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Abstract. Information-theory based variational principles have proven effective at providing scalable uncer-
tainty quantification (i.e., robustness) bounds for quantities of interest in the presence of nonpara-
metric model-form uncertainty. In this work, we combine such variational formulas with functional
inequalities (Poincar\'e, log-Sobolev, Liapunov functions) to derive explicit uncertainty quantifica-
tion bounds for time-averaged observables, comparing a Markov process to a second (not necessarily
Markov) process. These bounds are well behaved in the infinite-time limit and apply to steady-states
of both discrete and continuous-time Markov processes.
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1. Introduction. Information-theory based variational principles have proven effective at
providing uncertainty quantification (i.e., robustness) bounds for quantities of interest in the
presence of nonparametric model-form uncertainty [15, 23, 51, 32, 41, 24, 33, 10, 43, 31]. In
the present work, we combine these tools with functional inequalities to obtain improved and
explicit uncertainty quantification (UQ) bounds for both discrete and continuous-time Markov
processes on general state spaces.

In our approach, we are given a baseline model, described by a probability measure P ; this
is the model one has ``in hand"" and that is amenable to analysis/simulation, but it may contain
many sources of error and uncertainty. Perhaps it depends on parameters with uncertain
values (obtained from experiment, Monte Carlo simulation, variational inference, etc.) or is
obtained via some approximation procedure (dimension reduction, neglecting memory terms,
asymptotic approximation, etc.). In short, any quantity of interest computed from P has
(potentially) significant uncertainty associated with it. Mathematically we chose to express
this uncertainty by considering a (nonparametric) family, \scrU (P ), of alternative models that we
postulate contains the inaccessible ``true"" model.

Loosely stated, given some observable F , the UQ goal considered here is

Bound the bias E \widetilde P [F ] - EP [F ], where \widetilde P \in \scrU r(P ).(1.1)
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540 JEREMIAH BIRRELL AND LUC REY-BELLET

The subscript r indicates that the ``neighborhood"" of alternative models, \scrU r(P ), is often
defined in terms of an error tolerance, r > 0. For our purposes, the appropriate notion
of neighborhood will be expressed in terms of relative entropy, which can be interpreted as
measuring the loss of information due to uncertainties. We do not discuss in full generality
how to choose the tolerance level r, but there are cases where one has enough information
about the ``true"" model to choose an appropriate tolerance; see section 6.

Remark 1.1. Note that in (1.1) and the remainder of this paper, we consider the case
where the quantity of interest is the expected value of some function, but extensions of these
ideas to other quantities of interest are possible [24].

More specifically, here we work with a Markov process (Xt, P
\mu ) with initial distribution \mu 

and stationary distribution \mu \ast , and we compare it to an alternative (not necessarily Markov)
process (Xt, \widetilde P \widetilde \mu ); we study the problem of bounding the bias when the finite-time averages of
a real-valued observable, f , are computed by sampling from the alternative process:

Bound \widetilde E\widetilde \mu \biggl[ 1
T

\int T

0
f(Xt)dt

\biggr] 
 - 
\int 

fd\mu \ast .(1.2)

Here, \widetilde E\widetilde \mu denotes the expectation with respect to \widetilde P \widetilde \mu , and similarly for P\mu , E\mu . (Discrete-time
processes will also be considered in section 5.)

Equation (1.2) is a (less studied) variant of the classical problem of the convergence of
ergodic averages to the expectation in the stationary distribution:

E\mu 

\biggl[ 
1

T

\int T

0
f(Xt)dt

\biggr] 
\rightarrow 
\int 

fd\mu \ast .(1.3)

By combining information on the problems (1.2) and (1.3), one can also obtain bounds on
the finite-time sampling error:

errT = E\mu 

\biggl[ 
1

T

\int T

0
f(Xt)dt

\biggr] 
 - \widetilde E\widetilde \mu \biggl[ 1

T

\int T

0
f(Xt)dt

\biggr] 
.(1.4)

In this work, we focus on the robustness problem, (1.2).
There are classical inequalities addressing (1.1) (for example, Csiszar--Kullback--Pinsker,

Le Cam, Scheff\'e, etc.), but they exhibit poor scaling properties with problem dimension and/or
in the infinite-time limit and so are inappropriate for bounding (1.2). This problem can be
addressed by using tight information inequalities based on the Gibbs variational principle that
are summarized in section 2. See [41] for a detailed discussion of these issues.

Other recent works have also focused on robustness bounds for Markov processes, often
with the goal of providing error bounds for approximate Markov chain Monte Carlo samplers.
Bounds on the difference between the distributions (finite-time or stationary) of Markov pro-
cesses have been obtained in both total-variation [50, 28, 1, 49, 5, 39] and Wasserstein distances
[54, 52, 37].

One benefit of the approach taken in the present work is that the bounds naturally incorpo-
rate information on the specific observable, f , under investigation; for instance, the asymptotic
variance of f under the baseline model appears in the bound in Theorem 4.6 below. When
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UNCERTAINTY QUANTIFICATION FOR MARKOV PROCESSES 541

the end goal is robustness bounds for time-averages of f , this observable specificity has the
potential to yield tighter bounds; see also [52] for bounds that incorporate similar information
on the observable.

Our method utilizes relative entropy to quantify the distance between models. A drawback,
compared to the total-variation and Wasserstein distance approaches, is the requirement of
absolute continuity; however, this is satisfied in many cases of interest. As we will see, one
benefit of utilizing relative entropy is that the alternative model does not have to be a Markov
process. The second main innovation here is the use of various functional inequalities, in
combination with relative entropy, to bound (1.2). The end result is computable, finite-time
UQ bounds that are also well behaved in the long-time limit.

1.1. Summary of results. The basis for all of our bounds is Theorem 2.11 in section 2,

\pm 
\biggl( \widetilde E\widetilde \mu \biggl[ 1

T

\int T

0
f(Xt)dt

\biggr] 
 - \mu \ast [f ]

\biggr) 
(1.5)

\leq inf
c>0

\biggl\{ 
1

cT
\Lambda 

\widehat fT
P\mu \ast 
T

(\pm c) +
1

cT
R( \widetilde P \widetilde \mu 

T | | P
\mu \ast 

T )

\biggr\} 
, \widehat fT \equiv 

\int T

0
f(Xt) - \mu \ast [f ]dt,

along with Corollary 3.5 in section 3,

1

T
\Lambda 

\widehat fT
P\mu \ast 
T

(\pm c) \leq \kappa (V\pm c),(1.6)

\kappa (V ) \equiv sup

\biggl\{ 
\langle A[g], g\rangle +

\int 
V | g| 2d\mu \ast : g \in D(A,\BbbR ), \| g\| L2(\mu \ast ) = 1

\biggr\} 
,(1.7)

V\pm c(x) \equiv \pm c (f(x) - \mu \ast [f ]) , \mu \ast [f ] \equiv 
\int 

fd\mu \ast .(1.8)

In the above, \Lambda 
\widehat fT
P\mu \ast 
T

(\pm c) is the cumulant generating function of \widehat fT (see (2.24) for details),

R( \widetilde P \widetilde \mu 
T | | P

\mu \ast 

T ) is the relative entropy of the processes up to time T (see (2.5)), \langle \cdot , \cdot \rangle denotes the
inner product on L2(\mu \ast ), and (A,D(A,\BbbR )) is the generator of the Markov semigroup for the
process (Xt, P

\mu ) on L2(\mu \ast ). Again, we emphasize that the alternative process, (Xt, \widetilde P \widetilde \mu ), does
not need to be Markov; for an example involving semi-Markov processes, see section 6.2.

Equation (1.5) is derived by employing the Gibbs variational principle (hence the relation
to relative entropy). Equation (1.6), which is based on a theorem proven in [56], results from
a connection between the cumulant generating function and the Feynman--Kac semigroup
(hence the appearance of the generator, A). Also, note that the bound is expected to behave

well in the limit T \rightarrow \infty , as R( \widetilde P \widetilde \mu 
T | | P

\mu \ast 

T )/T converges to the relative entropy rate of the
processes, under suitable ergodicity assumptions.

Equation (1.6) allows us to employ our primary new tool for UQ, that is, functional
inequalities. By functional inequalities, we mean bounds on the generator, A, that will yield
bounds on \kappa (V\pm c); we will cover Poincar\'e, log-Sobolev, and F -Sobolev inequalities, as well as
Liapunov functions. Our results rely heavily on the bounds obtained in [56, 45, 12, 34, 29],
where concentration inequalities for ergodic averages were obtained.

The method outlined above leads to explicit UQ bounds, expressed in terms of the following
quantities:
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542 JEREMIAH BIRRELL AND LUC REY-BELLET

1. Spectral properties of the generator, A, of the dynamics of the baseline model, P ,
in the stationary regime (i.e., on L2(\mu \ast )); see (1.5)--(1.7). This term depends on the
chosen observable but does not depend on the alternative model; functional inequalities
are only required for the base model (which is often the simpler model). This is one
of the strengths of the method, though computing explicit, tight constants for these
functional inequalities is still a very difficult problem in general.

2. The path-space relative entropy up to time T , R( \widetilde P \widetilde \mu 
T | | P

\mu \ast 

T ), of the alternative model
with respect to the base. This term depends heavily on the difference in dynamics
between the two models; in particular, a nontrivial bound requires absolute continuity
of the path-space distributions. This is a drawback of the relative-entropy based
method employed here, but it does hold in many cases of interest; see section 6 for
examples.

While most of our results do not assume reversibility of the base process, bounds based on
(1.7) only involve the symmetric part of the generator and so are generally less than ideal,
or even useless, for many nonreversible systems. This is a drawback of the approach pursued
here.

Remark 1.2. For certain hypocoercive systems, ergodicity can be proven by working with
an alternative metric; see [20, 21, 16]. It is possible that the functional-inequality based UQ
techniques developed below could be adapted to this more general setting; a step in that
direction can be found in [6].

For a simple example of the type of result obtained below, consider diffusion on \BbbR n in a C2

potential, V ; i.e., the generator is A = \Delta  - \nabla V \cdot V , and the invariant measure is \mu \ast = e - V (x)dx.
Suppose the Hessian of V is bounded below:

D2V (x) \geq \alpha  - 1I, \alpha > 0.(1.9)

Our results give a Bernstein-type UQ bound for any bounded f :

\pm 
\biggl( \widetilde E\widetilde \mu \biggl[ 1

T

\int T

0
f(Xt)dt

\biggr] 
 - \mu \ast [f ]

\biggr) 
\leq 
\sqrt{} 
2\sigma 2\eta +M\pm \eta ,(1.10)

M\pm = \alpha \| (f  - \mu \ast [f ])\pm \| \infty , \sigma 2 = 2\alpha Var\mu \ast [f ], \eta =
1

T
R( \widetilde P \widetilde \mu 

T | | P
\mu \ast 

T ).

(This bound can also be improved by using the asymptotic variance; see section 4.2.) Section
4.4.1 contains further discussion of diffusions.

The remainder of the paper is structured as follows. Necessary background on UQ for both
general measures and processes will be given in section 2, leading up to a connection with
both the Feynman--Kac semigroup and the relative entropy rate. Relevant properties of the
Feynman--Kac semigroup are given in section 3, culminating with the bound (1.6). The use
of functional inequalities to obtain explicit UQ bounds from (1.6) will be explored in section
4. In section 5 we show how these ideas can be adapted to discrete-time processes. Finally,
the problem of bounding the relative entropy rate will be addressed in section 6.
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2. UQ for Markov processes.

2.1. UQ via variational principles. In this subsection, we recall several earlier results
regarding the variational-principle approach to UQ, as developed in [15, 23, 10, 31, 8]. In
particular, Proposition 2.2, quoted from [23], will be a critical tool in our derivation of UQ
bounds for Markov processes.

Let P be a probability measure on a measurable space (\Omega ,\scrF ). We consider the class of
random variables f : \Omega \rightarrow \BbbR with a well-defined and finite moment generating function in a
neighborhood of the origin:

(2.1) \scrE (P ) =
\Bigl\{ 
f : \Omega \rightarrow \BbbR : EP [e

\pm c0f ] < \infty for some c0 > 0
\Bigr\} 
.

