 1 displays the summary of the transportation of particles
for different cases. Overall, with the exception of especially heavy-tailed distributions in
cases 3 and 4 (both with infinite second moments and thus very heavy tails), KL and/or
\alpha -divergences work reasonably well. We also note that \alpha -divergences in GANs for images can
provide superior performance to KL and related divergences, even in the abscence of heavy
tails [45, 40, 5, 7].

8. Learning from scarce data. In this section, we empirically demonstrate that GPA
can be an effective generative model when only scarce target data is available. We analyze
three types of problems: GPA for generating images in a high-dimensional space given scarce
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1224 GU, BIRMPA, PANTAZIS, REY-BELLET, AND KATSOULAKIS

(a) (f,Γ1)-divergences
(b) The radii of transported samples (blue), and the corre-
sponding radial distribution function (yellow).

Figure 4. (Gaussian to student-t with \nu = 0.5 in two dimensions) We consider 200 initial samples from
N((10,10),0.52I), transported towards 200 target samples from Student  - t(\nu ) with \nu = 0.5 using (f,\Gamma 1)-
GPA's for f = f\mathrm{K}\mathrm{L} and f = f\alpha with \alpha = 2,10. (a) (f,\Gamma 1)-divergences are computed by the corresponding
estimator in (3.2). (f\mathrm{K}\mathrm{L},\Gamma 1)-GPA collapses at around t = 202 as the function optimization step with f\mathrm{K}\mathrm{L} is
numerically unstable on heavy-tailed data while (f\alpha ,\Gamma 1)-GPA with \alpha = 2,10 propagate particles stably during
the entire simulation window. See Figure SM2 for details. However, GPA still appears to take a long time to
transport particles deep into the heavy tails due to the speed restriction of the Lipschitz regularization. Stability
in performance that lacks in accuracy is manifested in the relatively large size of the \alpha -divergences. (b) We
observed that (f\alpha ,\Gamma 1)-GPA with \alpha = 10 transports particles further and deeper into the tails than (f\alpha ,\Gamma 1)-GPA
with \alpha = 2.

Table 1
Transportation of heavy-tails to Gaussian (cases 1--4) and Gaussian to heavy-tails (cases 5--8) by (f,\Gamma 1)-

GPA with f\mathrm{K}\mathrm{L} and f\alpha with \alpha = 2. When the algorithm collapses, the corresponding time is reported. In other
cases, the converged D\Gamma 1

f (PT \| Q)'s are reported.

Case GPA source P0 GPA target Q D\Gamma 1
\mathrm{K}\mathrm{L} D\Gamma 1

\alpha with \alpha = 2

1 GGM(0.5) \scrN ((10,10),0.52I) O(10 - 6) O(10 - 6)
2 Student - t(3) \scrN ((10,10),0.52I) O(10 - 4) O(10 - 4)
3 Student - t(1.5) \scrN ((10,10),0.52I) diverged at t= 0 O(100)
4 Student - t(0.5) \scrN ((10,10),0.52I) diverged at t= 0 O(107)
5 \scrN ((10,10),0.52I) GGM(0.5) O(10 - 6) O(10 - 3)
6 \scrN ((10,10),0.52I) Student - t(3) O(10 - 6) O(10 - 4)
7 \scrN ((10,10),0.52I) Student - t(1.5) O(10 - 3) O(10 - 3)
8 \scrN ((10,10),0.52I) Student - t(0.5) diverged at t= 202 O(10 - 1)

target data, GPA for data augmentation, and GPA for approximating a multiscale distribution
represented by scarce data. Experiments for the first two applications are conducted following
the strategies outlined in section 4 to uphold the generalization properties of GPA.