It is not difficult to prove (see, e.g., [17]) that the cumulant generating function

(2.2) \Lambda f
P (c) = logEP [e

cf ]

is a convex function, finite and infinitely differentiable in some interval (c - , c+) with  - \infty \leq 
c - < 0 < c+ \leq \infty and equal to +\infty outside of [c - , c+]. Moreover if f \in \scrE (P ), then f has
moments of all orders, and we write

(2.3) \widehat f = f  - EP [f ]

for the centered observable of mean 0. We will often use the cumulant generating function for
the centered observable \widehat f :
(2.4) \Lambda 

\widehat f
P (c) = logEP [e

c(f - EP [f ])] = \Lambda f
P (c) - cEP [f ] .

Recall also the relative entropy (or Kullback--Leibler divergence), defined by

(2.5) R( \widetilde P | | P ) =

\Biggl\{ 
E \widetilde P
\Bigl[ 
log
\Bigl( 
d \widetilde P
dP

\Bigr) \Bigr] 
if \widetilde P \ll P,

+\infty otherwise.

It has the property of a divergence; that is, R( \widetilde P | | P ) \geq 0 and R( \widetilde P | | P ) = 0 if and only if\widetilde P = P .
A key ingredient in our approach is the Gibbs variational principle, which relates the

cumulant generating function and relative entropy; see Proposition 1.4.2 in [22].

Proposition 2.1 (Gibbs variational principle). Let f : \Omega \rightarrow \BbbR be bounded and measurable.
Then

(2.6) logEP [e
f ] = sup\widetilde P :R( \widetilde P | | P )<\infty 

\Bigl\{ 
E \widetilde P [f ] - R( \widetilde P | | P )

\Bigr\} 
.

As shown in [15, 23], the Gibbs variational principle implies the following UQ bounds for
the expected values (a similar inequality is used in the context of concentration inequalities---
see, e.g., [8]---and was also used independently in [10, 31]). For a proof of the version stated
here, see pages 85--86 in [23].
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544 JEREMIAH BIRRELL AND LUC REY-BELLET

Proposition 2.2 (Gibbs information inequality). If R( \widetilde P | | P ) < \infty and f \in \scrE (P ), then f \in 
L1( \widetilde P ) and

 - inf
c>0

\Biggl\{ 
\Lambda 

\widehat f
P ( - c) +R( \widetilde P | | P )

c

\Biggr\} 
\leq E \widetilde P [f ] - EP [f ] \leq inf

c>0

\Biggl\{ 
\Lambda 

\widehat f
P (c) +R( \widetilde P | | P )

c

\Biggr\} 
.(2.7)

Remark 2.3. Note that even if R( \widetilde P | | P ) = \infty , the bound (2.7) trivially holds as long as
E \widetilde P [f ] is defined. To avoid clutter in the statement of our results, when R( \widetilde P | | P ) = \infty we will
consider the bound to be satisfied for any f \in \scrE (P ), even if E \widetilde P [f ] is undefined.

Optimization problems of the form in (2.7) will appear frequently; hence we write the
following definition.

Definition 2.4. Given any \Lambda : \BbbR \rightarrow [0,\infty ] and \eta > 0, let

\Xi \pm (\Lambda , \eta ) \equiv inf
c>0

\biggl\{ 
\Lambda (\pm c) + \eta 

c

\biggr\} 
.(2.8)

With this, we can rewrite the bound (2.7) as

(2.9)  - \Xi  - 
\Bigl( 
\Lambda 

\widehat f
P , R( \widetilde P | | P )

\Bigr) 
\leq E \widetilde P [f ] - EP [f ] \leq \Xi +

\Bigl( 
\Lambda 

\widehat f
P , R( \widetilde P | | P )

\Bigr) 
.

Inequality (2.9) is the starting point for all UQ bounds derived in this paper. From it, we
see which quantities must be controlled in order to make the UQ bounds explicit: the relative
entropy and the cumulant generating function. The former will be discussed in section 6.
For Markov processes, the latter can be bounded via a connection with the Feynman--Kac
semigroup and functional inequalities; this connection between functional inequalities and
UQ bounds is the main focus and innovation of the current work, and we begin discussing it
in section 2.4. First we recall some general properties of the bounds (2.9).

2.2. Properties of \Xi \pm . The objects

\Xi ( \widetilde P | | P ;\pm f) \equiv \Xi \pm 
\Bigl( 
\Lambda 

\widehat f
P , R( \widetilde P | | P )

\Bigr) 
(2.10)

appearing in the Gibbs information inequality, (2.9), have many remarkable properties, of
which we recall a few.

Proposition 2.5. Assume R( \widetilde P | | P ) < \infty and f \in \scrE (P ). We have the following:
1. (Divergence) \Xi ( \widetilde P | | P ; f) is a divergence, i.e., \Xi ( \widetilde P | | P, f) \geq 0 and \Xi ( \widetilde P | | P ; f) = 0 if

and only if either P = \widetilde P or f is constant P -a.s.
2. (Linearization) If R( \widetilde P | | P ) is sufficiently small, we have

(2.11) \Xi ( \widetilde P | | P, f) =
\sqrt{} 
2VarP [f ]R( \widetilde P | | P ) +O(R( \widetilde P | | P )) .

3. (Tightness) For \eta > 0 consider \scrU \eta = \{ \widetilde P ; R( \widetilde P | | P ) \leq \eta \} . There exists \eta \ast with 0 <
\eta \ast \leq \infty such that for any \eta < \eta \ast there exists a measure P \eta with

sup\widetilde P\in \scrU \eta 

\bigl\{ 
E \widetilde P [f ] - EP [f ]

\bigr\} 
= EP \eta [f ] - EP [f ] = \Xi (P \eta | | P ; f) .(2.12)
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The measure P \eta has the form

(2.13) dP \eta = ecf - \Lambda f
P (c)dP,

where c = c(\eta ) is the unique nonnegative solution of R(P \eta | | P ) = \eta .

Proof. Items 1 and 2 are proved in [23]; see also [43] for item 2. Various versions of the
proof of item 3 can be found in [15] and [23]. See Proposition 3 in [24] for a more detailed
statement of the result; see also similar results in [10, 9].

The tightness property in Proposition 2.5 is very attractive and ultimately relies on the

presence of the cumulant generating function \Lambda 
\widehat f
P (c), which encodes the entire law of f . How-

ever, this generally makes the bound very difficult or impossible to compute explicitly; we
will need to weaken (2.9) to obtain more usable bounds. Functional inequalities are one tool
we will employ (see section 4). Another ingredient, which we discuss next, will be explicit
bounds on the optimization problem in the definition of \Xi \pm (\Lambda , \eta ). Such an approach was put
forward in [33], where various concentration inequalities such as Hoeffding, sub-Gaussian, and
Bennett bounds are discussed. For this paper we will almost exclusively use the following
Bernstein-type bound.

Lemma 2.6. Suppose there exist \sigma > 0, M\pm \geq 0 such that

\Lambda (\pm c) \leq \sigma 2c2

2(1 - cM\pm )
(2.14)

for all 0 < c < 1/M\pm . Then for all \eta \geq 0 we have

\Xi \pm (\Lambda , \eta ) \leq 
\sqrt{} 
2\sigma 2\eta +M\pm \eta .(2.15)

Note that M\pm = 0 covers the case of a (one-sided) sub-Gaussian concentration bound.

Proof. Bound \Lambda using (2.14), and solve the resulting optimization problem on 0 < c <
1/M\pm .

From the point of view of concentration inequalities, the bound (2.14) is not very tight;

indeed, it holds for the cumulant generating function \Lambda 
\widehat f
P of any random variable f \in \scrE (P ),

but explicit constants may be hard to come by. In the context of Markov processes, however,
it has proved to be extremely useful; see [56, 45, 12, 34] and in particular [29].

Second, we will need a linearization bound, generalizing (2.11).

Lemma 2.7. Let \Lambda : \BbbR \rightarrow [0,\infty ] be C2 on a neighborhood of 0, \Lambda (0) = \Lambda \prime (0) = 0, and
\Lambda \prime \prime (0) > 0. Then

inf
c>0

\biggl\{ 
\Lambda (\pm c) + \eta 

c

\biggr\} 
\leq 
\sqrt{} 
2\Lambda \prime \prime (0)\eta + o(

\surd 
\eta )(2.16)

as \rho \searrow 0. If \Lambda \prime \prime is Lipschitz at 0, then the error bound improves to O(\eta ).

Proof. The bound follows from Taylor expansion of \Lambda (c); see the proof of Theorem 2.8 in
[23].
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2.3. UQ for Markov processes. One of the main advantages of the Gibbs information
inequality, (2.7), over classical information inequalities (such as the Kullback--Leibler--Czisz\`ar
inequality) is how it scales with time when applied to the distributions of processes on path
space. See [41] for a detailed discussion of this issue. This strength will become apparent as
we proceed.

The following assumption details the setting in which we will work for the remainder of
this paper.

Assumption 2.8. Let \scrX be a Polish space, and suppose we have a time homogeneous, \scrX -
valued, c\`adl\`ag Markov family (\Omega ,\scrF ,\scrF t, Xt, P

x), x \in \scrX , with transition probability kernel pt
(see the statement of Theorem C.1 in Appendix C for the precise definition of a Markov family
that we use).

Also assume we have a second probability kernel \widetilde P x, x \in \scrX , on (\Omega ,\scrF ) with (X0)\ast \widetilde P x = \delta x
for each x \in \scrX .

Remark 2.9. We are not assuming (Xt, \widetilde P x) are Markov processes.

One of the families, P x or \widetilde P x, is thought of as the base model, and the other as some
alternative (or approximate) model, but which is which can vary with the application. From
a mathematical perspective, the primary factors distinguishing P x and \widetilde P x are as follows:

1. Our methods require information on the spectrum of the generator of the semigroup
associated with pt.

2. (Xt, P
x) must be Markov, but (Xt, \widetilde P x) can be non-Markovian.

P x and \widetilde P x should be chosen with these points in mind; in the remainder of this paper, we
will refer to the former as the base model and the latter as the alternative model.

Definition 2.10. Given initial distributions \mu and \widetilde \mu on \scrX , we also define the probability
measures

P\mu (\cdot ) =
\int 

P x(\cdot )\mu (dx), \widetilde P \widetilde \mu (\cdot ) =
\int \widetilde P x(\cdot )\widetilde \mu (dx).(2.17)

Note that Assumption 2.8 implies that Xt is a Markov process for the space (\Omega ,\scrF t, P
\mu ) with

initial distribution \mu and time-homogeneous transition probabilities pt.
We will also need the finite-time restrictions, which can be thought of as the distributions

on path space up to some T > 0,

P x
T \equiv P x| \scrF T

, \widetilde P x
T \equiv \widetilde P x| \scrF T

,(2.18)

and similarly for P\mu 
T and \widetilde P \widetilde \mu 

T . Finally, we let E\mu denote the expected value with respect to P\mu ,

and similarly for \widetilde E\widetilde \mu .
Now fix a bounded measurable f : \scrX \rightarrow \BbbR (the boundedness assumption will be relaxed

later) and an invariant measure \mu \ast for pt. As mentioned in the introduction, there are many
classical techniques for studying convergence of the ergodic averages of f under P\mu to the
average in the invariant measure, \mu \ast [f ]. Therefore, in this paper we consider the much less
studied problem of bounding the bias when the finite-time averages are computed by sampling
from the alternative distribution; see (1.2).
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2.4. UQ bounds via the Feynman--Kac semigroup. Due to our interest in the problem
(1.2), we start the P -process in the invariant distribution \mu \ast , while the \widetilde P -process is started
in an arbitrary distribution \widetilde \mu .

Given a bounded measurable function f on \scrX and T > 0, define the bounded and \scrF T -
measurable function

fT =

\int T

0
f(Xt)dt.(2.19)

Applying the Gibbs information inequality, (2.7), to fT , \widetilde P \widetilde \mu 
T , P

\mu \ast 

T and dividing by T yields the
following theorem.

Theorem 2.11.

\pm 
\biggl( \widetilde E\widetilde \mu \biggl[ 1

T

\int T

0
f(Xt)dt

\biggr] 
 - \mu \ast [f ]

\biggr) 
\leq \Xi \pm 

\biggl( 
1

T
\Lambda 

\widehat fT
P\mu \ast 
T

,
1

T
R( \widetilde P \widetilde \mu 

T | | P
\mu \ast 

T )

\biggr) 
,(2.20)

where

\mu \ast [f ] \equiv 
\int 

fd\mu \ast , \widehat fT \equiv 
\int T

0
f(Xt) - \mu \ast [f ]dt.(2.21)

Remark 2.12. Recall the definition

\Xi \pm (\Lambda , \eta ) = inf
c>0

\biggl\{ 
\Lambda (\pm c) + \eta 

c

\biggr\} 
.(2.22)

All of the UQ bounds we obtain will be of the form

\pm 
\biggl( \widetilde E\widetilde \mu \biggl[ 1

T

\int T

0
f(Xt)dt

\biggr] 
 - \mu \ast [f ]

\biggr) 
\leq \Xi \pm (\Lambda , \eta )(2.23)

for some \Lambda : \BbbR \rightarrow [0,\infty ] and \eta > 0; we will refer back to these equations often.

To produce a more explicit bound from (2.20), one needs to bound the cumulant generating
function as well as the relative entropy. The latter will be addressed in section 6. As for the
former, observe that the cumulant generating function can be written

\Lambda 
\widehat fT
P\mu \ast 
T

(\pm c) = log

\biggl( \int 
Ex

\biggl[ 
exp

\biggl( 
\pm c

\int T

0
f(Xt) - \mu \ast [f ]dt

\biggr) \biggr] 
\mu \ast (dx)

\biggr) 
.(2.24)

Equation (2.24) is related to the Feynman--Kac semigroup on L2(\mu \ast ) with potential V :

\scrP V
t [g](x) = Ex

\biggl[ 
g(Xt) exp

\biggl( \int t

0
V (Xs)ds

\biggr) \biggr] 
.(2.25)

More specifically,

\Lambda 
\widehat fT
P\mu \ast 
T

(\pm c) \leq log
\Bigl( 
\| \scrP V\pm c

T [1]\| L2(\mu \ast )

\Bigr) 
,(2.26)

V\pm c(x) \equiv \pm c (f(x) - \mu \ast [f ]) ,(2.27)

and so we obtain the following lemma.
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Lemma 2.13. Under Assumption 2.8, for any bounded measurable f : \scrX \rightarrow \BbbR , (2.23) holds
with

\Lambda (\pm c) =
1

T
log
\Bigl( 
\| \scrP V\pm c

T [1]\| L2(\mu \ast )

\Bigr) 
, \eta =

1

T
R( \widetilde P \widetilde \mu 

T | | P
\mu \ast 

T ).(2.28)

In the following two sections, we discuss how functional inequalities can be used to obtain
more explicit bounds on the norm of the Feynman--Kac semigroup.

3. Bounding the Feynman--Kac semigroup. The Lumer--Phillips theorem (a variant of
the Hille--Yosida theorem) is our tool of choice for bounding the Feynman--Kac semigroup; see
Chapter IX, page 250 in [57] or Corollary 3.20 in Chapter II of [25]. This is the same strategy
used in [56, 12, 29] to obtain concentration inequalities.

First we state some of the basic properties of the Feynman--Kac semigroup, adapted from
[56, 12].

Proposition 3.1. Let V : \scrX \rightarrow \BbbR be bounded and measurable and \mu \ast be an invariant proba-
bility measure for pt. The operators \scrP V

t , t \geq 0, defined in (2.25), are bounded linear operators
on L2(\mu \ast ) that form a strongly continuous semigroup.

If (A,D(A)) denotes the generator of \scrP t \equiv \scrP 0
t on L2(\mu \ast ), then the generator of \scrP V

t on
L2(\mu \ast ) is (A+ V,D(A)).

Remark 3.2. D(A) consists of complex-valued functions. We will use D(A,\BbbR ) to denote
the real-valued functions in the domain of A.

To bound the norm of the Feynman--Kac semigroup, we use the following Hilbert space
version of the Lumer--Phillips theorem (again, see [57, 25] as well as Theorem II.3.23 in [25]
for a proof that (3.1) implies A - \alpha is dissipative).

Proposition 3.3. Let H be a Hilbert space and Q(t) be a strongly continuous semigroup on
H with generator (A,D(A)). Suppose that there is an \alpha \in \BbbR such that

Re(\langle Ax, x\rangle ) \leq \alpha (3.1)

for all x \in D(A) with \| x\| = 1. Then \| Q(t)\| \leq e\alpha t for all t \geq 0.

Propositions 3.1 and 3.3 together yield a bound on the Feynman--Kac semigroup, in terms
of the generator; this result, and generalizations, were proven in [56] (see Case I in the proof
of Theorem 1).

Proposition 3.4. Let V : \scrX \rightarrow \BbbR be bounded and measurable, and for t \geq 0 consider the
Feynman--Kac semigroup \scrP V

t : L2(\mu \ast ) \rightarrow L2(\mu \ast ) with generator (A+ V,D(A)).
Define

\kappa (V ) = sup
\bigl\{ 
Re(\langle (A+ V )[g], g\rangle ) : g \in D(A), \| g\| L2(\mu \ast ) = 1

\bigr\} 
(3.2)

= sup

\biggl\{ 
\langle A[g], g\rangle +

\int 
V | g| 2d\mu \ast : g \in D(A,\BbbR ), \| g\| L2(\mu \ast ) = 1

\biggr\} 
,(3.3)

where \langle \cdot , \cdot \rangle denotes the inner product on L2(\mu \ast ).
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Then the operator norm satisfies the bound

\| \scrP V
t \| \leq et\kappa (V )(3.4)

for all t \geq 0.

Combining (3.4) with (2.26) and (2.20), we obtain UQ bounds that are expressed in
terms of the generator of the dynamics of the baseline process and the relative entropy of the
alternative process with respect to the base.

Corollary 3.5. Under Assumption 2.8, for any bounded measurable f : \scrX \rightarrow \BbbR , the UQ
bound (2.23) holds with

\Lambda (\pm c) = \kappa (V\pm c), \eta =
1

T
R( \widetilde P \widetilde \mu 

T | | P
\mu \ast 

T ).(3.5)

From (2.23) we see that functional inequalities, by which we mean bounds on the generator A
that lead to bounds on \kappa (V\pm c), can be used to produce UQ bounds. Also, note that the only

remaining T -dependence is in the relative entropy term, R( \widetilde P \widetilde \mu 
T | | P

\mu \ast 

T )/T . This will often have
a finite limit (the relative entropy rate) as T \rightarrow \infty ; for examples, see section 6.2 as well as
[30], the supplementary materials to [23], and Appendix 1 of [42]. Hence Corollary 3.5 shows
that one can expect UQ bounds that are well behaved as T \rightarrow \infty .

Remark 3.6. Proposition 3.4 is stated for bounded V , but it can be extended to certain
unbounded V under the additional assumption that the symmetrized Dirichlet form is closable;
see Theorem 1 in [56]. However, as noted in Corollary 3 in this same reference (and outlined
in Proposition 4.12 below), that assumption can be avoided in the presence of functional
inequalities by working with bounded V and then taking limits; this is the strategy we employ
here.

4. UQ bounds from functional inequalities. In this section, we explore the consequences
of several important classes of functional inequalities: Poincar\'e, log-Sobolev, and Liapunov
functions. Discussion of F -Sobolev inequalities, a generalization of the classical log-Sobolev
case, can be found in Appendix B.

4.1. Poincar\'e inequality. First we consider the case where the generator satisfies a Poincar\'e
inequality with constant \alpha > 0, meaning

Var\mu \ast [g] \leq  - \alpha \langle A[g], g\rangle (4.1)

for all g \in D(A,\BbbR ). This can equivalently be written

Re(\langle A[g], g\rangle ) \leq  - \alpha  - 1\| P\bot g\| 2(4.2)

for all g \in D(A), where P\bot is the orthogonal projector onto 1\bot .
In the presence of a Poincar\'e inequality, Proposition 3.4 is most useful when combined

with the following perturbation result. A version of this result is contained in [56], but we
present it here in a slightly more general form. The proof is given in Appendix A.
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550 JEREMIAH BIRRELL AND LUC REY-BELLET

Lemma 4.1. Let H be a Hilbert space, A : D(A) \subset H \rightarrow H be a linear operator, and
B : H \rightarrow H be a bounded self-adjoint operator. Suppose there exist D > 0 and x0 \in H with
\| x0\| = 1 such that

\langle Bx0, x0\rangle = 0 and Re(\langle Ax, x\rangle ) \leq  - D\| P\bot x\| 2(4.3)

for all x \in D(A), where P\bot is the orthogonal projector onto x\bot 0 .
Define

B+ \equiv max

\Biggl\{ 
sup
\| y\| =1

\langle By, y\rangle , 0

\Biggr\} 
.(4.4)

Then for any 0 \leq c < D/B+ we have

sup
x\in D(A),\| x\| =1

Re(\langle (A+ cB)x, x\rangle ) \leq c2\| Bx0\| 2

D  - cB+
.(4.5)

Remark 4.2. The above lemma applies to a general Hilbert space. In this paper, we
will apply it to H = L2(\mu \ast ) (with the associated L2-inner product), and x0 = 1 (constant
function), in which case P\bot [f ] = f  - \mu \ast [f ].

The multiplication operator by V\pm 1 is a bounded self-adjoint operator, and \langle V\pm 11, 1\rangle = 0.
Therefore, Lemma 4.1 implies the following lemma.

Lemma 4.3. For all 0 \leq c < 1/(\alpha \| (f  - \mu \ast [f ])\pm \| \infty ) we have

\kappa (V\pm c) \leq 
\alpha Var\mu \ast [f ]c2

1 - \alpha \| (f  - \mu \ast [f ])\pm \| \infty c
.(4.6)

From this, combined with Corollary 3.5, we obtain the following UQ bound.

Theorem 4.4. Under Assumption 2.8, if A satisfies the Poincar\'e inequality, (4.1), then for
any bounded measurable f : \scrX \rightarrow \BbbR the bounds (2.23) and (2.15) hold with

M\pm = \alpha \| (f  - \mu \ast [f ])\pm \| \infty , \sigma 2 = 2\alpha Var\mu \ast [f ], \eta =
1

T
R( \widetilde P \widetilde \mu 

T | | P
\mu \ast 

T ).(4.7)

4.2. Poincar\'e inequality for reversible processes. When the combination of \mu \ast and pt is
reversible, i.e., the generator A is self-adjoint on L2(\mu \ast ), and if a Poincar\'e inequality, (4.1),
also holds with constant \alpha > 0, then one can obtain a UQ bound in terms of the asymptotic
variance of f instead of the variance of f under \mu \ast .

First, define the Poisson operator

L : f \rightarrow 
\int \infty 

0
\scrP t[f ]dt,(4.8)

a bounded linear operator on L2
0(\mu 

\ast ) \equiv \{ f \in L2(\mu \ast ) : \mu \ast [f ] = 0\} with norm bound \| L\| \leq \alpha .
The asymptotic variance of f \in L2(\mu \ast ,\BbbR ) is defined by

\sigma 2(f) \equiv \langle 2L[f  - \mu \ast [f ]], f  - \mu \ast [f ]\rangle = 2

\int \infty 

0

\biggl( \int 
\scrP t[f ]fd\mu 

\ast  - (\mu \ast [f ])2
\biggr) 
dt.(4.9)
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Note that 0 \leq \sigma 2(f) \leq 2\alpha Var\mu \ast [f ].
Using these objects, one can obtain the following Bernstein-type bound. A simple proof

appears below Remark 2.3 in [29]; we outline the essential ideas below. See [45] and [34] for
similar earlier results.