GPA for image generation given scarce target data. Here we consider the example of MNIST
image generation using GPA, given a target data set that is relatively sparse compared to the
corresponding spatial dimensionality. Recall the entire MNIST data set has 60,000 images.
We demonstrate an example of generating images for MNIST in \BbbR 784 from 200 target samples
in Figure 5. We showcase results from our first two strategies in section 4 to ensure the
generalization property of GPA: (i) the imbalanced sample sizes M \gg N (Figure 5b) and
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GENERATIVE PARTICLE ALGORITHMS FOR SCARCE DATA 1225

(a) Fixed target samples with
sample size N = 200

(b) M = 600 transported parti-
cles from (fKL,Γ5)-GPA

(c) 600 generated particles that
are simultaneously transported
from (fKL,Γ5)-GPA

Figure 5. (MNIST) GPA for image generation given scarce target data. (a) A subset of the N = 200 tar-
get samples. Results in (b)--(c) are generated by (f\mathrm{K}\mathrm{L},\Gamma 5)-GPA based on the first two strategies in section 4.
We report GPA results with L = 5, which was empirically found to generate samples stably and in a rea-
sonable amount of time. (b) M = 600 initial particles from Unif([0,1]784) were transported toward the target
in the setting of M \gg N , which promotes sample diversity. See Figure SM5 in the supplementary material
for details. (c) A new set of 600 initial particles from Unif([0,1]784) were transported through the previously
learned vector fields. These transported samples are referred to as generated particles, as explained in section 4.
Training time: 5000 time steps (T = 2500) or 48 minutes in the setting in supplementary material section
SM3.1.

(ii) the generated particles that are simulataneously transported with M training particles
(Figure 5c). In addition, we highlight the efficiency of GPA in training time and target
sample size by comparing GPA against WGAN [4] and SGM [58] in Figure 10, in a scarce
data regime. On the other hand, for a demonstration of scalability of GPA in the number of
data, we refer to Figure SM6.

GPA for data augmentation. Here, we further verify the capabilities of GPA to learn from
scarce target data in low- and high-dimensional examples such as Figures 6 and 9. Specifically,
GPA can serve as a data augmentation tool for GANs or other generative models, including
variational autoencoders [31], autoencoders, and conditional generative models. These models
often require a substantial amount of target data in order to enable effective learning of
generators. GPA provides augmented data needed for the proper training of the generative
model with both sample diversity and quality, as depicted in Figures 6 and 9. An additional
advantage of GPA augmentation is that proximity between the augmented data and the
original data can be monitored and controlled by the GPA termination time T . Indeed, the
(f,\Gamma L)-divergence, one of the estimators of GPA in Algorithm 3.1, ensures that the divergence
between these datasets remains below the tolerance error \epsilon TOL:

D\Gamma 1

f\mathrm{K}\mathrm{L}
(PT \| Q)\leq \epsilon TOL.(8.1)

Other data augmentation techniques, such as small noise injection or transformations, do
not inherently ensure the proximity to the target distribution, as captured in (8.1). Here
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1226 GU, BIRMPA, PANTAZIS, REY-BELLET, AND KATSOULAKIS

(a) Trajectories of (fKL,Γ1)-GPA. (blue) N = 200 target data, (orange) M = 5000 transported
particles

(b) (fKL,Γ1)-divergences

(c) Data manifolds from true distribution (left), (fKL,Γ1)-GAN
trained without data augmentation (center) and the same GAN
trained with data augmentation (right) .

Figure 6. (Swiss roll) Data augmentation using GPA. (a) Given N = 200 samples from the Swiss roll
uniform distribution Q, M = 5000 additional samples are generated by transporting initial samples from P0 =
\scrN (0,32I) using (f\mathrm{K}\mathrm{L},\Gamma 1)-GPA. Imbalanced sample sizes M \gg N strategy in section 4 is used to ensure sample
diversity. Particles at T = 2500 with D\Gamma 1

f\mathrm{K}\mathrm{L}
(PT \| Q) \leq 1.07 \ast 10 - 4 are used as the augmented data. (b) When

(f\mathrm{K}\mathrm{L},\Gamma 1)-GAN is trained from 200 original samples (red), the loss (divergence) oscillates; see inset in (b). To
improve the GAN, we train it with 200 original + 5000 augmented samples. By GPA-data augmentation, the
GAN loss decreases stably; see inset in (b). (c) GPA-augmented data significantly enhanced the learning of the
manifold when using a GAN on the 5200 samples.

we present two examples for this purpose. First, we use a Swiss roll example in Figure 6 to
illustrate the procedure and features of GPA augmentation. Furthermore, in Figure 9, we
showcase a high-dimensional and consequently more intriguing example of data augmentation
for the MNIST dataset. This illustration demonstrates that a WGAN trained with GPA
augmented data performs similarly to one trained with original, real data of the same size. In
conclusion, we demonstrated how to employ GPA for data augmentation as another strategy
for acquiring the generalization properties discussed in section 4.