Lemma 4.5. For all 0 < c < 1/(\alpha \| (f  - \mu \ast [f ])\pm \| \infty ) we have

\kappa (V\pm c) \leq 
\sigma 2(f)c2

2(1 - \alpha \| (f  - \mu \ast [f ])\pm \| \infty c)
.(4.10)

Proof. The cases where \sigma 2(f) = 0 or one of \| (f  - \mu \ast [f ])\pm \| \infty = 0 are trivial, so suppose
not. Using the self-adjoint functional calculus, one can see that L inverts A on D(A)\cap L2

0(\mu 
\ast )

and \bigm| \bigm| \bigm| \bigm| \int fgd\mu \ast 
\bigm| \bigm| \bigm| \bigm| \leq \biggl( \int  - A[g]gd\mu \ast 

\biggr) 1/2\biggl( \int 
 - L[f ]fd\mu \ast 

\biggr) 1/2

(4.11)

for all real-valued f \in L2
0(\mu 

\ast ), g \in D(A,\BbbR ).
Hence, for any g \in D(A,\BbbR ) with \| g\| L2(\mu \ast ) = 1 and any bounded, measurable V (not

necessarily related to f at this point),\int 
V g2d\mu \ast =

\int 
V (g  - \mu \ast [g])2d\mu \ast + 2\mu \ast [g]

\int 
(V  - \mu \ast [V ])gd\mu \ast + \mu \ast [V ]\mu \ast [g]2

\leq \| V +\| \infty Var\mu \ast [g] +
\sqrt{} 

2\sigma 2(V )
\sqrt{} 
\langle  - A[g], g\rangle + \mu \ast [V ].(4.12)

Using the Poincar\'e inequality and solving for \langle  - A[g], g\rangle gives

\langle  - A[g], g\rangle \geq h

\biggl( \int 
(V  - \mu \ast [V ])g2d\mu \ast 

\biggr) 
,(4.13)

h(r) \equiv 1r\geq 0
\sigma 2(V )

2(M\pm )2

\Biggl( \biggl( 
1 +

2M+

\sigma 2(V )
r

\biggr) 1/2

 - 1

\Biggr) 2

, M+ \equiv \alpha \| V +\| \infty .

Letting V = V\pm 1 = \pm (f  - \mu \ast [f ]) in (4.13) and using the result to bound \kappa , (3.3), results in

\kappa (V\pm c) \leq sup
r\in \BbbR 

\{ cr  - h(r)\} .(4.14)

Inequality (4.10) then follows from solving the optimization problem.

As with Theorem 4.4, the Bernstein-type bound, (4.10), implies a UQ bound.

Theorem 4.6. Under Assumption 2.8, if the generator satisfies the Poincar\'e inequality
(4.1) and is self-adjoint on L2(\mu \ast ), then for any bounded measurable f : \scrX \rightarrow \BbbR the bounds
(2.23) and (2.15) hold with

M\pm = \alpha \| (f  - \mu \ast [f ])\pm \| \infty , \sigma 2 = \sigma 2(f), \eta =
1

T
R( \widetilde P \widetilde \mu 

T | | P
\mu \ast 

T ).(4.15)
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Other variations can be derived using a Liapunov function. First we need a couple of
definitions, taken from section 4 of [29]. Also, see this reference for further Liapunov function
results that could likely be adapted to produce UQ bounds.

Definition 4.7. A measurable function G : \scrX \rightarrow \BbbR is in the \mu \ast -extended domain of the
generator, De,\mu \ast (A), if there is some measurable g : \scrX \rightarrow \BbbR such that

\int t
0 | g| (Xs)ds < \infty 

P\mu \ast 
-a.s. and one P\mu \ast 

-version of

Mt(G) \equiv G(Xt) - G(X0) - 
\int t

0
g(Xs)ds(4.16)

is a local P\mu \ast 
-martingale.

U \in De,\mu \ast (A) is called a Liapunov function if U \geq 1 and there exist a measurable \phi : \scrX \rightarrow 
(0,\infty ) and b > 0 such that

 - A[U ]

U
\geq \phi  - b \mu \ast -a.s.(4.17)

As shown in [29], given a Liapunov function, one can derive a bound on \kappa (V\pm c); our
method then produces a corresponding UQ bound.

Theorem 4.8. In addition to Assumption 2.8, assume the generator, A, is self-adjoint on
L2(\mu \ast ) and satisfies the Poincar\'e inequality (4.1) and that we have a Liapunov function U
with  - A[U ]/U \geq \phi  - b.

Given an observable f \in L2(\mu \ast ,\BbbR ) with \| (f  - \mu \ast [f ])\pm /\phi \| \infty < \infty , we have the UQ bounds
(2.23) and (2.15), where

M\pm = (1 + \alpha b)\| (f  - \mu \ast [f ])\pm /\phi \| \infty , \sigma 2 = \sigma 2(f), \eta =
1

T
R( \widetilde P \widetilde \mu 

T | | P
\mu \ast 

T ).(4.18)

Proof. First let V be a bounded measurable function. This part of the proof proceeds
similarly to that of Lemma 4.5, but rather than taking the supremum of V + in (4.12), one
instead uses (4.17) to compute the following bound, where g \in D(A,\BbbR ) with \| g\| L2(\mu \ast ) = 1:\int 

V g2d\mu \ast \leq \mu \ast [V ] +
\sqrt{} 
2\sigma 2(V )

\sqrt{} 
\langle  - A[g], g\rangle (4.19)

+ \| V +/\phi \| \infty 
\int \biggl( 

 - A[U ]

U
+ b

\biggr) 
(g  - \mu \ast [g])2d\mu \ast .

Next, use the bound found in Lemma 5.6 in [34],\int 
 - A[U ]

U
(g  - \mu \ast [g])2d\mu \ast \leq \langle  - A[g], g\rangle ,(4.20)

and proceed as in Lemma 4.5 to obtain

\kappa (\pm cV ) \leq \pm c\mu \ast [V ] +
\sigma 2(V )c2

2(1 - (1 + \alpha b)\| V \pm /\phi \| \infty c)
(4.21)
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for all 0 < c < 1/((1 + \alpha b)\| V \pm /\phi \| \infty ). If f is bounded, then applying this to V = f  - \mu \ast [f ]
and using Corollary 3.5 and Lemma 2.6 gives the claimed UQ bound.

For general f \in L2(\mu \ast ,\BbbR ) with \| (f  - \mu \ast [f ])\pm /\phi \| \infty < \infty , we employ a similar method
to Corollary 3 in [56]: Define V = f  - \mu \ast [f ] and V n = V 1| V | <n (not to be confused with
the nth power of V ). Applying the above result to V n and then using Fatou's lemma and
L2-continuity of the asymptotic variance gives

1

T
\Lambda 

\widehat fT
P\mu \ast 
T

(\pm c) \leq 1

T
log
\Bigl( 
\| \scrP V\pm c

T [1]\| 
\Bigr) 
\leq lim inf

n\rightarrow \infty 

1

T
log
\Bigl( 
\| \scrP \pm cV n

T [1]\| 
\Bigr) 

(4.22)

\leq lim inf
n\rightarrow \infty 

\biggl( 
\pm c\mu \ast [V n] +

\sigma 2(V n)c2

2(1 - (1 + \alpha b)\| (f  - \mu \ast [f ])\pm /\phi \| \infty c)

\biggr) 
=

\sigma 2(f)c2

2(1 - (1 + \alpha b)\| (f  - \mu \ast [f ])\pm /\phi \| \infty c)
.

Having extended the bound on the cumulant generating function to such f , the claimed UQ
bound follows from Proposition 2.2.

4.3. Poincar\'e inequality examples. The study of Poincar\'e inequalities has a long history
which we do not attempt to recount here. For a detailed discussion, see [55], which covers
Poincar\'e inequalities for both continuous-time Markov chains and diffusions. Criteria for
diffusions can also be found, for example, in [2, 3].

The following example illustrates that the Bernstein-type bounds used in this paper can
be sharp for Markov processes.

4.3.1. A simple Liapunov example: The \bfitM /\bfitM /\infty queue. Following [29], let us con-
sider the (simple) example of an M/M/\infty queuing system which has infinitely many servers,
each with a service rate \rho and an arrival rate \lambda . The state space is \BbbN , and the generator is
given by

(4.23) A[f ](n) = \lambda f(n+ 1) - (\lambda + \rho n)f(n) + \rho nf(n - 1).

The invariant measure \mu \ast is a Poisson distribution with parameter \lambda /\rho . An explicit compu-
tation shows (see, e.g., [14]) that Var\mu \ast [\scrP tf ] \leq e - 2\rho tVar\mu \ast [f ], and thus the Poincar\'e constant
is 1/\rho .

To construct a Liapunov function take U(n) = \kappa n with \kappa > 1; we then have

(4.24)  - A[U ]

U
(n) = \rho n(1 - \kappa  - 1) - \lambda (\kappa  - 1) ,

and we can apply Theorem 4.8 to any function f with | f | \leq C(n+ \delta ) for some \delta > 0.
It is instructive to consider further the case of the mean number of customers in the queue,

i.e., f = n and \widehat f = f  - \mu \ast [f ] = n - \lambda /\rho . From (4.23) we obtain

(4.25) (A+ \rho (1 - \kappa  - 1) \widehat f)[U ](n) = \lambda 
(\kappa  - 1)2

\kappa 
U(n),

and thus U is an eigenvector for A + \rho (1  - \kappa  - 1) \widehat f with eigenvalue \lambda (\kappa  - 1)2

\kappa . By the Perron--
Frobenius theorem and Rayleigh's principle we obtain that

(4.26) \Lambda (c) \equiv lim
T\rightarrow \infty 

T - 1\Lambda 
\widehat fT
P\mu \ast 
T

(c)
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is the maximal eigenvalue of A + c \widehat f , and thus \Lambda 
\bigl( 
\rho (1 - \kappa  - 1)

\bigr) 
= \lambda (\kappa  - 1)2

\kappa or equivalently

\Lambda (c) = \lambda c2

\rho 2(1 - c\rho  - 1)
. Since A \widehat f(n) = \lambda  - \rho n, we can solve the Poisson equation ( - A) - 1 \widehat f = \widehat f/\rho ,

and thus the asymptotic variance is \sigma 2(f) = 2\langle ( - A) - 1 \widehat f , \widehat f\rangle = 2\rho  - 1Var\mu \ast [f ] = 2\lambda /\rho 2. As a
consequence we have

(4.27) \Lambda (c) =
\sigma 2(f)c2

2(1 - c\rho  - 1)
,

which shows that Bernstein bounds can be sharp in the context of Markov processes, contrary
to the i.i.d. setting.

4.3.2. Poincar\'e inequality from exponential convergence. It is well known that, when
the generator, A, is self-adjoint, a Poincar\'e inequality is equivalent to exponential convergence
in the L2(\mu \ast )-norm. Here, we discuss a method for deriving a Poincar\'e inequality from
exponential convergence in alternative norms.

First, note that one only needs exponential L2-convergence on a subset with dense span
to conclude a Poincar\'e inequality (see Lemma 1.2 in [13]).

Lemma 4.9. Suppose (A,D(A)) is self-adjoint, F \subset L2(\mu \ast ) has dense span, and there
exists \alpha > 0 such that the following holds: For every f \in F there exists Cf \geq 0 such that

\| \scrP t[f ] - \mu \ast [f ]\| 2 \leq Cfe
 - t/\alpha for all t \geq 0.(4.28)

Then a Poincar\'e inequality, (4.1), holds with constant \alpha .

The following result shows how to obtain a Poincar\'e inequality (with an explicit constant)
from exponential convergence in a pair of weighted norms.

Theorem 4.10. Suppose (A,D(A)) is self-adjoint, and W : \scrX \rightarrow [1,\infty ) is measurable.
Define the following norms on measurable functions \phi : \scrX \rightarrow \BbbR and signed measures \pi on \scrX :

| \phi | W = sup
x\in \scrX 

| \phi (x)| 
W (x)

, | \pi | W =

\int 
Wd| \pi | .(4.29)

Suppose we have \lambda \geq 0, \rho \geq 0 with at least one nonzero and that for every bounded
measurable h : \scrX \rightarrow [0,\infty ) with

\int 
hd\mu = 1 there exist Ch, Dh \in [0,\infty ) such that for all t \geq 0

| \scrP t[h] - 1| W \leq Dhe
 - \rho t,(4.30)

and the measure d\nu = hd\mu \ast satisfies

| \scrP \dagger 
t [\nu ] - \mu \ast | W \leq Che

 - \lambda t,(4.31)

where \scrP \dagger 
t denotes the action of the semigroup pt on measures.

Then A satisfies the Poincar\'e inequality

Var\mu \ast [g] \leq  - 2

\lambda + \rho 
\langle A[g], g\rangle for all g \in D(A,\BbbR ).(4.32)
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Proof. The proof is similar to that of Theorem 2.1 in [3]. The key is to take h as above,
let d\nu = hd\mu \ast , use symmetry of \scrP t to compute

\| \scrP t[h] - 1\| 22 =
\int 

| \scrP t[h] - 1| 
W

W | \scrP t[h] - 1| d\mu \ast \leq | \scrP t[h] - 1| W | \scrP \dagger 
t [\nu ] - \mu \ast | W ,(4.33)

and then apply Lemma 4.9.