GPA for multiscale distribution. We consider a target distribution with a multiscale (fractal)
structure such as a Sierpinski carpet of level 4. Namely, this uniform distribution is constructed
from a fractal set by keeping the four largest scales and truncating all finer scales. We refer
to Figure 7a where we consider 4096 target particles in [0,10]\times [0,10]. Each target particle is
random-sampled only once in each dark pixel with size of [0,10/34]\times [0,10/34]. We transport
4096 initial samples from N(0,32I) using (f\mathrm{K}\mathrm{L},\Gamma 1)-GPA. Figures 7b and 7c indicate that
(f\mathrm{K}\mathrm{L},\Gamma 1)-GPA approximates the target distribution and stops in a reasonable time T = 1000
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GENERATIVE PARTICLE ALGORITHMS FOR SCARCE DATA 1227

(a) Target distribution
(b) Kinetic energy of particles
(3.3) for (fKL,Γ1)-GPA (c) Output of (fKL,Γ1)-GPA

(d) Output of WGAN [4] (e) Output of (fKL,Γ1)-GAN [5] (f) Output of SGM [58]

Figure 7. (Sierpinski carpet of level 4) GPA for multiscale distributions. GPA demonstrates superior perfor-
mance over two widely employed generative models in approximating multiscale distributions. (a) The problem
is to approximate a target distribution with four different scales using 4096 samples. (b)--(c) The (f\mathrm{K}\mathrm{L},\Gamma 1)-GPA
successfully transports 4096 Gaussian samples to capture the three largest scales of the target distribution. (d)--
(e) GANs exhibit notably inferior performance compared to GPA, even when sharing the same discriminator
structure and loss function, as evidenced in (e). See also supplementary material section SM4. (f) SGM is
unable to capture finer scales, even with prolonged training.

with time steps n = 5000. We also refer to the related three-dimensional (3D) result in
Figure 1, where particles in three dimensions find a multiscale structure in the 2D plane. On
the other hand, training the generator for a multiscale distribution with the given dataset size
posed a significant challenge for both Wasserstein GAN [4], (f\mathrm{K}\mathrm{L},\Gamma 1)-GAN [5] and score-based
generative models (SGM) [58], as evident in Figures 7d to 7f.

9. Latent-space GPA for high-dimensional dataset integration. The integration of two
or more datasets that essentially contain the same information, yet whose statistical properties
are different due to, e.g., distributional shifts is crucial for the successful training and deploy-
ment of statistical and machine learning models [32, 26, 53]. Taking bioinformatics as an ex-
ample, datasets, even when they study the same disease, have been created from different labs
around the globe resulting in statistical differences which are also known as batch effects [59].
Furthermore, those datasets often have low sample size due to budget constraints or limited
availability of patients (e.g., rare diseases). GPA offers an elegant solution for dataset inte-
gration by transporting samples from one dataset to another. Unlike the standard generation
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1228 GU, BIRMPA, PANTAZIS, REY-BELLET, AND KATSOULAKIS

process, where the source distribution typically needs to be simple and explicit (e.g., isotropic
Gaussian), GPA imposes no assumptions on the source and target distributions. It can also
produce stable and accurate results even with very small sample sizes, as demonstrated in
section 8. However, applying GPA becomes challenging when the dimensionality of the data
rests in the order of tens of thousands. Therefore, we first substantially reduce the dimen-
sionality of the data before employing GPA. After the dimensionality reduction, we apply
GPA in the latent space and, when necessary, reconstruct the transported data back to its
original high-dimensional space. This three-step approach efficiently transports samples from
the source dataset to the target dataset. Additionally, it is worth noting that the error re-
sulting from the projection to a lower-dimensional latent space is handled via Theorem 5.1.
This theorem states that when the target distribution is supported on a lower-dimensional
manifold, it is theoretically guaranteed through the new data processing inequality that the
error in the original space can be bounded by the error occurred in the latent space.