Exponential convergence in norms of the form | \cdot | W can be obtained from the existence
of an appropriate Liapunov function (see [35, 36]), making Theorem 4.10 a practical method
for obtaining Poincar\'e inequalities.

Remark 4.11. The proof of Lemma 4.9 can be generalized to only require (4.28) to hold

along a sequence tfn converging to \infty . Hence, Theorem 4.10 can also be generalized to only
require (4.30) and (4.31) along a common sequence thn \rightarrow \infty .

4.4. log-Sobolev inequalities. Next consider the log-Sobolev inequality with constant
\beta > 0: \int 

g2 log(g2)d\mu \ast \leq  - \beta 

\int 
A[g]gd\mu \ast (4.34)

for all g \in D(A,\BbbR ) with \| g\| L2(\mu \ast ) = 1.
We will employ the following generalization of the Feynman--Kac semigroup for (possibly)

unbounded potentials. The subsequent proposition was shown in Corollary 4 in [56]. For
completeness purposes, we outline the proof.

Proposition 4.12. Let A be the generator of \scrP t and \mu \ast be an invariant measure for the
adjoint semigroup, \beta > 0, and assume the log-Sobolev inequality, (4.34), holds for \mu \ast with
constant \beta .

Finally, suppose that V \in L1(\mu \ast ) with
\int 
e\beta V d\mu \ast < \infty . Then \scrP V

t : L2(\mu \ast ) \rightarrow L2(\mu \ast ),
defined by

\scrP V
t [g](x) = Ex

\biggl[ 
g(Xt) exp

\biggl( \int t

0
V (Xs)ds

\biggr) \biggr] 
,(4.35)

are well-defined linear operators, and the operator norm satisfies the bound

\| \scrP V
t \| \leq 

\biggl( \int 
e\beta V d\mu \ast 

\biggr) t/\beta 

.(4.36)

Proof. First assume V is bounded. Inequality (3.4) gives \| \scrP V
t \| \leq et\kappa (V ). Applying the

log-Sobolev inequality together with the Gibbs variational principle, (2.6), we obtain

\kappa (V ) \leq \beta  - 1 sup

\biggl\{ 
 - 
\int 

g2 log(g2)d\mu \ast +

\int 
\beta V | g| 2d\mu \ast : \| g\| L2(\mu \ast ) = 1

\biggr\} 
(4.37)

=\beta  - 1 sup
d\nu =g2d\mu \ast :\| g\| 2=1

\{ E\nu [\beta V ] - R(\nu | | \mu \ast )\} = \beta  - 1 log

\biggl( \int 
exp (\beta V ) d\mu \ast 

\biggr) 
,
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which proves the claim.
The case of unbounded V satisfying the assumptions of the theorem is obtained by letting

V n = V 1| V | \leq n and then using Fatou's lemma, the result for bounded V , and dominated
convergence to compute

\| \scrP V
t \| \leq lim inf

n\rightarrow \infty 
\| \scrP V n

t \| \leq lim inf
n\rightarrow \infty 

\biggl( \int 
e\beta V

n
d\mu \ast 
\biggr) t/\beta 

=

\biggl( \int 
e\beta V d\mu \ast 

\biggr) t/\beta 

.

Using Proposition 4.12, a UQ bound of the form (2.23) can be derived that covers a class
of unbounded observables.

Theorem 4.13. In addition to Assumption 2.8, assume the log-Sobolev inequality, (4.34),
holds and we have an observable f \in L1(\mu \ast ,\BbbR ) and c - < 0 < c+ such that for all c \in (c - , c+)\int 

exp (\beta Vc) d\mu 
\ast < \infty .(4.38)

Then a UQ bound of the form (2.23) holds with

\Lambda (c) =

\biggl\{ 1
\beta log

\bigl( \int 
e\beta Vcd\mu \ast \bigr) if c \in (c - , c+),

+\infty otherwise.
(4.39)

In addition, the asymptotic result (2.16) holds with

\Lambda \prime \prime (0) = \beta Var\mu \ast [f ], \eta =
1

T
R( \widetilde P \widetilde \mu 

T | | P
\mu \ast 

T ).(4.40)

Proof. The bound (4.36) implies E\mu \ast 
[exp(cfT )] < \infty for c \in (c - , c+); hence fT \in \scrE (P\mu \ast 

T ),
and the Gibbs information inequality, (2.7), applies. As in (2.26), the cumulant generating
function can be bounded using the Feynman--Kac semigroup bound, (4.36). Combining this
with (2.7) yields a bound of the form (2.23), with \Lambda as defined in (4.39).

The ideas in this section can be extended to F -Sobolev inequalities; see Appendix B.

4.4.1. Example: Diffusions. Let V be a C2 potential, bounded below, and growing suf-
ficiently fast at infinity. Consider the diffusion with generator A = \Delta  - \nabla V \cdot \nabla and invariant
measure \mu \ast (dx) = e - V (x)dx. First, it is useful to note that a log-Sobolev inequality with
constant \beta implies a Poincar\'e inequality with constant \alpha = \beta /2 [53]. In [11], the following
sufficient condition for a log-Sobolev inequality was obtained.

Suppose A satisfies a Poincar\'e inequality with constant \alpha (references on Poincar\'e inequal-
ities can be found in section 4.3) and that

 - C \equiv inf
x

\biggl\{ 
1

4
| \nabla V (x)| 2  - 1

2
\Delta V (x) - \pi e2V (x)

\biggr\} 
>  - \infty .(4.41)

Then A satisfies a log-Sobolev inequality with constant

\beta = 3\alpha +
1

(1 + \alpha | C| )\pi e2
.(4.42)
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As a second example, if the Hessian of V is bounded below,

D2V (x) \geq 2\beta  - 1I(4.43)

for some \beta > 0 (unrelated to the \beta in (4.42)), then a log-Sobolev inequality holds with constant
\beta [4]. A UQ bound corresponding to the associated Poincar\'e inequality with constant \alpha \equiv \beta /2
was given in the introduction in (1.10).

5. Functional inequalities and UQ for discrete-time Markov processes. In this section
we show how the above framework can be applied to obtain UQ bounds for invariant measures
of discrete-time Markov processes.

Again, let \scrX be a Polish space, and suppose we have one-step transition probabilities
p(x, dy) and \widetilde p(x, dy) on \scrX with invariant measures \mu \ast and \widetilde \mu \ast , respectively. Assume that
R(\widetilde \mu \ast | | \mu \ast ) < \infty .

Define the bounded linear operator \scrP on L2(\mu \ast ),

\scrP [f ](x) \equiv 
\int 

f(y)p(x, dy),(5.1)

and similarly for \widetilde \scrP on L2(\widetilde \mu \ast ).
We obtain UQ bounds for expectations in \mu \ast and \widetilde \mu \ast by constructing continuous-time

processes with these same invariant distributions. Specifically, in Appendix C (see Theorem
C.1) we obtain c\`adl\`ag Markov families (\Omega ,\scrF ,\scrF t, Xt, \{ P x\} x\in \scrX ) and (\Omega ,\scrF ,\scrF t, Xt, \{ \widetilde P x\} x\in \scrX ),
whose transition probabilities pt and \widetilde pt, respectively (not to be confused with p and \widetilde p), satisfy
the following:

1. \mu \ast is invariant for pt for all t \geq 0, and similarly for \widetilde \mu \ast and \widetilde pt (see Theorem C.2).
2. The continuous-time semigroup, \scrP t, on L2(\mu \ast ) constructed from pt is

\scrP t = exp(t(\scrP  - I)).(5.2)

Specifically, \scrP t has bounded generator A = \scrP  - I (see Theorem C.2). Note that we
will also refer to A as the generator of the discrete-time Markov process.

3. The relative entropy rate of the continuous-time process can be bounded by the relative
entropy of the discrete-time process as follows:

R( \widetilde P \widetilde \mu \ast 

T | | P\mu \ast 

T ) \leq R(\widetilde \mu \ast | | \mu \ast ) + T

\int 
R(\widetilde p(x, \cdot )| | p(x, \cdot ))\widetilde \mu \ast (dx)(5.3)

for all T > 0 (see Theorem C.4 and Corollary C.5).

Remark 5.1. While the above construction, and the computation of the relative entropy,
is standard for countable state spaces (see the discussion in section 6.1), for our purposes it is
necessary to work with general state spaces; to the best of our knowledge, the relative entropy
bound (5.3) is new in this case.

General state spaces are of interest, for example, when one is working with Markov chain
Monte Carlo samplers, p(x, dy) and \widetilde p(x, dy), for measures, \mu \ast and \widetilde \mu \ast , respectively, on \BbbR n. In
this setting, to use our UQ method, one can construct the ancillary continuous-time Markov
chain on \BbbR n, as outlined in Appendix C, and then apply the relative entropy bound (5.3).
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The Markov families P x and \widetilde P x, obtained via the above construction, satisfy Assumption
2.8. Hence, if the generator \scrP  - I satisfies any of the functional inequalities covered in section
3, then the general results therein imply UQ bounds for expectations in the invariant measures
\mu \ast and \widetilde \mu \ast , with (5.3) providing a bound on the relative entropy rate.

Remark 5.2. Note that here we must take \widetilde \mu = \widetilde \mu \ast for the bounds to apply to the original
discrete-time process; otherwise one obtains UQ bounds for ergodic averages of f(Xt) under
the auxiliary continuous-time Markov family.

For example, a Poincar\'e inequality for the generator \scrP  - I,

Re(\langle (\scrP  - I)g, g\rangle ) \leq  - \alpha  - 1\| P\bot g\| 2L2(\mu \ast ), g \in L2(\mu \ast ), \alpha > 0,(5.4)

implies that for any bounded measurable f : \scrX \rightarrow \BbbR , we have

\pm (\widetilde \mu \ast [f ] - \mu \ast [f ]) \leq 
\sqrt{} 
2\sigma 2\eta +M\pm \eta ,(5.5)

\sigma 2 = 2\alpha Var\mu \ast [f ], M\pm = \alpha \| (f  - \mu \ast [f ])\pm \| \infty ,

\eta =

\int 
R(\widetilde p(x, \cdot )| | p(x, \cdot ))\widetilde \mu \ast (dx).

This follows from Theorem 4.4, after taking T \rightarrow \infty (recall the assumption R(\widetilde \mu \ast | | \mu \ast ) < \infty ).
We illustrate these discrete-time UQ bounds with a pair of examples.

5.1. Example: Random walk on a hypercube. Consider the symmetric random walk
on the d-dimensional hypercube \scrX = \{  - 1, 1\} d; i.e., the transition probabilities are defined
by uniformly randomly selecting a coordinate, i \in \{ 1, . . . , d\} , and then independently and
uniformly selecting the sign, 1 or  - 1, with which to update the selected component.

The uniform measure, \mu \ast , on \scrX is invariant and the process is reversible on (\scrX , \mu \ast ). The
eigenvalues and eigenvectors of the transition matrix can be found explicitly; see Example
12.15 in [44]. In particular, the second largest eigenvalue is \lambda 2 = 1 - 1/d; hence we obtain the
following Poincar\'e inequality:

Re(\langle (\scrP  - I)g, g\rangle ) \leq  - 1

d
\| P\bot g\| 2L2(\mu \ast ), g \in L2(\mu \ast ).(5.6)

Assuming R(\widetilde \mu \ast | | \mu \ast ) < \infty , we then obtain the UQ bound (5.5) with \alpha = d.

5.2. Example: Exclusion chain. Derivation of functional inequalities for many discrete-
time Markov processes can be found in [19]. Here we investigate the resulting UQ bounds for
one of these examples; see section 4.6 in the above reference and also [18] for further details
and proofs regarding this example.

Let (V,E) be a symmetric, connected graph with n vertices. Let d(x) be the degree
of a vertex x \in V and d0 = maxx d(x). Fix r \leq n. The r-exclusion process is a Markov
chain with state space being the set of cardinality r subsets of V . Informally stated, the
transition probabilities are defined as follows: Given an r-subset A (i.e., state of the chain),
pick an element x \in A with probability proportional to its degree. Uniformly randomly pick
a vertex y out of all those connected with x. If y is not in A, then transition to the new state
(A \setminus \{ x\} ) \cup \{ y\} . Otherwise, the chain remains at the set A.
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For each (x, y) \in V \times V , fix a path \gamma x,y from x to y in the graph, and let | \gamma x,y| be its
length. Define

\Delta 0 =max
e0\in V

\left\{   \sum 
(x,y):e0\in \gamma x,y

| \gamma x,y| 

\right\}   , dr = max
A\subset V :| A| =r

\Biggl\{ 
1

r

\sum 
a\in A

d(a)

\Biggr\} 
.(5.7)

The generator of this Markov chain satisfies both a Poincar\'e inequality and a log-Sobolev
inequality with respective constants being

\alpha = rdr\Delta 0/n, \beta = 3rdr\Delta 0 log(n)/n.(5.8)

Then, assuming R(\widetilde \mu \ast | | \mu \ast ) < \infty , the above Poincar\'e inequality implies the UQ bound
(5.5) with \alpha as in (5.8), and the log-Sobolev inequality results in

\pm (\widetilde \mu \ast [f ] - \mu \ast [f ]) \leq inf
c>0

\biggl\{ 
1

c\beta 
log

\biggl( \int 
exp (\pm \beta c(f  - \mu \ast [f ])) d\mu \ast 

\biggr) 
+

\eta 

c

\biggr\} 
,(5.9)

with \beta and \eta as in (5.8) and (5.5), respectively.

6. Bounding the relative entropy rate. For any \eta > 0, the results derived in the previous
sections provide UQ bounds over the class of all alternative models that satisfy a relative
entropy bound of the form

HT ( \widetilde P \widetilde \mu | | P\mu \ast 
) \equiv 1

T
R( \widetilde P \widetilde \mu 

T | | P
\mu \ast 

T ) \leq \eta .(6.1)

In this section, we study in more detail the dependence of HT on T and on the models \widetilde P \widetilde \mu and
P\mu \ast 

. Specifically, we derive upper bounds on HT in various settings that can be substituted
for HT in the general UQ bound (2.23). Here, it will make little difference whether the initial
distribution for the P -process is invariant or not, so we no longer make that assumption when
deriving the relative entropy bounds; \mu will denote an arbitrary initial distribution.

Deriving bounds on the relative entropy is a very application-specific problem. We will
cover several examples in detail: continuous-time Markov chains, semi-Markov processes,
change of drift in SDEs, and numerical methods for SDEs with additive noise.

6.1. Example: Continuous-time Markov chains. Let \scrX be a countable set, P\mu , \widetilde P \widetilde \mu be
probability measures on (\Omega ,\scrF ), and Xt : \Omega \rightarrow \scrX such that P\mu (resp., \widetilde P \widetilde \mu ) makes (\Omega ,\scrF , Xt) a
continuous-time Markov chain with transition probabilities a(x, y) (resp., \widetilde a(x, y)), jump rates
\lambda (x) (resp., \widetilde \lambda (x)), and initial distribution \mu (resp., \widetilde \mu ). Let \scrF t be the natural filtration for Xt

and XJ
n be the embedded jump chain with jump times Jn.

Suppose \widetilde \mu \ll \mu , \lambda and \~\lambda are positive and bounded above, and for all x, y \in \scrX we have
a(x, y) = 0 iff \widetilde a(x, y) = 0. Then for any T > 0 we have \widetilde P \widetilde \mu | \scrF T

\ll P\mu | \scrF T
and

R( \widetilde P \widetilde \mu | \scrF T
| | P\mu | \scrF T

)(6.2)

=R(\widetilde \mu | | \mu ) + \widetilde E\widetilde \mu \biggl[ \int T

0

\widetilde F (Xs)\widetilde \lambda (Xs)ds

\biggr] 
 - \widetilde E\widetilde \mu \biggl[ \int T

0

\widetilde \lambda (Xs) - \lambda (Xs)ds

\biggr] 
,

\widetilde F (x) \equiv 
\sum 
z\in \scrX 

\widetilde a(x, z) log\Biggl( \widetilde \lambda (x)\widetilde a(x, z)
\lambda (x)a(x, z)

\Biggr) 
.

D
ow

nl
oa

de
d 

05
/2

5/
20

 to
 1

28
.1

19
.1

68
.1

12
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM and ASA. Unauthorized reproduction of this article is prohibited. 

560 JEREMIAH BIRRELL AND LUC REY-BELLET

To simplify further, if \widetilde \mu = \widetilde \mu \ast is an invariant measure, then

R( \widetilde P \widetilde \mu \ast | \scrF T
| | P\mu | \scrF T

) = R(\widetilde \mu \ast | | \mu )(6.3)

+ T

\Biggl( \sum 
x\in \scrX 

\sum 
z\in \scrX 

\widetilde \mu \ast (x)\widetilde \lambda (x)\widetilde a(x, z) log\Biggl( \widetilde \lambda (x)\widetilde a(x, z)
\lambda (x)a(x, z)

\Biggr) 
 - 
\sum 
x\in \scrX 

\widetilde \mu \ast (x)
\Bigl( \widetilde \lambda (x) - \lambda (x)

\Bigr) \Biggr) 
.

See the supplementary materials to [23] and Proposition 2.6 in Appendix 1 of [42] for details
regarding these results.

6.2. Example: Semi-Markov processes. As we have noted previously, our results require
(Xt, P

x) to be Markov but do not require the alternative model (Xt, \widetilde P x) to be Markov. Here
we discuss one such class of examples, that of a semi-Markov perturbation of a continuous-time
Markov chain.

Semi-Markov processes are continuous-time jump processes with memory (i.e., with non-
exponential waiting times). Such a process is defined by a jump chain, XJ

n , jump times, Jn,
and waiting times (i.e., jump intervals), \Delta n+1 \equiv Jn+1  - Jn, that satisfy\widetilde P \widetilde \mu (XJ

n+1 = y,\Delta n+1 \leq t| XJ
1 , . . . , X

J
n - 1, X

J
n , J1, . . . , Jn)

= \widetilde P \widetilde \mu (XJ
n+1 = y,\Delta n+1 \leq t| XJ

n ) \equiv \widetilde QXJ
n ,y(t).\widetilde Qx,y(t) is called the semi-Markov kernel; see, for example, [38, 48] for further details. Note that

a continuous-time Markov chain with embedded jump Markov chain transition probabilities
a(x, y) and jump rates \lambda (x) is described by the semi-Markov kernel

Qx,y(t) = a(x, y)

\int t

0
\lambda (x)e - \lambda (x)sds.(6.4)

A semi-Markov perturbation of (6.4) with the same embedded jump Markov chain but
with modified (nonexponential) waiting times is described by a kernel of the form\widetilde Qx,y(t) = a(x, y) \widetilde Hx(t).(6.5)

Remark 6.1. Phase-type distributions constitute a useful semiparametric description of
such alternative waiting-time distributions, going beyond the exponential case to describe
systems with memory; see [27, 7] for details.

The relative entropy rate,

\eta \equiv lim sup
T\rightarrow \infty 

1

T
R( \widetilde P \widetilde \mu | \scrF T

| | P\widetilde \mu \ast | \scrF T
),(6.6)

between semi-Markov processes was obtained in [30] under the appropriate ergodicity assump-
tions. When the base process has the form (6.4) and the alternative process has the form (6.5),
the relative entropy rate can be expressed in terms of the relative entropy of the waiting-time
distributions:

\eta =
1\widetilde m\pi 

\sum 
x

\pi (x)R( \widetilde Hx| | Hx), \widetilde m\pi \equiv 
\sum 
x

\pi (x)

\int \infty 

0
(1 - \widetilde Hx(t))dt,(6.7)

where \pi is the invariant distribution for the Markov chain a(x, y).
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UNCERTAINTY QUANTIFICATION FOR MARKOV PROCESSES 561

Remark 6.2. The quantity \widetilde m\pi is the mean sojourn time under the invariant distribution,
\pi , and

\sum 
x \pi (x)R( \widetilde Hx| | Hx) can be thought of as the mean relative entropy of a single jump

(comparing the alternative and base model waiting-time distributions). The formula for \eta ,
(6.7), therefore has the intuitive meaning of an information loss per unit time.

6.2.1. Semi-Markov perturbations of an \bfitM /\bfitM /\infty -queue. As a concrete example, we
consider semi-Markov perturbations of an M/M/\infty -queue with service rate \rho and with an
arrival rate \lambda . The embedded jump Markov chain is given by

a(x, x+ 1) = \lambda /(\lambda + \rho x), a(x, x - 1) = \rho x/(\lambda + \rho x),(6.8)

and the waiting-times are exponentially distributed with jump rates

\lambda (x) = \alpha + \rho x.(6.9)

Equation (6.8) has invariant distribution

\pi (x) =
(\alpha + \rho x)(\alpha /\rho )x

2\alpha x!
e - \alpha /\rho .(6.10)

Taking T \rightarrow \infty in (2.20) and using (4.26), (4.27), and (6.7), we therefore obtain the
following asymptotic upper bound on the average queue length in the alternative model:

lim sup
T\rightarrow \infty 

\biggl( \widetilde E\widetilde \mu \biggl[ 1
T

\int T

0
Xtdt

\biggr] 
 - \alpha /\rho 

\biggr) 
(6.11)

\leq inf
0<c<\rho 

\biggl\{ 
1

c

\alpha c2

\rho 2(1 - c/\rho )
+

1

c
\eta 

\biggr\} 
=
\Bigl( 
2
\sqrt{} 

\eta /\alpha + \eta /\alpha 
\Bigr) \alpha 

\rho 
,

where

\eta =
1\widetilde m\pi 

\sum 
x

\pi (x)R( \widetilde Hx| | Hx),(6.12)

\widetilde m\pi =
\sum 
x

\pi (x)

\int \infty 

0
(1 - \widetilde Hx(t))dt, Hx(t) =

\int t

0
\lambda (x)e - \lambda (x)sds.

Note that the only ingredient from the alternative model that is needed in (6.11) is \widetilde Hx, and
given this, the bounds are generally straightforward to evaluate.

6.3. Example: Change of drift for SDEs. Next, consider the case where P x and \widetilde P x are
the distributions on C([0,\infty ),\BbbR n) of the solution flows Xx

t and \widetilde Xx
t of a pair of SDEs. More

precisely, we have the following.

Assumption 6.3. Assume the following:
1. Xx

t and \widetilde Xx
t are weak solutions to the \BbbR n-valued SDEs, on filtered probability spaces

satisfying the usual conditions [40]:

dXx
t = b(Xx

t )dt+ \sigma (Xx
t )dWt, Xx

0 = x,(6.13)

d \widetilde Xx
t = \widetilde b( \widetilde Xx

t )dt+ \sigma ( \widetilde Xx
t )d
\widetilde Wt, \widetilde Xx

0 = x,(6.14)
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562 JEREMIAH BIRRELL AND LUC REY-BELLET

where Wt and \widetilde Wt are m-dimensional Wiener processes. We let P and \widetilde P denote the
probability measures of the respective spaces where the SDEs are defined.
Here we think of b : \BbbR n \rightarrow \BbbR n and \sigma : \BbbR n \rightarrow \BbbR n\times m as the measurable drift and diffusion
for the base process, and we assume the modified drift has the form \widetilde b = b + \sigma \beta for
some measurable \beta : \BbbR n \rightarrow \BbbR m.

2. Xx
t and \widetilde Xx

t are jointly continuous in (t, x).
3. Xx

t satisfies the following flow property: For any bounded, measurable G : C([0,\infty ),\BbbR n)
\rightarrow \BbbR , we have

EP (G(Xx
t+\cdot )| \scrF t) = EP

\Bigl[ 
G
\Bigl( 
X(\cdot )

\Bigr) \Bigr] 
\circ Xx

t .(6.15)

4. Xx
t and \beta satisfy the Novikov condition

EP

\biggl[ 
exp

\biggl( 
1

2

\int T

0
\| \beta (Xx

s )\| 2ds
\biggr) \biggr] 

< \infty (6.16)

for all x \in \BbbR n, T > 0.
5. For every T > 0, solutions to (6.14) satisfy uniqueness in law, up to time T .

Given this, we define P x = (Xx)\ast P and \widetilde P x = ( \widetilde Xx)\ast \widetilde P , i.e., the distributions on path
space, with the Borel sigma algebra:

(\Omega ,\scrF ,\scrF t) = (C([0,\infty ),\BbbR n),\scrB (C([0,\infty ),\BbbR n)), \sigma (\pi s, s \leq t)),(6.17)

where \pi t is evaluation at time t. Finally, define Xt \equiv \pi t. One can easily show that the above
properties are sufficient to guarantee that Assumption 2.8 holds.