Gene expression datasets. We consider the integration of two gene expression datasets which
are publicly available at https://www.ncbi.nlm.nih.gov/geo/ with accession codes GSE76275
and GSE26639. These datasets have been measured using the GLP570 platform which creates
samples with d = 54,675 dimensions. Each dataset consists of a low number of data while
each individual sample corresponds to the gene expression levels of a patient. Moreover, each
sample is labeled by a clinical indicator which informs if the patient was positive or negative to
ER (estrogen receptor); see Table 2. The dataset with accession code GSE26639 was selected
as the source dataset, while GSE76275 was chosen as the target. In this example, we chose
GSE76275 as the target due to its more distinguishable geometric structure compared to
the source, as illustrated in Figure 8a. This choice is aimed at showcasing the transportation
capabilities of GPA. However, in reality, the decision of selecting the source and target datasets
depends on the user and the application context. Despite measuring the same quantities, a
direct concatenation of the two datasets will result in erroneous statistics as is evident in
Figure 8a where a 2D visualization reveals that the two datasets are completely separated.

Dimensionality reduction using PCA. Applying GPA, along with most machine learning
models that do not utilize transfer learning, in the original high-dimensional space is especially
challenging when dealing with a low sample size regime. Hence, we first perform dimensionality
reduction constructing a latent space and subsequently perform GPA within the latent space.
Specifically, we use invertible dimensionality reduction methods by deploying autoencoders
suitable for the data. An autoencoder comprises of two functions: the encoder, denoted
as \scrE (\cdot ), compresses information from a high-dimensional space to a lower-dimensional latent
space, while the decoder, represented as \scrD (\cdot ), decompresses latent features back to the original

Table 2
Sample sizes of the studied gene expression datasets.

Positive Negative Total

GSE26639 (source) 138 88 226
GSE76275 (target) 49 216 265
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(a) Two gene expression data sets
without any transformation.

(b) Dataset integration using
mean and std adjustment.

(c) Dataset integration using la-
tent (fKL,Γ1)-GPA with d′ = 50.

Figure 8. Gene expression dataset integration by GPA. We integrate two high-dimensional gene expression
datasets via GPA transportation. (a) A direct concatenation of the two datasets results in incorrect integration
as visualized in the 2D plane using UMAP algorithm [42]. (b) The baseline approach consists of a mean and std
adjustment of each feature in the original space. In the inset, we notice that transformed negative samples do
not evenly cover the support of the negative target samples. (c) The proposed latent GPA data transportation
results in transported distributions close to the target ones.

space. Given that training a nonlinear autoencoder based on NNs requires tens of thousands
of samples, we choose PCA as a linear alternative [8, 29, 25]. Using PCA, we derive a d\prime -
dimensional linear basis \{ vi\} d

\prime 

i=1 from the entire set of samples in both the source and the
target datasets. Then each sample x is projected to a d\prime -dimensional space, defining the
encoder as the corresponding projection: z = \scrE (x) = Proj\bfv 1:d\prime (x). Subsequently, the GPA
Algorithm 3.1 will be applied on the latent samples z. The decoder x=\scrD (z) is also defined
by PCA using a reconstruction on the entire d-dimensional space, e.g., [8, Chap. 12.1.2]. The
decoder is 1-Lipschitz continuous since \| \scrD (z)  - \scrD (z\prime )\| 2 = \| 

\sum d\prime 

i=1(zi  - z\prime i)vi\| 2 =
\sum d\prime 

i=1 | zi  - 
z\prime i| 2\| vi\| 2 = \| z - z\prime \| 2. Here we used that vi's are orthonormal and that decoders \scrD (z),\scrD (z\prime )
only differentiate on the d\prime -dimensional space in PCA [8, Chap. 12.1.2]. Here we chose d\prime = 50
to balance computational cost of Algorithm 3.1 and error between reconstructed and original
datasets, aiming for a practically applicable approximation of an ideal encoder/decoder; see
Figure SM7 in the supplementary material. In this context, Theorem 5.1 guarantees that the
projection error remains controlled under encoding/decoding assuring that the performance
of the transportation in the original space is dictated by the performance of the GPA in the
latent space.