Remark 6.4. The existence of flows of solutions Xx
t and \widetilde Xx

t that satisfy the above condi-
tions is guaranteed, for example, if b and \sigma satisfy a linear growth bound

(6.18) \| b(x)\| 2 + \| \sigma (x)\| 2 \leq K2(1 + \| x\| 2),

and the following local Lipschitz bound.
For each \ell there exists K\ell such that

\| b(x) - b(y)\| + \| \sigma (x) - \sigma (y)\| \leq K\ell \| x - y\| (6.19)

on \| x\| , \| y\| \leq \ell , and if \beta : \BbbR n \rightarrow \BbbR m is also bounded and locally Lipschitz.

Fixing T > 0, Girsanov's theorem allows one to bound the relative entropy, R( \widetilde P x
T | | P x

T ),
that appears in the UQ bound (2.23). See the supplementary materials to [23] for more details.

Lemma 6.5. Under Assumption 6.3, and given initial distributions \mu and \widetilde \mu for the base
and alternative models, respectively, we have

HT ( \widetilde P \widetilde \mu | | P\mu ) \leq 1

T
R(\widetilde \mu | | \mu ) + \int \biggl( 1

2T

\int T

0
E \widetilde P
\Bigl[ 
\| \beta ( \widetilde Xx

s )\| 2
\Bigr] 
ds

\biggr) \widetilde \mu (dx).
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6.4. Example: Euler--Maruyama methods for SDEs with additive noise. As the fi-
nal example, we consider SDEs with additive noise, approximated by a (generalized) Euler--
Maruyama (EM) method.

Assumption 6.6. Let Wt be an n-dimensional Wiener process on filtered probability spaces
satisfying the usual conditions, let b : \BbbR n \rightarrow \BbbR n satisfy the linear boundedness and local
Lipschitz properties as described in Remark 6.4, and let Xx

t be the strong solutions to the
SDEs

dXx
t = b(Xx

t )dt+ dWt, Xx
0 = x.(6.20)

Recall that versions can be chosen so that Xx
t is jointly continuous in (t, x) and Xx

t satisfies
the flow property (6.15).

We fix \Delta t > 0 and assume we are given a measurable vector field \widetilde b\Delta t : \BbbR n \rightarrow \BbbR n (the drift
for the generalized EM method). We define the approximating process \widetilde Xx

0 = x,\widetilde Xx| (j\Delta t,(j+1)\Delta t](t) = \widetilde Xx
j\Delta t +

\widetilde b\Delta t( \widetilde Xx
j\Delta t)(t - j\Delta t) +Wt  - Wj\Delta t for j \in \BbbZ 0.(6.21)

We emphasize that, for the purposes of employing the theory we have developed (i.e., to
employ functional inequalities satisfied by the generator of (6.20)), it is necessary to extend\widetilde Xx

t to all t \geq 0 and not just define it at the mesh points j\Delta t.
Let P denote the probability measure on the space where the SDE is defined. Similarly

to the previous example, we define P x = (Xx)\ast P and \widetilde P x = ( \widetilde Xx)\ast P , probability measures on

(\Omega ,\scrF ,\scrF t) = (C([0,\infty ),\BbbR n),\scrB (C([0,\infty ),\BbbR n)), \sigma (\pi s, s \leq t)).(6.22)

Assumption 6.6 is sufficient to guarantee that Assumption 2.8 holds. The chain rule for
relative entropy (see Theorem C.3.1 in [22]) can be used to obtain

R( \widetilde P \widetilde \mu 
T | | P

\mu 
T ) \leq R(\widetilde \mu | | \mu ) + \int R( \widetilde P x

T | | P x
T )\widetilde \mu (dx).(6.23)

Let T = N\Delta t for N \in \BbbZ +. For the purposes of bounding the relative entropy term

R( \widetilde P x
T | | P x

T ) = R(( \widetilde Xx| [0,N\Delta t])\ast P | | (Xx| [0,N\Delta t])\ast P ),(6.24)

it will be useful to define the Polish space \scrY \equiv C([0,\Delta t],\BbbR n) and the following one-step
transition probabilities for a discrete-time Markov process on \scrY :

q(y,B) = P
\Bigl( 
Xy(\Delta t)| [0,\Delta t] \in B

\Bigr) 
, \widetilde q(y,B) = P

\Bigl( \widetilde Xy(\Delta t)| [0,\Delta t] \in B
\Bigr) 
.(6.25)

Letting \otimes N
1 q denote the composition on \scrY N , the Markov property implies

\otimes N
1 q(x, \cdot ) =

\bigl( 
Xx| [0,\Delta t], X

x| \Delta t+[0,\Delta t], . . . , X
x| (N - 1)\Delta t+[0,\Delta t]

\bigr) 
\ast P(6.26)

for all x \in \BbbR n, and similarly for \widetilde q, \widetilde Xx.
Therefore, using the chain rule for relative entropy again, we obtain

R( \widetilde P x
N\Delta t| | P x

N\Delta t) =
N - 1\sum 
j=0

\int 
R (\widetilde q(y, \cdot )| | q(y, \cdot )) \widetilde qj(x, dy)(6.27)

for all x \in \BbbR n. Hence we arrive at the following lemma.
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564 JEREMIAH BIRRELL AND LUC REY-BELLET

Lemma 6.7.

R( \widetilde P x
N\Delta t| | P x

N\Delta t) =

N\sum 
j=1

EP

\Bigl[ 
R
\Bigl( \widetilde P (\cdot )

\Delta t| | P
(\cdot )
\Delta t

\Bigr) 
\circ \widetilde Xx

(j - 1)\Delta t

\Bigr] 
.(6.28)

The one-step relative entropy can be bounded via Girsanov's theorem, similarly to Lemma
6.5; on each time interval of length \Delta t, the tilde process is simply the solution to an SDE with
constant drift and additive noise.

Lemma 6.8. Under Assumption 6.6

HN\Delta t( \widetilde P \widetilde \mu | | P\mu ) \leq 1

N\Delta t
R(\widetilde \mu | | \mu )(6.29)

+
1

N

N\sum 
j=1

\int \int 
EP

\biggl[ 
1

2\Delta t

\int \Delta t

0
\| \widetilde b\Delta t(y) - b( \widetilde Xx

s )\| 2ds
\biggr] \widetilde p\Delta t

j - 1(x, dy)\widetilde \mu (dx),
where \widetilde p\Delta t

j (x, dy) = ( \widetilde Xx
j\Delta t)\ast P .

6.4.1. EM error bounds. We end this section by specializing the results to the EM
method, \widetilde b\Delta t \equiv b.

If we assume b is C1 with bounded first derivative and Db is L-Lipschitz, then Taylor
expanding b gives\int \Delta t

0
EP

\Bigl[ 
\| \widetilde b\Delta t(y) - b( \widetilde Xy

s )\| 2
\Bigr] 
ds \leq tr

\bigl( 
Db(y)Db(y)T

\bigr) \Delta t2

2
(6.30)

+ \| Db(y)b(y)\| 2\Delta t3

3
+

16
\surd 
2\Gamma ((n+ 3)/2)

5\Gamma (n/2)
L\| Db\| \infty \Delta t5/2

+
2n(n+ 2)L2

3
\Delta t3 + L\| Db\| \infty \| b(y)\| 3\Delta t4 +

2L2

5
\| b(y)\| 4\Delta t5,

and therefore

HN\Delta t \leq 
1

N\Delta t
R(\widetilde \mu | | \mu ) + \Delta t

4

1

N

N\sum 
j=1

\int 
EP

\Bigl[ 
\| Db( \widetilde Xx

(j - 1)\Delta t)\| 
2
F

\Bigr] \widetilde \mu (dx)(6.31)

+ \Delta t3/2
\biggl( 
8
\surd 
2\Gamma ((n+ 3)/2)

5\Gamma (n/2)
L\| Db\| \infty +

n(n+ 2)L2

3
\Delta t1/2

+
1

N

N\sum 
j=1

\int 
EP

\biggl[ 
\Delta t1/2

6
\| Db( \widetilde Xx

(j - 1)\Delta t)b(
\widetilde Xx
(j - 1)\Delta t)\| 

2

+
L\| Db\| \infty 

2
\| b( \widetilde Xx

(j - 1)\Delta t)\| 
3\Delta t3/2 +

L2

5
\| b( \widetilde Xx

(j - 1)\Delta t)\| 
4\Delta t5/2

\biggr] \widetilde \mu (dx)\biggr) ,
where \| \cdot \| F denotes the Frobenius matrix norm.

This is not the tightest possible bound, and alternatives can be obtained by Taylor ex-
panding further, but it gives an idea of the type of result that can be obtained under various
smoothness assumptions on b.
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If the initial distributions have the form d\widetilde \mu = e - 
\widetilde \phi dx and d\mu = e - \phi dx, where \widetilde \phi and \phi are

known functions, then the relative entropy term takes the form

R(\widetilde \mu | | \mu ) = \int (\phi (x) - \widetilde \phi (x))e - \widetilde \phi (x)dx.(6.32)

If one can efficiently sample from \widetilde \mu , then (6.31) and (6.32) can be estimated via Monte Carlo
methods, providing UQ bounds that involve a mixture of a priori and a posteriori data.

Appendix A. Proof of the perturbation bound.

Lemma A.1. Let H be a Hilbert space, A : D(A) \subset H \rightarrow H be a linear operator, and
B : H \rightarrow H be a bounded self-adjoint operator. Suppose there exist D > 0 and x0 \in H with
\| x0\| = 1 such that

\langle Bx0, x0\rangle = 0 and Re(\langle Ax, x\rangle ) \leq  - D\| P\bot x\| 2(A.1)

for all x \in D(A), where P\bot is the orthogonal projector onto x\bot 0 .
Define

B+ \equiv max

\Biggl\{ 
sup
\| y\| =1

\langle By, y\rangle , 0

\Biggr\} 
.(A.2)

Then for any 0 \leq c < D/B+ we have

sup
x\in D(A),\| x\| =1

Re(\langle (A+ cB)x, x\rangle ) \leq c2\| Bx0\| 2

D  - cB+
.(A.3)

Proof. Let x \in D(A) with \| x\| = 1. Define a = \langle x0, x\rangle . (Here we will use the convention
of linearity in the second argument.) We have \| P\bot x\| 2 = 1 - | a| 2, and so | a| \leq 1 with equality
if and only if P\bot x = 0.

We can decompose x = ax0 +
\sqrt{} 
1 - | a| 2v, where either v = 0 and | a| = 1 if P\bot x = 0 or

v = P\bot x/
\sqrt{} 

1 - | a| 2 and \| v\| = 1 if P\bot x \not = 0. In either case, v \bot x0.
With this, we have

sup
x\in D(A),\| x\| =1

Re(\langle (A+ cB)x, x\rangle ) = sup
x\in D(A),\| x\| =1

\{ Re(\langle Ax, x\rangle ) + cRe(\langle Bx, x\rangle )\} (A.4)

\leq sup
\beta \in [0,1]

\Bigl\{ 
 - D(1 - \beta 2) + 2cRe(\langle 

\sqrt{} 
1 - \beta 2v, aBx0\rangle ) + c(1 - \beta 2)\langle Bv, v\rangle 

\Bigr\} 
\leq sup

\beta \in [0,1]

\Bigl\{ 
2c\beta 
\sqrt{} 
1 - \beta 2\| Bx0\|  - 

\bigl( 
D  - cB+

\bigr) 
(1 - \beta 2)

\Bigr\} 
,

where B+ is given by (A.2).
Restricting to 0 \leq c < D/B+, if \| Bx0\| = 0, then the supremum is 0, and we have

the result. Otherwise, the supremum is positive, and we can use \beta \leq 1/\beta and then change
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variables in the supremum to r =
\sqrt{} 

1 - \beta 2/\beta , thereby obtaining

sup
x\in D(A),\| x\| =1

Re(\langle (A+ cB)x, x\rangle )(A.5)

\leq sup
\beta \in (0,1]

\Bigl\{ 
\beta 
\sqrt{} 
1 - \beta 2

\Bigl( 
2c\| Bx0\|  - 

\bigl( 
D  - cB+

\bigr) \sqrt{} 
1 - \beta 2/\beta 

\Bigr) \Bigr\} 
\leq sup

r\geq 0

\bigl\{ 
2c\| Bx0\| r  - 

\bigl( 
D  - cB+

\bigr) 
r2
\bigr\} 
=

\| Bx0\| 2c2

D  - cB+
.

The previous lemma is closest in spirit to the probabilistic application, as \| Bx0\| 2 plays
the role of the variance. However, one can work with non-self-adjoint perturbations if one
instead uses the definition

B+ \equiv max

\Biggl\{ 
sup
\| y\| =1

Re(\langle By, y\rangle ), 0

\Biggr\} 
(A.6)

and makes the replacement \| Bx0\| \rightarrow \| (B +B\ast )x0/2\| in (A.3). The proof is similar.

Appendix B. \bfitF -Sobolev inequalities. Proposition 4.12 can be generalized to the F -
Sobolev case; see the proof of Theorem 2.3 in [12].

Proposition B.1. Let A be the generator of \scrP t and \mu \ast be an invariant measure. Suppose
we have a function F : (0,\infty ) \rightarrow \BbbR satisfying the following:

1. F is strictly increasing,
2. F is concave (hence continuous),
3. F (1) = 0,
4. F (x) \rightarrow \infty as x \rightarrow \infty , and
5. F (xy) \leq F (x) + F (y) for all x, y \geq 0.

(Note that this implies F - 1 : (F (0+),\infty ) \rightarrow (0,\infty ) exists and is increasing, convex, and
continuous.)

Assume the F -Sobolev inequality holds for \mu \ast :\int 
g2F (g2)d\mu \ast \leq  - 

\int 
A[g]gd\mu \ast for all g \in D(A,\BbbR ) with \| g\| L2(\mu \ast ) = 1.(B.1)

Finally, suppose that V \in L1(\mu \ast ) with V > F (0+) and
\int 
F - 1(V )d\mu \ast < \infty . Then \scrP V

t :
L2(\mu \ast ) \rightarrow L2(\mu \ast ), defined by

\scrP V
t [g](x) = Ex

\biggl[ 
g(Xt) exp

\biggl( \int t

0
V (Xs)ds

\biggr) \biggr] 
,(B.2)

are well-defined linear operators, and the operator norm satisfies the bound

\| \scrP V
t \| \leq exp

\biggl[ 
tF

\biggl( \int 
F - 1(V )d\mu \ast 

\biggr) \biggr] 
.(B.3)

Note that if F (0+) =  - \infty , then certain unbounded observables are allowed, namely those
that satisfy the integrability condition (4.38).

This proposition leads to a UQ bound of the form (2.23). The proof is analogous to the
log-Sobolev case from section 4.4.
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Theorem B.2. In addition to Assumption 2.8, assume the F -Sobolev inequality, (B.1),
holds for some function, F , having the properties listed in Proposition B.1, f \in L1(\mu \ast ,\BbbR ),
and there exists c - < 0 < c+ such that, for all c \in (c - , c+),

F (0+) < \pm c(f  - \mu \ast [f ]),

\int 
F - 1 (\pm c (f  - \mu \ast [f ])) d\mu \ast < \infty .(B.4)

Then a UQ bound of the form (2.23) holds with

\Lambda (c) =

\biggl\{ 
F
\bigl( \int 

F - 1(Vc)d\mu 
\ast \bigr) if c \in (c - , c+),

+\infty otherwise.
(B.5)

In addition, if Var\mu \ast [f ] > 0, F and F - 1 are smooth, F \prime (1) > 0, (F - 1)\prime \prime (0) > 0, and
c \rightarrow \mu \ast [F - 1(Vc)] is smooth on a neighborhood of 0 and can be differentiated under the integral,
then (2.16) holds with

\Lambda \prime \prime (0) = F \prime (1) (F - 1)\prime \prime (0)Var\mu \ast [f ], \eta =
1

T
R( \widetilde P \widetilde \mu 

T | | P
\mu \ast 

T ).(B.6)

Appendix C. Continuous-time jump processes on general state spaces. As discussed in
section 5, to apply our UQ bounds to the invariant measure of discrete-time Markov processes,
\scrP and \widetilde P , one needs to construct an ancillary continuous-time Markov process with generators
\scrP  - I and \widetilde \scrP  - I and also compute the associated relative entropy. While the construction
of continuous-time Markov processes from their generators is well known (see, for example,
Chapter 4.2 in [26] or Chapter 3.3 in [47]), and the relative entropy computation is known in
the countable state space case (see section 6.1), we require a formula for the relative entropy
in the general case of a Polish state space. To the best of our knowledge, this computation is
new, though it closely mirrors the established results; hence we present only a short outline.

In order to obtain an explicit formula for the Radon--Nikodym derivative, and thereby
compute the relative entropy, it is useful to utilize an explicit construction, as in the countable
state space case (see, for example, Appendix 1 of [42]), rather than invoking more general
existence theorems.

Let (\scrX ,\scrB \scrX ) be a Polish space and p(x, dy) be a probability kernel on \scrX . Given \lambda > 0,
define the probability kernel, pJ , on the Polish space (\scrX \times (0,\infty ),\scrB \scrX 

\bigotimes 
\scrB (0,\infty )):

pJ((x, s), \cdot ) = p(x, dy)\times \lambda e - \lambda tdt.(C.1)

For any probability measure \pi on (\scrX ,\scrB \scrX ), let P \pi (for \pi = \delta x we simply write P x) be the
unique probability measure on (\Omega ,\scrF ) \equiv (

\prod \infty 
n=0(\scrX \times (0,\infty )),

\bigotimes \infty 
n=0(\scrB \scrX 

\bigotimes 
\scrB (0,\infty ))) generated

by the transition probabilities pJ and initial distribution \pi \times (\lambda e - \lambda tdt). Also, define the jump
process, jump intervals, and jump times:

XJ
n \equiv \pi 1 \circ \pi n, \Delta n \equiv \mu \circ \pi n for n \in \BbbZ 0, J0 \equiv 0, Jn \equiv 

n - 1\sum 
k=0

\Delta k for n \in \BbbZ +,(C.2)

where \pi i denote projections onto components. The jump rates are positive constants, so one
obtains Jn(\omega ) \rightarrow \infty a.s. as n \rightarrow \infty .
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(XJ
n ,\Delta n) is a Markov process under P \pi with transition probabilities pJ and initial distri-

bution \pi \times (\lambda e\lambda tdt). Use this to define the associated c\`adl\`ag process

Xt(\omega ) = XJ
n , where t \in [Jn(\omega ), Jn+1(\omega )),(C.3)

and the probability kernels on \scrX ,

pt(x,A) \equiv P x(Xt \in A), t \geq 0, x \in \scrX .(C.4)

Finally, let \scrF t be the natural filtration for Xt.
With this setup, we have the following theorem.

Theorem C.1. (\Omega ,\scrF ,\scrF t, Xt, P
x), x \in \scrX , is a c\`adl\`ag Markov family with transition proba-

bilities pt. More specifically, the following hold:
1. (\Omega ,\scrF ,\scrF t), t \geq 0, is a filtered probability space and Xt is an \scrX -valued, \scrF t-adapted,

c\`adl\`ag process.
2. pt(x, dy), t \geq 0, are time homogeneous transition probabilities on \scrX .
3. P x, x \in \scrX , are probability measures with (X0)\ast P

x = \delta x for each x \in \scrX .
4. For every measurable set F , x \rightarrow P x(F ) is universally measurable.
5. For each x \in \scrX , P x(Xt+s \in B| \scrF s) = pt(Xs, B) P x-a.s. In particular, pt(x,B) =

P x(Xt \in B).

One also obtains realizability of the semigroup exp(t\lambda (\scrP  - I)) by a probability kernel.

Theorem C.2. If \mu \ast is an invariant measure for p, then \mu \ast is invariant for pt for all t \geq 0
and the bounded linear operators on L2(\mu \ast ),

\scrP [f ](x) \equiv 
\int 

f(y)p(x, dy), \scrP t[f ](x) \equiv 
\int 

f(y)pt(x, dy),(C.5)

satisfy

\scrP t = exp(t\lambda (\scrP  - I))(C.6)

for all t \geq 0, where the right-hand side is the operator exponential for bounded operators on
L2(\mu \ast ).

These results are all straightforward to prove by using the same strategy as the discrete
state space case.

The formula for the Radon--Nikodym derivative for two measures constructed as above is
also straightforward; the only complication is that here, the jump chain (XJ

n ,\Delta n) is generally
not recoverable fromXt; specifically, the Jn are not \scrF t-stopping times (this is because ``jumps""
do not necessarily change the state, unlike the construction commonly used when the state
space is discrete). Hence, we must derive a formula for the Radon--Nikodym derivative on the
enlarged filtration

\scrG t \equiv \sigma (1Jn\leq s, XJn\wedge s : s \leq t, n \geq 0).(C.7)

Otherwise, the computation closely mirrors the discrete case (again, see [42]), and one arrives
at the following theorem.
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Theorem C.3. Suppose we have probability measures \widetilde \mu , \mu and probability kernels \widetilde p(x, dy),
p(x, dy) on \scrX . Assume that \widetilde \mu \ll \mu and \widetilde p(x, \cdot ) \ll p(x, \cdot ) for \widetilde \mu a.e. x. In particular, we have
h \in L+(\scrX \times \scrX ) such that

\widetilde p(x, dy) = h(x, y)p(x, dy) for \widetilde \mu a.e. x.(C.8)

Given \lambda > 0, construct the probability measures \widetilde P \widetilde \mu and P\mu on \Omega from \widetilde p and p, respectively,
and define the process Xt as in (C.3).

Suppose ( \widetilde \scrP \dagger )n[\widetilde \mu ] \ll \widetilde \mu for all n (in particular, if \widetilde \mu is invariant for \widetilde p). Then for any t \geq 0
we have \widetilde P \widetilde \mu | \scrG t \ll P\mu | \scrG t and

d \widetilde P \widetilde \mu | \scrG t

dP\mu | \scrG t

=
d\widetilde \mu 
d\mu 

(X0)
\prod 

n\geq 1:Jn\leq t

h(XJn - 1\wedge t, XJn\wedge t).(C.9)

By an analogous computation to the continuous-time Markov chain case, (6.2), the formula for
the Radon--Nikodym derivative (C.9) leads to the following formula for the relative entropy.

Theorem C.4. Suppose we have probability measures \widetilde \mu , \mu and probability kernels \widetilde p(x, dy),
p(x, dy) on \scrX . Assume that \widetilde \mu \ll \mu and \widetilde p(x, \cdot ) \ll p(x, \cdot ) for \widetilde \mu a.e. x.

Suppose ( \widetilde \scrP \dagger )n[\widetilde \mu ] \ll \widetilde \mu for all n (in particular, if \widetilde \mu is invariant for \widetilde p). Then for any t \geq 0
we have

R( \widetilde P \widetilde \mu | \scrG t | | P\mu | \scrG t) = R(\widetilde \mu | | \mu ) + \lambda 

\int t

0

\widetilde E\widetilde \mu \biggl[ \int log(h(Xs, z))h(Xs, z)p(Xs, dz)

\biggr] 
ds,(C.10)

where h is as defined in (C.8).

It is also useful to note that, by the data processing inequality (see Theorem 14 in [46]),
\scrF t \subset \scrG t implies

R( \widetilde P \widetilde \mu | \scrF t | | P\mu | \scrF t) \leq R( \widetilde P \widetilde \mu | \scrG t | | P\mu | \scrG t).(C.11)

When \widetilde \mu is an invariant measure we obtain the following simpler formula.

Corollary C.5. Suppose we have probability measures \widetilde \mu \ast , \mu and probability kernels \widetilde p(x, dy),
p(x, dy) on \scrX . If \widetilde \mu \ast is invariant for \widetilde p, then for all t > 0

R( \widetilde P \widetilde \mu \ast | \scrF t | | P\mu | \scrF t) \leq R(\widetilde \mu \ast | | \mu ) + \lambda t

\int 
R(\widetilde p(x, \cdot )| | p(x, \cdot ))d\widetilde \mu \ast .(C.12)

This is the relative entropy bound that was used in section 5 when applying our UQ results
to invariant measures of discrete-time Markov processes.
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