Results on dataset integration. We integrate gene expression datasets by applying the
latent-space GPA, transporting samples from the positive-labeled source distribution to the
corresponding positive-labeled target distribution and similarly for the negative-labeled data.
The respective transportation maps \scrT n,+ and \scrT n, - are composed of (f\mathrm{K}\mathrm{L},\Gamma 1)-GPA transport
maps as defined in (3.1), executed for n = 5000 time steps (and \Delta t = 0.2). Each of these
separate transportation maps utilizes its own independent discriminator, each with its own
unique parameters. The visualization of the dataset integration in Figure 8c shows that both
positive and negative distributions have been efficiently transported via latent-space GPA.
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As a comparison, we present a baseline data transformation for each class, denoted by \scrF +

and \scrF  - , respectively, which performs mean and standard deviation (std) adjustment. As it
is evident in Figure 8b, the baseline dataset integration only partially relocates the samples
from the transformed distribution to the target distribution. The discrepancies are especially
pronounced in the negative samples (see inset in Figure 8b).

We quantify the distributional differences between the transported and target distributions
via the 2-Wasserstein distance [18, 20] in Table SM2 in the supplementary material, which
is a metric not used in latent GPA and can also be efficiently computed with the Sinkhorn
algorithm. In summary, the 2-Wasserstein distance between datasets in the original space
(d= 54,675) is reduced by two orders of magnitude (1.4726\% on positive datasets and 2.6104\%
on negative datasets), while GPA is twice as effective compared to the baseline mean and
standard deviation adjustment transformation (3.9526\% on positive datasets and 4.8718\% on
negative datasets). Finally, we remark that there are other metrics that can be used to assess
the quality of the latent GPA-based dataset integration. For instance, the merged dataset can
be tested on subsequent tasks such as phenotype classification or feature selection and evaluate
the relative improvement resulting from the integration. We reserve this type of evaluation for
future research since it is beyond the scope of this paper. Conducting such an analysis would
require dedicated experiments and comparisons specific to the selected subsequent task.

Appendix. Here we provide Figures 9 and 10, discussed earlier in section 8.

(a) WGAN [4] trained with 200
original data for 3000 training
epochs

(b) WGAN [4] trained with orig-
inal 1400 data for 500 training
epochs

(c) WGAN [4] trained with 200
original data and 1200 GPA-
augmented data for 500 training
epochs

Figure 9. (MNIST) Performance of data augmentation using GPA in a high-dimensional example. (a)
WGAN was not able to learn from 200 original samples from the MNIST data base. (b) WGAN trained with
1400 original data can now generate samples but in a moderate quality. (c) We obtained 600 GPA-transported
data in Figure 5b and 600 generated data in Figure 5c (see section 4) from the 200 original target samples
and used them for augmenting data to train a WGAN with a mixture of 1400 real, transported, and generated
samples in total. Such a GAN generated samples of similar quality compared to the GAN trained with 1400
original samples in (b).
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(a) SGM [58] needs more time. SGM was able to generate samples from 200 target samples.
However, the training was still ongoing for 30 minutes (7,500 training epochs) (left) , and eventually
overfitted (see related discussion in section 4.) running for 62 minutes (20,000 epochs) (right) .

(b) GAN [4] needs more data. WGAN trained with 200 target samples did not generate samples
while the same GAN trained with 1400 samples could. Its training time is also the slowest among the
three models: 350 epochs (left) and 70 training epochs (right) were trained for 30 minutes.

(c) GPA is “just right”. (fKL,Γ5)-GPA generated samples from N = 200 target samples in two
different ways in section 4: (i) transportingM = 600 N samples (left), and (ii) generating additional
600 samples by transporting through the learned vector fields (right) . Both settings in (i) and (ii)
were able to produce samples. Lastly, 3160 training epochs were trained for 30 minutes.

Figure 10. (MNIST) Comparison of image generation via GPA to SGM and GAN models. We demonstrate
the efficiency of training GPA for image generation in terms of both training time and target sample sizes. The
baseline setting restricts training time to 30 minutes and provides a fixed number of 200 target samples to each
model. GPA learns to generate samples within this restricted setting, while SGM requires longer training time
and WGAN requires more data to be trained.
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